Density/Volume (chemicals.volume)¶
This module contains various volume/density estimation routines, dataframes of fit coefficients, and mixing rules.
For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.
Pure Low Pressure Liquid Correlations¶
- chemicals.volume.Rackett(T, Tc, Pc, Zc)[source]¶
Calculates saturation liquid volume, using Rackett CSP method and critical properties.
The molar volume of a liquid is given by:
Units are all currently in m^3/mol - this can be changed to kg/m^3
- Parameters
- Returns
- Vs
float
Saturation liquid volume, [m^3/mol]
- Vs
Notes
According to Reid et. al, underpredicts volume for compounds with Zc < 0.22
References
- 1
Rackett, Harold G. “Equation of State for Saturated Liquids.” Journal of Chemical & Engineering Data 15, no. 4 (1970): 514-517. doi:10.1021/je60047a012
Examples
Propane, example from the API Handbook
>>> from chemicals.utils import Vm_to_rho >>> Vm_to_rho(Rackett(272.03889, 369.83, 4248000.0, 0.2763), 44.09562) 531.3221411755724
- chemicals.volume.COSTALD(T, Tc, Vc, omega)[source]¶
Calculate saturation liquid density using the COSTALD CSP method.
A popular and accurate estimation method. If possible, fit parameters are used; alternatively critical properties work well.
The density of a liquid is given by:
Units are that of critical or fit constant volume.
- Parameters
- Returns
- Vs
float
Saturation liquid volume
- Vs
Notes
196 constants are fit to this function in [1]. Range: 0.25 < Tr < 0.95, often said to be to 1.0
This function has been checked with the API handbook example problem.
References
- 1
Hankinson, Risdon W., and George H. Thomson. “A New Correlation for Saturated Densities of Liquids and Their Mixtures.” AIChE Journal 25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412
Examples
Propane, from an example in the API Handbook:
>>> from chemicals.utils import Vm_to_rho >>> Vm_to_rho(COSTALD(272.03889, 369.83333, 0.20008161E-3, 0.1532), 44.097) 530.3009967969844
- chemicals.volume.Yen_Woods_saturation(T, Tc, Vc, Zc)[source]¶
Calculates saturation liquid volume, using the Yen and Woods [1] CSP method and a chemical’s critical properties.
The molar volume of a liquid is given by:
- Parameters
- Returns
- Vs
float
Saturation liquid volume, [m^3/mol]
- Vs
Notes
Original equation was in terms of density, but it is converted here.
No example has been found, nor are there points in the article. However, it is believed correct. For compressed liquids with the Yen-Woods method, see the YenWoods_compressed function.
References
- 1
Yen, Lewis C., and S. S. Woods. “A Generalized Equation for Computer Calculation of Liquid Densities.” AIChE Journal 12, no. 1 (1966): 95-99. doi:10.1002/aic.690120119
Examples
>>> Yen_Woods_saturation(300, 647.14, 55.45E-6, 0.245) 1.769533076529574e-05
- chemicals.volume.Yamada_Gunn(T, Tc, Pc, omega)[source]¶
Calculates saturation liquid volume, using Yamada and Gunn CSP method and a chemical’s critical properties and acentric factor.
The molar volume of a liquid is given by:
Units are in m^3/mol.
- Parameters
- Returns
- Vs
float
saturation liquid volume, [m^3/mol]
- Vs
Notes
This equation is an improvement on the Rackett equation. This is often presented as the Rackett equation. The acentric factor is used here, instead of the critical compressibility A variant using a reference fluid also exists
References
- 1
Gunn, R. D., and Tomoyoshi Yamada. “A Corresponding States Correlation of Saturated Liquid Volumes.” AIChE Journal 17, no. 6 (1971): 1341-45. doi:10.1002/aic.690170613
- 2
Yamada, Tomoyoshi, and Robert D. Gunn. “Saturated Liquid Molar Volumes. Rackett Equation.” Journal of Chemical & Engineering Data 18, no. 2 (1973): 234-36. doi:10.1021/je60057a006
Examples
>>> Yamada_Gunn(300, 647.14, 22048320.0, 0.245) 2.188284384699659e-05
- chemicals.volume.Townsend_Hales(T, Tc, Vc, omega)[source]¶
Calculates saturation liquid density, using the Townsend and Hales CSP method as modified from the original Riedel equation. Uses chemical critical volume and temperature, as well as acentric factor
The density of a liquid is given by:
- Parameters
- Returns
- Vs
float
Saturation liquid volume, [m^3/mol]
- Vs
Notes
The requirement for critical volume and acentric factor requires all data.
