
chemicals Documentation
Release 1.1.4

Caleb Bell and contributors

Jun 04, 2023

TUTORIAL

1 Key Features & Capabilities 3

2 Installation 495

3 Latest source code 497

4 Bug reports 499

5 License information 501

6 Citation 503

7 Indices and tables 505

Bibliography 507

Python Module Index 541

Index 543

i

ii

chemicals Documentation, Release 1.1.4

TUTORIAL 1

chemicals Documentation, Release 1.1.4

2 TUTORIAL

CHAPTER

ONE

KEY FEATURES & CAPABILITIES

The chemicals library features an extensive compilation of pure component chemical data that can serve engineers, sci-
entists, technicians, and anyone working with chemicals. The chemicals library facilitates the retrieval and calculation
of:

• Chemical constants including formula, molecular weight, normal boiling and melting points, triple point, heat
of formation, absolute entropy of formation, heat of fusion, similarity variable, dipole moment, acentric factor,
etc.

• Assorted information of safety and toxicity of chemicals.

• Methods (and their respective coefficients) for the calculation of temperature and pressure dependent chemical
properties including vapor pressure, heat capacity, molar volume, thermal conductivity, surface tension, dynamic
viscosity, heat of vaporization, relative permittivity, etc.

• Methods to solve thermodynamic phase equilibrium, including flash routines, vapor-liquid equilibrium constant
correlations, and both numerical and analytical solutions for the Rachford Rice and Li-Johns-Ahmadi equations.
Rachford Rice solutions for systems of 3 or more phases are also available.

Data for over 20,000 chemicals are made available as local databanks in this library. All databanks are loaded on-
demand, saving loading time and RAM. For example, if only data on the normal boiling point is required, the chemicals
library will only load normal boiling point datasets. This on-demand loading feature makes the chemicals library an
attractive dependence for software modeling chemical processes. In fact, The Biorefinery Simulation and Techno-
Economic Analysis Modules (BioSTEAM) is reliant on the chemicals library for the simulation of unit operations.

The chemicals library also supports integration with Numba, a powerful accelerator that works well with NumPy; Pint
Quantity objects to keep track of units of measure; and NumPy vectorized functions.

If you need to know something about a chemical, give chemicals a try.

1.1 Chemicals tutorial

1.1.1 Importing

Chemicals can be imported as a standalone library, or all of its functions and classes may be imported with star imports:

>>> import numpy as np
>>> import chemicals # Good practice
>>> from chemicals import * # Bad practice but convenient

All functions are available from either the main chemicals module or the submodule; i.e. both chemicals.Antoine and
chemicals.vapor_pressure.Antoine are valid ways of accessing a function.

3

https://biosteam.readthedocs.io/en/latest/
https://biosteam.readthedocs.io/en/latest/
https://numba.pydata.org/
https://pint.readthedocs.io/en/stable/
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html

chemicals Documentation, Release 1.1.4

1.1.2 Design philosophy

Like all libraries, this was developed to scratch my own itches.

The bulk of this library’s API is considered quite stable; enhancements to functions and classes will still happen, and
default methods when using a generic correlation interface may change to newer and more accurate correlations as they
are published and reviewed.

All functions are designed to accept inputs in base SI units. However, any set of consistent units given to a function
will return a consistent result. The user is directed to unit conversion libraries such as pint to perform unit conversions
if they prefer not to work in SI units. The tutorial for using it with chemicals is at chemicals.units.

There are two ways to use numpy arrays with chemicals. The easiest way to use numpy is a vectorized module, which
wraps all of the chemicals functions with np.vectorize. Instead of importing from chemicals, the user can import from
chemicals.vectorized:

>>> from chemicals.vectorized import *
>>> Antoine(np.linspace(100, 200, 5), A=8.95894, B=510.595, C=-15.95)
array([7.65674361e+02, 1.89116754e+04, 1.41237759e+05, 5.60609191e+05,

1.53010431e+06])

Inputs do not need to be numpy arrays; they can be any iterable:

>>> import chemicals.vectorized
>>> chemicals.vectorized.Tc(['108-88-3', '7732-18-5'])
array([591.75 , 647.096])

It is possible to switch back and forth between the namespaces with a subsequent import:

>>> from chemicals import *

The second way is Numba. This optional dependency provides the speed you expect from NumPy arrays - or better. In
some cases, much better. The tutorial for using it is at chemicals.numba, but in general use it the same way but with a
different import.

