Source code for chemicals.refractivity

"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018, 2019, 2020 Caleb Bell
<Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

This module contains various refractive index lookup, calculation,
and unit conversion routines and dataframes.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/chemicals/>`_.

.. contents:: :local:

Lookup Functions
----------------
.. autofunction:: chemicals.refractivity.RI
.. autofunction:: chemicals.refractivity.RI_methods
.. autodata:: chemicals.refractivity.RI_all_methods

Correlations for Specific Substances
------------------------------------
.. autofunction:: chemicals.refractivity.RI_IAPWS

Unit Conversions
----------------
.. autofunction:: chemicals.refractivity.brix_to_RI
.. autofunction:: chemicals.refractivity.RI_to_brix

Utility functions
-----------------
.. autofunction:: chemicals.refractivity.polarizability_from_RI
.. autofunction:: chemicals.refractivity.molar_refractivity_from_RI
.. autofunction:: chemicals.refractivity.RI_from_molar_refractivity

Pure Component Liquid Fit Correlations
--------------------------------------
.. autofunction:: chemicals.refractivity.TDE_RIXExpansion

"""

__all__ = ['RI', 'RI_methods', 'RI_all_methods',
           'polarizability_from_RI', 'molar_refractivity_from_RI',
           'RI_from_molar_refractivity', 'RI_IAPWS', 'RI_to_brix',
           'brix_to_RI', 'TDE_RIXExpansion']

from fluids.constants import N_A, pi
from fluids.numerics import horner, interp, isnan, sqrt

from chemicals import data_reader as dr
from chemicals import miscdata
from chemicals.data_reader import (
    data_source,
    database_constant_lookup,
    list_available_methods_from_df_dict,
    register_df_source,
    retrieve_any_from_df_dict,
    retrieve_from_df_dict,
)
from chemicals.utils import PY37, can_load_data, mark_numba_incompatible, os_path_join, source_path

# Register data sources and lazy load them

folder = os_path_join(source_path, 'Misc')
register_df_source(folder, 'CRC Handbook Organic RI.csv',
                   csv_kwargs={'dtype': {'RI': float, 'RIT': float}})

CRC = 'CRC'

_RI_data_loaded = False
@mark_numba_incompatible
def _load_RI_data():
    global _RI_data_loaded, RI_data_CRC_organic, RI_sources
    RI_data_CRC_organic = data_source('CRC Handbook Organic RI.csv')
    RI_sources = {
        CRC: RI_data_CRC_organic,
        miscdata.WIKIDATA: miscdata.wikidata_data
    }

if PY37:
    def __getattr__(name):
        if name in ('RI_data_CRC_organic', 'RI_sources'):
            _load_RI_data()
            return globals()[name]
        raise AttributeError(f"module {__name__} has no attribute {name}")
else:
    if can_load_data:
        _load_RI_data()

#  Refractive index functions

RI_all_methods = (CRC, miscdata.WIKIDATA)
"""Tuple of method name keys. See the `RI` for the actual references"""