References
- 1
Hales, J. L, and R Townsend. “Liquid Densities from 293 to 490 K of Nine Aromatic Hydrocarbons.” The Journal of Chemical Thermodynamics 4, no. 5 (1972): 763-72. doi:10.1016/0021-9614(72)90050-X
Examples
>>> Townsend_Hales(300, 647.14, 55.95E-6, 0.3449) 1.8007361992619923e-05
- chemicals.volume.Bhirud_normal(T, Tc, Pc, omega)[source]¶
Calculates saturation liquid density using the Bhirud [1] CSP method. Uses Critical temperature and pressure and acentric factor.
The density of a liquid is given by:
- Parameters
- Returns
- Vm
float
Saturated liquid molar volume, [mol/m^3]
- Vm
Notes
Claimed inadequate by others.
An interpolation table for ln U values are used from Tr = 0.98 - 1.000. Has terrible behavior at low reduced temperatures.
References
- 1
Bhirud, Vasant L. “Saturated Liquid Densities of Normal Fluids.” AIChE Journal 24, no. 6 (November 1, 1978): 1127-31. doi:10.1002/aic.690240630
Examples
Pentane
>>> Bhirud_normal(280.0, 469.7, 33.7E5, 0.252) 0.00011249657842514176
- chemicals.volume.Campbell_Thodos(T, Tb, Tc, Pc, MW, dipole=0.0, has_hydroxyl=False)[source]¶
Calculate saturation liquid density using the Campbell-Thodos [1] CSP method.
An old and uncommon estimation method.
For polar compounds:
Polar Combounds with hydroxyl groups (water, alcohols)
- Parameters
- T
float
Temperature of fluid [K]
- Tb
float
Boiling temperature of the fluid [K]
- Tc
float
Critical temperature of fluid [K]
- Pc
float
Critical pressure of fluid [Pa]
- MW
float
Molecular weight of the fluid [g/mol]
- dipole
float
,optional
Dipole moment of the fluid [debye]
- has_hydroxylbool,
optional
Swith to use the hydroxyl variant for polar fluids
- T
- Returns
- Vs
float
Saturation liquid volume, [m^3/mol]
- Vs
Notes
If a dipole is provided, the polar chemical method is used. The paper is an excellent read. Pc is internally converted to atm.
References
- 1(1,2)
Campbell, Scott W., and George Thodos. “Prediction of Saturated Liquid Densities and Critical Volumes for Polar and Nonpolar Substances.” Journal of Chemical & Engineering Data 30, no. 1 (January 1, 1985): 102-11. doi:10.1021/je00039a032.
Examples
Ammonia, from [1].
>>> Campbell_Thodos(T=405.45, Tb=239.82, Tc=405.45, Pc=111.7*101325, MW=17.03, dipole=1.47) 7.347366126245e-05
- chemicals.volume.SNM0(T, Tc, Vc, omega, delta_SRK=None)[source]¶
Calculates saturated liquid density using the Mchaweh, Moshfeghian model [1]. Designed for simple calculations.
If the fit parameter delta_SRK is provided, the following is used:
- Parameters
- Returns
- Vs
float
Saturation liquid volume, [m^3/mol]
- Vs
Notes
73 fit parameters have been gathered from the article.
References
- 1
Mchaweh, A., A. Alsaygh, Kh. Nasrifar, and M. Moshfeghian. “A Simplified Method for Calculating Saturated Liquid Densities.” Fluid Phase Equilibria 224, no. 2 (October 1, 2004): 157-67. doi:10.1016/j.fluid.2004.06.054
Examples
Argon, without the fit parameter and with it. Tabulated result in Perry’s is 3.4613e-05. The fit increases the error on this occasion.