>>> import chemicals.numba_vectorized

Note that numba can also be used to speed up scalar calculations without numpy.

>>> import chemicals.numba

1.1.3 Working with Elements

Chemicals contains a periodic table.

>>> from chemicals import *
>>> periodic_table.Na
<Element Sodium (Na), number 11, MW=22.98977>
>>> periodic_table.U.MW
238.02891
>>> periodic_table['Th'].CAS
'7440-29-1'
>>> periodic_table.lead.protons
82

(continues on next page)

4 Chapter 1. Key Features & Capabilities

https://github.com/hgrecco/pint
https://github.com/numba/numba

chemicals Documentation, Release 1.1.4

(continued from previous page)

>>> periodic_table['7440-57-5'].symbol
'Au'
>>> len(periodic_table)
118
>>> 'gold' in periodic_table
True
>>> periodic_table.He.protons, periodic_table.He.neutrons, periodic_table.He.electrons #␣
→˓Standard number of protons, neutrons, electrons
(2, 2, 2)
>>> periodic_table.He.phase # Phase of the element in the standard state
'g'
>>> periodic_table.He.Hf # Heat of formation in standard state in J/mol - by definition 0
0.0
>>> periodic_table.He.S0 # Absolute entropy (J/(mol*K) in standard state - non-zero)
126.2
>>> periodic_table.Kr.block, periodic_table.Kr.period, periodic_table.Kr.group
('p', 4, 18)
>>> periodic_table.Rn.InChI
'Rn'
>>> periodic_table.Rn.smiles
'[Rn]'
>>> periodic_table.Pu.number
94
>>> periodic_table.Pu.PubChem
23940
>>> periodic_table.Bi.InChI_key
'JCXGWMGPZLAOME-UHFFFAOYSA-N'

The periodic table is a singleton of the periodic table class PeriodicTable. Each attribute accessed is a reference to
an element object Element. The elements are the basic building blocks of every chemical.

1.1.4 Working with Chemical Identifiers

Chemicals comes with a large library of chemical identifiers. Chemicals has various ways of searching through its
database. There are a number of different support chemical identifiers as well.

CAS numbers - These are the primary identifiers in Chemicals. A CAS number uniquely identifies a chemical
molecule. 7732-18-5 is the CAS number for water. Sometimes, it also identifies the phase of the chemical. 7440-
44-0 is the CAS number for carbon in general, but 7782-42-5 is the CAS number for graphite and 7782-40-3 is the
CAS number for diamond. Note that because these are assigned by people, mistakes are made and often multiple CAS
numbers point to the same compound. Common Chemistry lists 57 “retired” CAS numbers which point to the element
carbon. The CAS numbers in Chemicals come mostly from PubChem as there was no Common Chemistry project
back then.

PubChem IDs - These are the identifiers for each compound in the PubChem database. Most of the metadata in
Chemicals came from PubChem. 962 is the Pubchem identifier for water. Each entry in PubChem comes with a
structure. Sometimes structures are found to be duplicates of each other and entries are merged; these identifiers are
assigned automatically by the NIH.

Smiles - These are actual chemicals structures, rendered into easily readable text. Multiple smiles strings can represent
the same compound; they are not unique. Both “C(=O)=O” and “O=C=O” are valid SMILES strings for identifying
CO2. Programs like rdkit can create a computational representation of the molecule from a SMILES string. To solve
this duplication issue, a concept of a canonical SMILES string was developed which is supposed to be unique, but in

1.1. Chemicals tutorial 5

https://commonchemistry.cas.org/detail?cas_rn=7440-44-0
https://commonchemistry.cas.org/detail?cas_rn=7440-44-0
https://commonchemistry.cas.org/detail?cas_rn=7782-42-5
https://commonchemistry.cas.org/detail?cas_rn=7782-40-3
https://pubchem.ncbi.nlm.nih.gov/compound/962
https://www.rdkit.org/

chemicals Documentation, Release 1.1.4

general is not reliable at all and only consistent within the same molecular modeling software. There is in general no
organization which controls this format, but a there is an effort in the open source community to standardize the format
called opensmiles