[docs]@mark_numba_incompatible def RI_methods(CASRN): """Return all methods available to obtain the refractive index for the desired chemical. Parameters ---------- CASRN : str CASRN, [-] Returns ------- methods : list[str] Methods which can be used to obtain the RI with the given inputs. See Also -------- RI """ if not _RI_data_loaded: _load_RI_data() return list_available_methods_from_df_dict(RI_sources, CASRN, 'RI')
[docs]@mark_numba_incompatible def RI(CASRN, method=None): r'''This function handles the retrieval of a chemical's refractive index. Lookup is based on CASRNs. Will automatically select a data source to use if no method is provided; returns None if the data is not available. Function has data for approximately 4500 chemicals. Parameters ---------- CASRN : str CASRN [-] Returns ------- RI : float Refractive Index on the Na D line, [-] T : float or None Temperature at which refractive index reading was made; None if not available, [K] Other Parameters ---------------- method : string, optional A string for the method name to use, as defined by constants in RI_methods Notes ----- The available sources are as follows: * 'CRC', a compillation of Organic RI data in [1]_. * 'WIKIDATA', data from the Wikidata project [2]_ Examples -------- >>> RI(CASRN='64-17-5') (1.3611, 293.15) >>> RI("60-35-5") (1.4278, None) >>> RI('100-41-4', method='WIKIDATA') (1.495, None) References ---------- .. [1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014. .. [2] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/ ''' if dr.USE_CONSTANTS_DATABASE and method is None: RI, found = database_constant_lookup(CASRN, 'RI') RIT, _ = database_constant_lookup(CASRN, 'RIT') if found: return (RI, RIT) if not _RI_data_loaded: _load_RI_data() key = ('RI', 'RIT') if method: value = retrieve_from_df_dict(RI_sources, CASRN, key, method) else: value = retrieve_any_from_df_dict(RI_sources, CASRN, key) if value is None: value = (None, None) else: if isnan(value[0]): value = (None, None) elif isnan(value[1]): value = (value[0], None) else: value = tuple(value) return value
[docs]def polarizability_from_RI(RI, Vm): r'''Returns the polarizability of a fluid given its molar volume and refractive index. .. math:: \alpha = \left(\frac{3}{4\pi N_A}\right) \left(\frac{n^2-1}{n^2+2}\right)V_m Parameters ---------- RI : float Refractive Index on Na D line, [-] Vm : float Molar volume of fluid, [m^3/mol] Returns ------- alpha : float Polarizability [m^3] Notes ----- This Lorentz-Lorentz-expression is most correct when van der Waals interactions dominate. Alternate conversions have been suggested. This is often expressed in units of cm^3 or Angstrom^3. To convert to these units, multiply by 1E9 or 1E30 respectively. Examples -------- >>> polarizability_from_RI(1.3611, 5.8676E-5) 5.147658206528923e-30 References ---------- .. [1] Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. "A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons." International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8. ''' return 3/(4*pi*N_A)*(RI**2-1)/(RI**2+2)*Vm
[docs]def molar_refractivity_from_RI(RI, Vm): r'''Returns the molar refractivity of a fluid given its molar volume and refractive index. .. math:: R_m = \left(\frac{n^2-1}{n^2+2}\right)V_m Parameters ---------- RI : float Refractive Index on Na D line, [-] Vm : float Molar volume of fluid, [m^3/mol] Returns ------- Rm : float Molar refractivity [m^3/mol] Notes ----- Examples -------- >>> molar_refractivity_from_RI(1.3611, 5.8676E-5) 1.2985217089649597e-05 References ---------- .. [1] Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. "A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons." International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8. ''' return (RI**2 - 1.)/(RI**2 + 2.)*Vm
[docs]def RI_from_molar_refractivity(Rm, Vm): r'''Returns the refractive index of a fluid given its molar volume and molar refractivity. .. math:: RI = \sqrt{\frac{-2R_m - V_m}{R_m-V_m}} Parameters ---------- Rm : float Molar refractivity [m^3/mol] Vm : float Molar volume of fluid, [m^3/mol] Returns ------- RI : float Refractive Index on Na D line, [-] Notes ----- Examples -------- >>> RI_from_molar_refractivity(1.2985e-5, 5.8676E-5) 1.3610932757685672 References ---------- .. [1] Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. "A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons." International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8. ''' Rm = ((-2*Rm - Vm)/(Rm-Vm))**0.5 return Rm