>>> SNM0(121, 150.8, 7.49e-05, -0.004) 3.440225640273e-05 >>> SNM0(121, 150.8, 7.49e-05, -0.004, -0.03259620) 3.493288100008e-05
Pure High Pressure Liquid Correlations¶
- chemicals.volume.COSTALD_compressed(T, P, Psat, Tc, Pc, omega, Vs)[source]¶
Calculates compressed-liquid volume, using the COSTALD [1] CSP method and a chemical’s critical properties.
The molar volume of a liquid is given by:
- Parameters
- T
float
Temperature of fluid [K]
- P
float
Pressure of fluid [Pa]
- Psat
float
Saturation pressure of the fluid [Pa]
- Tc
float
Critical temperature of fluid [K]
- Pc
float
Critical pressure of fluid [Pa]
- omega
float
(ideally SRK) Acentric factor for fluid, [-] This parameter is alternatively a fit parameter.
- Vs
float
Saturation liquid volume, [m^3/mol]
- T
- Returns
- V_dense
float
High-pressure liquid volume, [m^3/mol]
- V_dense
Notes
Original equation was in terms of density, but it is converted here.
The example is from DIPPR, and exactly correct. This is DIPPR Procedure 4C: Method for Estimating the Density of Pure Organic Liquids under Pressure.
References
- 1
Thomson, G. H., K. R. Brobst, and R. W. Hankinson. “An Improved Correlation for Densities of Compressed Liquids and Liquid Mixtures.” AIChE Journal 28, no. 4 (July 1, 1982): 671-76. doi:10.1002/aic.690280420
Examples
>>> COSTALD_compressed(303., 9.8E7, 85857.9, 466.7, 3640000.0, 0.281, 0.000105047) 9.287482879788505e-05
Liquid Mixing Rules¶
- chemicals.volume.Amgat(xs, Vms)[source]¶
Calculate mixture liquid density using the Amgat mixing rule. Highly inacurate, but easy to use. Assumes idea liquids with no excess volume. Average molecular weight should be used with it to obtain density.
or in terms of density:
- Parameters
- Returns
- Vm
float
Mixture liquid volume [m^3/mol]
- Vm
Notes
Units are that of the given volumes. It has been suggested to use this equation with weight fractions, but the results have been less accurate.
Examples
>>> Amgat([0.5, 0.5], [4.057e-05, 5.861e-05]) 4.9590000000000005e-05
- chemicals.volume.Rackett_mixture(T, xs, MWs, Tcs, Pcs, Zrs)[source]¶
Calculate mixture liquid density using the Rackett-derived mixing rule as shown in [2].
- Parameters
- Returns
- Vm
float
Mixture liquid volume [m^3/mol]
- Vm
Notes
Model for pure compounds in [1] forms the basis for this model, shown in [2]. Molecular weights are used as weighing by such has been found to provide higher accuracy in [2]. The model can also be used without molecular weights, but results are somewhat different.
As with the Rackett model, critical compressibilities may be used if Rackett parameters have not been regressed.
Critical mixture temperature, and compressibility are all obtained with simple mixing rules.
References
- 1
Rackett, Harold G. “Equation of State for Saturated Liquids.” Journal of Chemical & Engineering Data 15, no. 4 (1970): 514-517. doi:10.1021/je60047a012
- 2(1,2,3,4)
Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.
Examples
Calculation in [2] for methanol and water mixture. Result matches example.
>>> Rackett_mixture(T=298., xs=[0.4576, 0.5424], MWs=[32.04, 18.01], Tcs=[512.58, 647.29], Pcs=[8.096E6, 2.209E7], Zrs=[0.2332, 0.2374]) 2.6252894930056885e-05
- chemicals.volume.COSTALD_mixture(xs, T, Tcs, Vcs, omegas)[source]¶
Calculate mixture liquid density using the COSTALD CSP method.
A popular and accurate estimation method. If possible, fit parameters are used; alternatively critical properties work well.