Chemical Formula - These are what every student is taught in chemistry class. H2O is the formula for water. Is
OH2 also a valid formula? Yes. There is a convention called the Hill convention (implemented in chemicals as
atoms_to_Hill() which specified the H2O is how the formula should be written. Not all formulas, especially inor-
ganic formulas or older formulas, follow this convention. Formulas are in general NOT unique. Even simple formulas
which seem like there should only be one compound with that formula are often duplicated; carbonic acid and per-
formic acid both have the formula “CH2O3”. Searching Chemical’s databases with a formula is a common mistake
by users. While you can do it and you may get a match, there is no guarantee the match you wanted was found. The
following snippet of code counts the number of compounds with the same formula as asprin; illustrating why searching
by formula is a bad idea.

>>> from chemicals.identifiers import pubchem_db
>>> len(list(i for i in pubchem_db if i.formula == 'C9H8O4'))
20

Chemical name - Anyone can call a chemical by any name, so predictably names are a mess. A large number of names
were retrieved from PubChem, and form the basis for searches by name in Chemicals. Only one chemical hit will be
found for each name search. There is an effort by IUPAC to systematically generate names for each chemical structure,
called OPSIN. Most chemicals in Chemicals have a correct, associated IUPAC name retrieved from PubChem. There
are in the range of a million names that can be looked by in Chemicals.

InChI - Short for the IUPAC International Chemical Identifier, these are programmatically derived strings which rep-
resent a compound. A non-profit was established to maintain a software package to manage this format; it is not like
SMILES where lots of software implement the format. There contain all the information required to form a structure.
There is a variant which is truly unique per compound; this is what is in Chemicals. They have more features than
SMILES strings. “C6H14/c1-3-5-6-4-2/h3-6H2,1-2H3” is a sample string, for n-hexane. This is the best possible type
of an identifier for a chemical. These can get to be quite long for complex structures.

InChI key - A 27-character hash of the unique InChI identifier. These are also in Chemicals and generated by the
same InChI software. These were intended to be unique, and easy to search for as search engines don’t search for
InChI strings well. Some collisions have been detected. ‘VLKZOEOYAKHREP-UHFFFAOYSA-N’ is the InChI key
for n-hexane as an example.

The main interface for looking up a chemical from one of these identifying markers is search_chemical(). The
search can be performed with any of the following input forms:

• Name, in IUPAC form or common form or a synonym registered in PubChem

• InChI name, prefixed by ‘InChI=1S/’ or ‘InChI=1/’

• InChI key, prefixed by ‘InChIKey=’

• PubChem CID, prefixed by ‘PubChem=’

• SMILES (prefix with ‘SMILES=’ to ensure smiles parsing; ex. ‘C’ will return Carbon as it is an element whereas
the SMILES interpretation for ‘C’ is methane)

• CAS number (obsolete numbers may point to the current number)

If the input is an ID representing an element, the following additional inputs may be specified as

• Atomic symbol (ex ‘Na’)

• Atomic number (as a string)

Some sample queries illustrating the topic:

6 Chapter 1. Key Features & Capabilities

http://opensmiles.org/
https://opsin.ch.cam.ac.uk/

chemicals Documentation, Release 1.1.4

>>> search_chemical('water')
<ChemicalMetadata, name=water, formula=H2O, smiles=O, MW=18.0153>
>>> search_chemical('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('CCCCCCCCCC')
<ChemicalMetadata, name=DECANE, formula=C10H22, smiles=CCCCCCCCCC, MW=142.286>
>>> search_chemical('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('pubchem=702')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('O') # only elements can be specified by symbol
<ChemicalMetadata, name=oxygen, formula=O, smiles=[O], MW=15.9994>

Each of those queries returns a ChemicalMetadata object. The object holds the chemical metadata. It is an almost
unbearable task to assemble a chemical property database. Making a database of chemical metadata is only slightly
easier. The chemical metadata database doesn’t have any information whatsoever about about any chemical properties;
only information about the chemical structure and those identifiers mentioned above. Each of those identifiers is an
attribute of the returned object.