[docs]def RI_IAPWS(T, rho, wavelength=0.5893e-6): r'''Calculates the refractive index of water at a given temperature, density, and wavelength. .. math:: n(\rho, T, \lambda) = \left(\frac{2A + 1}{1-A}\right)^{0.5} .. math:: A(\delta, \theta, \Lambda) = \delta\left(a_0 + a_1\delta + a_2\theta + a_3\Lambda^2\theta + a_4\Lambda^{-2} \frac{a_5}{\Lambda^2-\Lambda_{UV}^2} + \frac{a_6} {\Lambda^2 - \Lambda_{IR}^2} + a_7\delta^2\right) .. math:: \delta = \rho/(1000 \text{ kg/m}^3) .. math:: \theta = T/273.15\text{K} .. math:: \Lambda = \lambda/0.589 \mu m .. math:: \Lambda_{IR} = 5.432937 .. math:: \Lambda_{UV} = 0.229202 Parameters ---------- T : float Temperature of the water [K] rho : float Density of the water [kg/m^3] wavelength : float Wavelength of fluid [meters] Returns ------- RI : float Refractive index of the water, [-] Notes ----- This function is valid in the following range: 261.15 K < T < 773.15 K 0 < rho < 1060 kg/m^3 0.2 < wavelength < 1.1 micrometers Test values are from IAPWS 2010 book. Examples -------- >>> RI_IAPWS(298.15, 997.047435) 1.3328581926471605 References ---------- .. [1] IAPWS, 1997. Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure. ''' wavelength *= 1e6 delta = rho*1e-3 theta = T*(1.0/273.15) Lambda = wavelength*(1.0/0.589) LambdaIR = 5.432937 LambdaUV = 0.229202 Lambda2 = Lambda*Lambda A = delta*(0.244257733 + 0.0097463448*delta + -0.00373235*theta + 0.0002686785*Lambda2*theta + 0.0015892057/Lambda2 + 0.0024593426/(Lambda2 - LambdaUV*LambdaUV) + 0.90070492/(Lambda2 - LambdaIR*LambdaIR) - 0.0166626219*delta*delta) n = sqrt((2.0*A + 1.)/(1. - A)) return n
[docs]def TDE_RIXExpansion(T, Bs, Cs, wavelength=589.26e-9): r'''Calculates the refractive index of a pure liquid at a given temperature, and wavelength, using the NIST TDE RIXExpansion formula [1]_. .. math:: n(T, \lambda) = \sum_{i=0}^{i} B_i t^i + \sum_j C_j w^j .. math:: t = T - 298.15 .. math:: w = WL\times 10^{9} - 589.26 Parameters ---------- T : float Temperature of the fluid [K] Bs : list[float] Polynomial temperature expansion coefficients, in reverse order to the polynomial (as needed for efficient computation with horner's method'), [-] Cs : list[float] Polynomial wavelength expansion coefficients, in reverse order to the polynomial (as needed for efficient computation with horner's method'), [-] wavelength : float Wavelength of fluid [meters] Returns ------- RI : float Refractive index of the pure fluid, [-] Notes ----- Examples -------- >>> TDE_RIXExpansion(330.0, Bs=[-0.000125041, 1.33245], Cs=[1.20771e-7, -3.56795e-5, 0.0], wavelength=589.26e-9*.7) 1.33854894426073 References ---------- .. [1] "ThermoData Engine (TDE103b V10.1) User`s Guide." https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-RefractiveIndex/RIXExpansion.htm. ''' t = T - 298.15 w = (wavelength - 589.26e-9)*1e9 n_D = horner(Bs, t) if Cs is not None: n_D += horner(Cs, w) return n_D
ICUMSA_1974_brix = [float(i) for i in range(96)] ICUMSA_1974_RIs = [1.33299, 1.33442, 1.33586, 1.33732, 1.33879, 1.34026, 1.34175, 1.34325, 1.34477, 1.34629, 1.34782, 1.34937, 1.35093, 1.35250, 1.35408, 1.35568, 1.35729, 1.35891, 1.36054, 1.36218, 1.36384, 1.36551, 1.36720, 1.36889, 1.37060, 1.37233, 1.37406, 1.37582, 1.37758, 1.37936, 1.38115, 1.38296, 1.38478, 1.38661, 1.38846, 1.39032, 1.39220, 1.39409, 1.39600, 1.39792, 1.39986, 1.40181, 1.40378, 1.40576, 1.40776, 1.40978, 1.41181, 1.41385, 1.41592, 1.41799, 1.42009, 1.42220, 1.42432, 1.42647, 1.42863, 1.43080, 1.43299, 1.43520, 1.43743, 1.43967, 1.44193, 1.44420, 1.44650, 1.44881, 1.45113, 1.45348, 1.45584, 1.45822, 1.46061, 1.46303, 1.46546, 1.46790, 1.47037, 1.47285, 1.47535, 1.47787, 1.48040, 1.48295, 1.48552, 1.48811, 1.49071, 1.49333, 1.49597, 1.49862, 1.50129, 1.50398, 1.5067, 1.5094, 1.5122, 1.5149, 1.5177, 1.5205, 1.5234, 1.5262, 1.5291, 1.5320]
[docs]def brix_to_RI(brix): """Convert a refractive index measurement on the `brix` scale to a standard refractive index. Parameters ---------- brix : float Degrees brix to be converted, [°Bx] Returns ------- RI : float Refractive index, [-] Notes ----- The scale is officially defined from 0 to 85; but the data source contains values up to 95. Linear extrapolation outside of the bounds is performed; and a table of 96 values are linearly interpolated. The ICUMSA (International Committee of Uniform Method of Sugar Analysis) published a document setting out the reference values in 1974; but an original data source has not been found and reviewed. Examples -------- >>> brix_to_RI(5.8) 1.341452 >>> brix_to_RI(0.0) 1.33299 >>> brix_to_RI(95.0) 1.532 References ---------- .. [1] "Refractometer Data Book-Refractive Index and Brix | ATAGO CO., LTD." Accessed June 13, 2020. https://www.atago.net/en/databook-refractometer_relationship.php. """ return interp(brix, ICUMSA_1974_brix, ICUMSA_1974_RIs, extrapolate=True)
[docs]def RI_to_brix(RI): """Convert a standard refractive index measurement to the `brix` scale. Parameters ---------- RI : float Refractive index, [-] Returns ------- brix : float Degrees brix to be converted, [°Bx] Notes ----- The scale is officially defined from 0 to 85; but the data source contains values up to 95. Linear extrapolation to values under 0 or above 95 is performed. The ICUMSA (International Committee of Uniform Method of Sugar Analysis) published a document setting out the reference values in 1974; but an original data source has not been found and reviewed. Examples -------- >>> RI_to_brix(1.341452) 5.800000000000059 >>> RI_to_brix(1.33299) 0.0 >>> RI_to_brix(1.532) 95.0 References ---------- .. [1] "Refractometer Data Book-Refractive Index and Brix | ATAGO CO., LTD." Accessed June 13, 2020. https://www.atago.net/en/databook-refractometer_relationship.php. """ return interp(RI, ICUMSA_1974_RIs, ICUMSA_1974_brix, extrapolate=True)