The mixing rules giving parameters for the pure component COSTALD equation are:
- Parameters
- xs
list
Mole fractions of each component
- T
float
Temperature of fluid [K]
- Tcs
list
Critical temperature of fluids [K]
- Vcs
list
Critical volumes of fluids [m^3/mol]. This parameter is alternatively a fit parameter
- omegas
list
(ideally SRK) Acentric factor of all fluids, [-] This parameter is alternatively a fit parameter.
- xs
- Returns
- Vs
float
Saturation liquid mixture volume
- Vs
Notes
Range: 0.25 < Tr < 0.95, often said to be to 1.0 No example has been found. Units are that of critical or fit constant volume.
References
- 1
Hankinson, Risdon W., and George H. Thomson. “A New Correlation for Saturated Densities of Liquids and Their Mixtures.” AIChE Journal 25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412
Examples
>>> COSTALD_mixture([0.4576, 0.5424], 298., [512.58, 647.29], [0.000117, 5.6e-05], [0.559,0.344]) 2.7065887732713534e-05
Gas Correlations¶
Gas volumes are predicted with one of:
An equation of state
A virial coefficient model
The ideal gas law
Equations of state do much more than predict volume however. An implementation of many of them can be found in thermo.
Virial functions are implemented in chemicals.virial
.
Pure Solid Correlations¶
Solid density does not depend on pressure significantly, and unless operating in the geochemical or astronomical domain is normally neglected.
- chemicals.volume.Goodman(T, Tt, Vml)[source]¶
Calculates solid density at T using the simple relationship by a member of the DIPPR.
The molar volume of a solid is given by:
- Parameters
- Returns
- Vms
float
Solid molar volume, [m^3/mol]
- Vms
Notes
Works to the next solid transition temperature or to approximately 0.3Tt.
References
- 1
Goodman, Benjamin T., W. Vincent Wilding, John L. Oscarson, and Richard L. Rowley. “A Note on the Relationship between Organic Solid Density and Liquid Density at the Triple Point.” Journal of Chemical & Engineering Data 49, no. 6 (2004): 1512-14. doi:10.1021/je034220e.
Examples
Decane at 200 K:
>>> Goodman(200, 243.225, 0.00023585) 0.0002053665090860923
Pure Component Liquid Fit Correlations¶
- chemicals.volume.Rackett_fit(T, Tc, rhoc, b, n, MW=None)[source]¶
Calculates saturation liquid volume, using the Rackett equation form and a known or estimated critical temperature and density as well as fit parameters b and n.
The density of a liquid is given by:
The density is then converted to a specific volume by taking its inverse.
Note that the units of this equation in some sources are kg/m^3, g/mL in others, and m^3/mol in others. If the units for the coefficients are in molar units, do NOT provide MW or an incorrect value will be returned. If the units are mass units and MW is not provided, the output will have the same units as rhoc.
- Parameters
- Returns
- Vs
float
Saturation liquid volume, [m^3/mol if MW given; m^3/kg otherwise]
- Vs
References
- 1
Frenkel, Michael, Robert D. Chirico, Vladimir Diky, Xinjian Yan, Qian Dong, and Chris Muzny. “ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept.” Journal of Chemical Information and Modeling 45, no. 4 (July 1, 2005): 816-38. https://doi.org/10.1021/ci050067b.
- 2
Yaws, Carl L. “Liquid Density of the Elements: A Comprehensive Tabulation for All the Important Elements from Ag to Zr.” Chemical Engineering 114, no. 12 (2007): 44-47.
Examples
Input sample from NIST (naphthalene) (m^3/kg):
>>> Rackett_fit(T=400.0, Tc=748.402, rhoc=314.629, b=0.257033, n=0.280338) 0.00106174320755
Parameters in Yaws form (butane) (note the 1000 multiplier on rhoc, called A in Yaws) (m^3/kg):
>>> Rackett_fit(T=298.15, Tc=425.18, rhoc=0.2283*1000, b=0.2724, n=0.2863) 0.00174520519958
Same Yaws point, with MW provided:
>>> Rackett_fit(T=298.15, Tc=425.18, rhoc=0.2283*1000, b=0.2724, n=0.2863, MW=58.123) 0.00010143656181
- chemicals.volume.volume_VDI_PPDS(T, Tc, rhoc, a, b, c, d, MW=None)[source]¶
Calculates saturation liquid volume, using the critical properties and fitted coefficients from [1]. This is also known as the PPDS equation 10 or PPDS10.