>>> water = search_chemical('water')
>>> (water.pubchemid, water.formula, water.smiles, water.InChI, water.InChI_key, water.
→˓CASs)
(962, 'H2O', 'O', 'H2O/h1H2', 'XLYOFNOQVPJJNP-UHFFFAOYSA-N', '7732-18-5')
>>> water.common_name, water.iupac_name, len(water.synonyms)
('water', 'oxidane', 89)

1.2 Acentric Factor (chemicals.acentric)

This module contains a lookup function, a definition function, and correlations for a chemical’s acentric factor, normally
given the variable 𝜔.

A similar variable called the stiel polar factor can be calculated from its definition as well.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Lookup Functions

• Definitions

• Correlations

1.2.1 Lookup Functions

chemicals.acentric.omega(CASRN, method=None)
Retrieve a chemical’s acentric factor, omega.

Automatically select a method to use if no method is provided; returns None if the data is not available.

𝜔 ≡ − log10

[︂
lim

𝑇/𝑇𝑐=0.7
(𝑃 𝑠𝑎𝑡/𝑃𝑐)

]︂
− 1.0

Parameters

1.2. Acentric Factor (chemicals.acentric) 7

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

CASRN [str] CASRN [-]

Returns
omega [float] Acentric factor of compound

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘HEOS’, ‘PSRK’,

‘PD’, or ‘YAWS’. All valid values are also held in the variable omega_all_methods.

See also:

omega_methods

Notes

A total of four sources are available for this function. They are:

• ‘PSRK’, a compillation of experimental and estimated data published in the Appendix of [2], the fourth
revision of the PSRK model.

• ‘PD’, an older compillation of data published in (Passut & Danner, 1973) [3].

• ‘YAWS’, a large compillation of data from a variety of sources; no data points are sourced in the work of
[4].

• ‘ACENTRIC_DEFINITION’, the precalculated results using the VaporPressure object of Thermo and the
critical properties of chemicals.

• ‘HEOS’, a series of values from the NIST REFPROP Database for Highly Accurate Properties of Industri-
ally Important Fluids (and other high-precision fundamental equations of state)

References

[1], [2], [3], [4], [5]

Examples

>>> omega(CASRN='64-17-5')
0.646

chemicals.acentric.omega_methods(CASRN)
Return all methods available for obtaining omega for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain omega with the given inputs.

See also:

omega

8 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.acentric.omega_all_methods = ('HEOS', 'PSRK', 'PD', 'YAWS',
'ACENTRIC_DEFINITION')

Tuple of method name keys. See the omega for the actual references

1.2.2 Definitions

chemicals.acentric.omega_definition(Psat, Pc)
Returns the acentric factor of a fluid according to its fundamental definition using the vapor pressure at a reduced
temperature of 0.7Tc.

𝜔 ≡ − log10

[︂
lim

𝑇/𝑇𝑐=0.7
(𝑃 𝑠𝑎𝑡/𝑃𝑐)

]︂
− 1.0

Parameters
Psat [float] Vapor pressure of the fluid at a reduced temperature of 0.7 [Pa]

Pc [float] Critical pressure of the fluid [Pa]

Returns
omega [float] Acentric factor of the fluid [-]

References

[1]

Examples

Water

>>> omega_definition(999542, 22048320.0)
0.3435744558761711

chemicals.acentric.Stiel_polar_factor(Psat, Pc, omega)
This function handles the calculation of a chemical’s Stiel Polar factor, directly through the definition of Stiel-
polar factor. Requires the vapor pressure Psat at a reduced temperature of 0.6, the critical pressure Pc, and the
acentric factor omega.

𝑥 = log10 𝑃𝑟|𝑇𝑟=0.6 + 1.70𝜔 + 1.552

Parameters
Psat [float] Vapor pressure of fluid at a reduced temperature of 0.6 [Pa]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor of the fluid [-]

Returns
factor [float] Stiel polar factor of compound, [-]

1.2. Acentric Factor (chemicals.acentric) 9

chemicals Documentation, Release 1.1.4

Notes

A few points have also been published in [2], which may be used for comparison. Currently this is only used for
a surface tension correlation.

References

[1], [2]

Examples

Calculating the factor for water:

>>> Stiel_polar_factor(Psat=169745, Pc=22048321.0, omega=0.344)
0.02322146744772713

1.2.3 Correlations

chemicals.acentric.LK_omega(Tb, Tc, Pc)
Estimates the acentric factor of a fluid using a correlation in [1].

𝜔 =
ln𝑃 𝑠𝑎𝑡

𝑏𝑟 − 5.92714 + 6.09648/𝑇𝑏𝑟 + 1.28862 ln𝑇𝑏𝑟 − 0.169347𝑇 6
𝑏𝑟

15.2518 − 15.6875/𝑇𝑏𝑟 − 13.4721 ln𝑇𝑏𝑟 + 0.43577𝑇 6
𝑏𝑟

Parameters
Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

Returns
omega [float] Acentric factor of the fluid [-]

Notes

The units of the above equation are atmosphere and Kelvin; values are converted internally.

References

[1]

10 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Isopropylbenzene, from Reid (1987).

>>> LK_omega(425.6, 631.1, 32.1E5)
0.32544249926397856

1.3 Air: Fundamental Equation of State for Air (chemicals.air)

This module contains various thermodynamic functions for air and humid air.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Dry Air Basic Solvers

• Dry Air Bubble/Dew Points

• Dry Air Constants

• Dry Air Ideal Gas Terms

• Dry Air Residual Terms

• Humid Air Virial Terms

• Henry’s Law for Air in Water

1.3.1 Dry Air Basic Solvers

chemicals.air.lemmon2000_rho(T, P)
Calculate the density of air according to the Lemmon (2000) [1] given a temperature T and pressure P.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Molar density of air, [mol/m^3]

Notes

This solution is iterative due to the nature of the equation. This solver has been tested only for gas solutions.

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 11

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> lemmon2000_rho(T=300.0, P=1e6)
402.046613509

2 GPa and 2000 K are suggested as upper limits of [1] although there are no hardcoded limits for temperature
and pressure.

>>> lemmon2000_rho(T=2000.0, P=2e9)
32892.9327834

chemicals.air.lemmon2000_P(T, rho)
Calculate the pressure of air according to the (2000) given a temperature T and molar density rho.

Parameters
T [float] Temperature, [K]

rho [float] Molar density of air, [mol/m^3]

Returns
P [float] Pressure, [Pa]

Notes

Helmholtz equations of state are explicit with inputs of temperature and density, so this is a direct calculation
with no iteration required.

References

[1]

Examples

>>> lemmon2000_P(330.0, lemmon2000_rho(T=330.0, P=8e5))
8e5
>>> lemmon2000_P(823.0, 40)
273973.0024911

chemicals.air.lemmon2000_T(P, rho)
Calculate the temperature of air according to the Lemmon (2000) [1] given a pressure P and molar density rho .

Parameters
P [float] Pressure, [Pa]

rho [float] Molar density of air, [mol/m^3]

Returns
T [float] Temperature, [K]

12 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This solution is iterative due to the nature of the equation. This solver has been tested only for gas solutions.

References

[1]

Examples

>>> lemmon2000_T(P=1e5, rho=20.0)
601.1393854499

1.3.2 Dry Air Bubble/Dew Points

chemicals.air.lemmon2000_air_P_dew(T)
Calculates the dew pressure of standard dry air according to Lemmon (2000).

ln

(︂
𝑃𝑑𝑒𝑤

𝑃𝑗

)︂
=

(︂
𝑇𝑗
𝑇

)︂ 8∑︁
𝑖

𝑁𝑖𝜃
𝑖/2

Parameters
T [float] Temperature, [K]

Returns
P_dew [float] Dew pressure, [Pa]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_P_dew(100.0)
567424.1338937

chemicals.air.lemmon2000_air_P_bubble(T)
Calculates the bubble pressure of standard dry air according to Lemmon (2000).

ln

(︂
𝑃𝑏𝑢𝑏𝑏𝑙𝑒

𝑃𝑗

)︂
=

(︂
𝑇𝑗
𝑇

)︂ 8∑︁
𝑖

𝑁𝑖𝜃
𝑖/2

Parameters
T [float] Temperature, [K]

Returns
P_bubble [float] Bubble pressure, [Pa]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 13

chemicals Documentation, Release 1.1.4

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_P_bubble(100.0)
663128.589440

chemicals.air.lemmon2000_air_rho_dew(T)
Calculates the dew molar density of standard dry air according to Lemmon (2000).