- Parameters
- T
float
Temperature of fluid [K]
- Tc
float
Critical temperature of fluid [K]
- rhoc
float
Critical density of fluid [kg/m^3]
- a
float
First coefficient, [kg/m^3]
- b
float
Second coefficient, [kg/m^3]
- c
float
Third coefficient, [kg/m^3]
- d
float
Fourth coefficient, [kg/m^3]
- MW
float
,optional
Molecular weight of chemical [g/mol]
- T
- Returns
- Vs
float
Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]
- Vs
References
- 1
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
Examples
Calculate density of nitrogen in kg/m3 at 300 K:
>>> volume_VDI_PPDS(300, 126.19, 313, 470.922, 493.251, -560.469, 389.611) 313.0
Calculate molar volume of nitrogen in m3/mol at 300 K:
>>> volume_VDI_PPDS(300, 126.19, 313, 470.922, 493.251, -560.469, 389.611, 28.01) 8.9488817891e-05
- chemicals.volume.TDE_VDNS_rho(T, Tc, rhoc, a1, a2, a3, a4, MW=None)[source]¶
Calculates saturation liquid volume, using the critical properties and fitted coefficients in the TDE VDNW form from [1].
- Parameters
- T
float
Temperature of fluid [K]
- Tc
float
Critical temperature of fluid [K]
- rhoc
float
Critical density of fluid [kg/m^3]
- a1
float
Regression parameter, [-]
- a2
float
Regression parameter, [-]
- a3
float
Regression parameter, [-]
- a4
float
Regression parameter, [-]
- MW
float
,optional
Molecular weight of chemical [g/mol]
- T
- Returns
- Vs
float
Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]
- Vs
References
- 1
“ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-DensityLG/VDNSExpansion.htm.
Examples
>>> TDE_VDNS_rho(T=400.0, Tc=772.999, rhoc=320.037, a1=795.092, a2=-169.132, a3=448.929, a4=-102.931) 947.4906064903
- chemicals.volume.PPDS17(T, Tc, a0, a1, a2, MW=None)[source]¶
Calculates saturation liquid volume, using the critical temperature and fitted coefficients in the PPDS17 form in [1].
- Parameters
- Returns
- Vs
float
Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]
- Vs
References
- 1(1,2)
“ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-DensityLG/PPDS17.htm.
Examples
Coefficients for the liquid density of benzene from [1] at 300 K:
>>> PPDS17(300, 562.05, a0=0.0115508, a1=0.281004, a2=-0.00635447) 871.520087707
Pure Component High-Pressure Liquid Fit Correlations¶
- chemicals.volume.Tait(P, P_ref, rho_ref, B, C)[source]¶
Calculates compressed-liquid mass density using the Tait model [1] and fit coefficients B and C and the reference (usually saturation) liquid density. B and C are normally temperature dependent but it is assumed they are constant (or calculated earlier) in this function
The mass density of the compressed liquid is given by:
- Parameters
- P
float
Pressure of fluid [Pa]
- P_ref
float
Pressure of the fluid at the reference density; normally saturation at higher pressures and either 1 atm or 1 MPa at low enough temperatures the saturation pressure stops being an important factor, [Pa]
- rho_ref
float
The mass density of the fluid at the reference condition, [kg/m^3]
- B
float
Fit coefficient, [Pa]
- C
float
Fit coefficient, [-]
- P
- Returns
- rho
float
High-pressure liquid mass density, [kg/m^3]
- rho
Notes
If P is set to be lower than P_ref, it is adjusted to have the same value as P_ref (saturation condition).
If B becomes negative and higher than P_ref, the logarithm will become undefined.
References
- 1(1,2)
Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.
Examples
Coefficients for methanol from the CRC Handbook [1] at 300 K and 1E8 Pa.
>>> B_coeffs = [649718000.0, -4345830.0, 13072.2, -20.029200000000003, 0.0120566] >>> C_coeffs = [0.115068, -5.322e-05] >>> T = 300 >>> Tait(P=1e8, P_ref=101325, rho_ref=784.85, B=float(np.polyval(B_coeffs[::-1], T)), C=float(np.polyval(C_coeffs[::-1], T))) 853.744916
- chemicals.volume.Tait_molar(P, P_ref, V_ref, B, C)[source]¶
Calculates compressed-liquid volume using the Tait model [1] and fit coefficients B and C and the reference (usually saturation) liquid density. B and C are normally temperature dependent but it is assumed they are constant (or calculated earlier) in this function
The molar volume of the compressed liquid is given by:
- Parameters
- P
float
Pressure of fluid [Pa]
- P_ref
float
Pressure of the fluid at the reference density; normally saturation at higher pressures and either 1 atm or 1 MPa at low enough temperatures the saturation pressure stops being an important factor, [Pa]
- V_ref
float
The molar volume of the fluid at the reference condition, [m^3/mol]
- B
float
Fit coefficient, [Pa]
- C
float
Fit coefficient, [-]
- P
- Returns
- V_dense
float
High-pressure liquid volume, [m^3/mol]
- V_dense
Notes
If P is set to be lower than P_ref, it is adjusted to have the same value as P_ref (saturation condition).
References
- 1(1,2)
Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.
Examples
Coefficients for methanol from the CRC Handbook [1] at 300 K and 1E8 Pa.
>>> Tait_molar(P=1e8, P_ref=101325.0, V_ref=4.0825e-05, B=79337060.0, C=0.099102) 3.75305e-05
Pure Component Solid Fit Correlations¶
- chemicals.volume.CRC_inorganic(T, rho0, k, Tm, MW=None)[source]¶
Calculates liquid density of a molten element or salt at temperature above the melting point. Some coefficients are given nearly up to the boiling point.
The mass density of the inorganic liquid is given by:
- Parameters
- Returns
- rho
float
Mass density of molten metal or salt, [m^3/mol if MW given; kg/m^3 otherwise]
- rho
Notes
[1] has units of g/mL. While the individual densities could have been converted to molar units, the temperature coefficient could only be converted by refitting to calculated data. To maintain compatibility with the form of the equations, this was not performed.
This linear form is useful only in small temperature ranges. Coefficients for one compound could be used to predict the temperature dependence of density of a similar compound.
References
- 1
Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. [Boca Raton, FL]: CRC press, 2014.
Examples
>>> CRC_inorganic(300, 2370.0, 2.687, 239.08) 2206.30796
Fit Coefficients¶
All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.
- chemicals.volume.rho_data_COSTALD¶
Coefficients for the
COSTALD
method from [3]; 192 fluids have coefficients published.
- chemicals.volume.rho_data_Perry_8E_105_l¶
Coefficients for
chemicals.dippr.EQ105
from [1] for 344 fluids. Note this is in terms of molar density; to obtain molar volume, invert the result!
- chemicals.volume.rho_data_VDI_PPDS_2¶
Coefficients in [5] developed by the PPDS using
chemicals.dippr.EQ116
but in terms of mass density [kg/m^3]; Valid up to the critical temperature, and extrapolates to very low temperatures well.
- chemicals.volume.rho_data_CRC_inorg_l¶
Single-temperature coefficient linear model in terms of mass density for the density of inorganic liquids. Data is available for 177 fluids normally valid over a narrow range above the melting point, from [4]; described in
CRC_inorganic
.
- chemicals.volume.rho_data_CRC_inorg_l_const¶
Constant inorganic liquid molar volumes published in [4].
- chemicals.volume.rho_data_CRC_inorg_s_const¶
Constant solid densities molar volumes published in [4].
- chemicals.volume.rho_data_CRC_virial¶
Coefficients for a tempereture polynomial (T in Kelvin) for the second B virial coefficient published in [4]. The form of the equation is with and then B will be in units of m^3/mol.
- 1
Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.
- 2
Mchaweh, A., A. Alsaygh, Kh. Nasrifar, and M. Moshfeghian. “A Simplified Method for Calculating Saturated Liquid Densities.” Fluid Phase Equilibria 224, no. 2 (October 1, 2004): 157-67. doi:10.1016/j.fluid.2004.06.054
- 3
Hankinson, Risdon W., and George H. Thomson. “A New Correlation for Saturated Densities of Liquids and Their Mixtures.” AIChE Journal 25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412
- 4(1,2,3,4)
Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.
- 5
Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
The structure of each dataframe is shown below:
In [1]: import chemicals
In [2]: chemicals.volume.rho_data_COSTALD
Out[2]:
Chemical omega_SRK Vchar Z_RA
CAS
60-29-7 ethyl ether 0.2800 0.000281 0.2632
64-17-5 ethyl alcohol 0.6378 0.000175 0.2502
67-56-1 methyl alcohol 0.5536 0.000120 0.2334
67-63-0 isopropyl alcohol 0.6637 0.000231 0.2493
67-64-1 acetone 0.3149 0.000208 0.2477
... ... ... ... ...
14752-75-1 heptadecylbenzene 0.9404 0.001146 NaN
30453-31-7 ethyl n-propyl disulfide 0.3876 0.000440 0.2662
33672-51-4 propyl isopropyl disulfide 0.4059 0.000502 0.2680
53966-36-2 ethyl isopropyl disulfide 0.3556 0.000439 0.2711
61828-04-4 tricosylbenzene 1.1399 0.001995 NaN
[192 rows x 4 columns]
In [3]: chemicals.volume.rho_data_SNM0
Out[3]:
Chemical delta_SRK
CAS
56-23-5 Tetrachlouromethane, R-10 -0.013152
60-29-7 Ethylether 0.001062
64-19-7 Acetic acid -0.010347
65-85-0 Benzoic acid 0.026866
67-56-1 Methanol 0.007195
... ... ...
7727-37-9 Nitrogen -0.007946
7782-39-0 Deuterium -0.053345
7782-41-4 Flourine -0.030398
7782-44-7 Oxygen -0.027049
7782-50-5 Chlorine 0.013010
[73 rows x 2 columns]
In [4]: chemicals.volume.rho_data_Perry_8E_105_l
Out[4]:
Chemical C1 C2 ... C4 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 1941.50 0.22309 ... 0.28571 181.15 408.00
55-21-0 Benzamide 737.10 0.25487 ... 0.28571 403.00 824.00
56-23-5 Carbon tetrachloride 998.35 0.27400 ... 0.28700 250.33 556.35
57-55-6 1,2-Propylene glycol 1092.30 0.26106 ... 0.20459 213.15 626.00
60-29-7 Diethyl ether 955.40 0.26847 ... 0.28140 156.85 466.70
... ... ... ... ... ... ... ...
10028-15-6 Ozone 3359.20 0.29884 ... 0.28523 80.15 261.00
10035-10-6 Hydrogen bromide 2832.00 0.28320 ... 0.28571 185.15 363.15
10102-43-9 Nitric oxide 5246.00 0.30440 ... 0.24200 109.50 180.15
13511-13-2 Propenylcyclohexene 612.55 0.26769 ... 0.28571 199.00 636.00
132259-10-0 Air 2896.30 0.26733 ... 0.27341 59.15 132.45
[344 rows x 7 columns]
In [5]: chemicals.volume.rho_data_VDI_PPDS_2
Out[5]:
Chemical MW ... C D
CAS ...
50-00-0 Formaldehyde 30.03 ... 245.3425 43.9601
56-23-5 Carbon tetrachloride 153.82 ... 535.7568 -28.0071
56-81-5 Glycerol 92.09 ... 1429.7634 -527.7710
60-29-7 Diethyl ether 74.12 ... -489.2726 486.7458
62-53-3 Aniline 93.13 ... 242.0930 0.7157
... ... ... ... ... ...
10097-32-2 Bromine 159.82 ... 676.7593 15.3973
10102-43-9 Nitric oxide 30.01 ... 2252.1437 -1031.3210
10102-44-0 Nitrogen dioxide 46.01 ... 2233.6217 -968.0655
10544-72-6 Dinitrogentetroxide 92.01 ... 604.1720 -135.9384
132259-10-0 Air 28.96 ... -841.3265 495.5129
[272 rows x 8 columns]
In [6]: chemicals.volume.rho_data_CRC_inorg_l
Out[6]:
Chemical MW rho k Tm Tmax
CAS
497-19-8 Sodium carbonate 105.989 1972.0 0.448 1129.15 1277.15
584-09-8 Rubidium carbonate 230.945 2840.0 0.640 1110.15 1280.15
7429-90-5 Aluminum 26.982 2377.0 0.311 933.47 1190.15
7429-91-6 Dysprosium 162.500 8370.0 1.430 1685.15 1813.15
7439-88-5 Iridium 192.217 19000.0 0.000 2719.15 2739.15
... ... ... ... ... ... ...
13572-98-0 Gadolinium(III) iodide 537.960 4120.0 0.908 1203.15 1305.15
13709-38-1 Lanthanum fluoride 195.900 4589.0 0.682 1766.15 2450.15
13709-59-6 Thorium(IV) fluoride 308.032 6058.0 0.759 1383.15 1651.15
13718-50-8 Barium iodide 391.136 4260.0 0.977 984.15 1248.15
13813-22-4 Lanthanum iodide 519.619 4290.0 1.110 1051.15 1180.15
[177 rows x 6 columns]
In [7]: chemicals.volume.rho_data_CRC_inorg_l_const
Out[7]:
Chemical Vm
CAS
74-90-8 Hydrogen cyanide 0.000039
75-15-0 Carbon disulfide 0.000060
96-10-6 Chlorodiethylaluminum 0.000126
109-63-7 Boron trifluoride etherate 0.000126
289-22-5 Cyclopentasilane 0.000156
... ... ...
19624-22-7 Pentaborane(9) 0.000105
20398-06-5 Thallium(I) ethanolate 0.000071
23777-80-2 Hexaborane(10) 0.000112
27218-16-2 Chlorine perchlorate 0.000075
52988-75-7 3-Silylpentasilane 0.000217
[116 rows x 2 columns]
In [8]: chemicals.volume.rho_data_CRC_inorg_s_const
Out[8]:
Chemical Vm
CAS
62-54-4 Calcium acetate 0.000105
62-76-0 Sodium oxalate 0.000057
75-20-7 Calcium carbide 0.000029
127-08-2 Potassium acetate 0.000063
127-09-3 Sodium acetate 0.000054
... ... ...
75926-28-2 Selenium sulfide [Se4S4] 0.000135
84359-31-9 Chromium(III) phosphate hexahydrate 0.000120
92141-86-1 Cesium metaborate 0.000047
133578-89-9 Vanadyl selenite hydrate 0.000060
133863-98-6 Molybdenum(VI) metaphosphate 0.000174
[1872 rows x 2 columns]
In [9]: chemicals.volume.rho_data_CRC_virial
Out[9]:
Chemical a1 a2 a3 a4 a5
CAS
56-23-5 Tetrachloromethane -1600.0 -4059.0 -4653.0 0.0 0.0
60-29-7 Diethyl ether -1226.0 -4458.0 -7746.0 -10005.0 0.0
64-17-5 Ethanol -4475.0 -29719.0 -56716.0 0.0 0.0
67-56-1 Methanol -1752.0 -4694.0 0.0 0.0 0.0
67-63-0 2-Propanol -3165.0 -16092.0 -24197.0 0.0 0.0
... ... ... ... ... ... ...
7783-81-5 Uranium(VI) fluoride -1204.0 -2690.0 -2144.0 0.0 0.0
7783-82-6 Tungsten(VI) fluoride -719.0 -1143.0 0.0 0.0 0.0
7803-51-2 Phosphine -146.0 -733.0 1022.0 -1220.0 0.0
10024-97-2 Nitrous oxide -130.0 -307.0 -248.0 0.0 0.0
10102-43-9 Nitric oxide -12.0 -119.0 89.0 -73.0 0.0
[105 rows x 6 columns]