ln

(︂
𝜌𝑑𝑒𝑤
𝜌𝑗

)︂
= 𝑁1𝜃

0.41 +𝑁2𝜃 +𝑁3𝜃
2.8 +𝑁4𝜃

6.5

Parameters
T [float] Temperature, [K]

Returns
rho_dew [float] Dew point molar density, [mol/m^3]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_rho_dew(100.0)
785.7863223794999

chemicals.air.lemmon2000_air_rho_bubble(T)
Calculates the bubble molar density of standard dry air according to Lemmon (2000).(︂

𝜌𝑏𝑢𝑏𝑏𝑙𝑒
𝑟ℎ𝑜𝑗

− 1

)︂
= 𝑁1𝜃

0.65 +𝑁2𝜃
0.85 +𝑁3𝜃

0.95 +𝑁4𝜃
1.1 +𝑁5 ln

𝑇

𝑇𝑗

Parameters
T [float] Temperature, [K]

Returns
rho_bubble [float] bubble point molar density, [mol/m^3]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

14 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> lemmon2000_air_rho_bubble(100.0)
26530.979020427476

1.3.3 Dry Air Constants

chemicals.air.lemmon2000_air_T_reducing = 132.6312
Reducing temperature in K for the Lemmon (2000) EOS for dry air

chemicals.air.lemmon2000_air_rho_reducing = 10447.7
Reducing molar density in mol/m^3 for the Lemmon (2000) EOS for dry air

chemicals.air.lemmon2000_air_P_reducing = 3785020.0
Reducing pressure in Pa for the Lemmon (2000) EOS for dry air

chemicals.air.lemmon2000_air_MW = 28.9586
Molecular weight of air in g/mol for the Lemmon (2000) EOS for dry air

chemicals.air.lemmon2000_air_R = 8.31451
Molar gas constant in Jlemmon2000_air_R/(mol*K) used in the the Lemmon (2000) EOS for dry air

chemicals.air.lemmon2000_air_T_max = 2000.0
Maximum temperature in K valid for the Lemmon (2000) EOS for dry air

chemicals.air.lemmon2000_air_P_max = 2000000000.0
Maximum pressure in Pa valid for the Lemmon (2000) EOS for dry air

1.3.4 Dry Air Ideal Gas Terms

chemicals.air.lemmon2000_air_A0(tau, delta)
Calculates the ideal gas Helmholtz energy of air according to Lemmon (2000).

𝜑∘ = ln 𝛿 +

5∑︁
𝑖=1

𝑁𝑖𝜏
𝑖−4 +𝑁6𝜏

1.5 +𝑁7 ln 𝜏 +𝑁8 ln[1 − exp(−𝑁11𝜏)] +𝑁9 ln[1 − exp(−𝑁12𝜏)] +𝑁10 ln[2/3 + exp(𝑁13𝜏)]

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
A0 [float] Ideal gas dimensionless Helmholtz energy A0/(RT) [-]

Notes

The coefficients are as follows:

Ns = [0.605719400E-7, -0.210274769E-4, -0.158860716E-3, -13.841928076, 17.275266575, -0.195363420E-3,
2.490888032, 0.791309509, 0.212236768, -0.197938904, 25.36365, 16.90741, 37.31279]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 15

chemicals Documentation, Release 1.1.4

Examples

>>> lemmon2000_air_A0(132.6312/200.0, 13000/10447.7)
-14.65173785639

chemicals.air.lemmon2000_air_dA0_dtau(tau, delta)
Calculates the first temperature derivative of ideal gas Helmholtz energy of air according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
dA0_dtau [float] First derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy with

respect to tau [-]

Examples

>>> lemmon2000_air_dA0_dtau(132.6312/200.0, 13000/10447.7)
3.749095669249

chemicals.air.lemmon2000_air_d2A0_dtau2(tau, delta)
Calculates the second temperature derivative of ideal gas Helmholtz energy of air according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (126.192 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d2A0_dtau2 [float] Second derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy

with respect to tau [-]

Examples

>>> lemmon2000_air_d2A0_dtau2(132.6312/200.0, 13000/10447.7)
-5.66675499015

chemicals.air.lemmon2000_air_d3A0_dtau3(tau, delta)
Calculates the third temperature derivative of ideal gas Helmholtz energy of air according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (126.192 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d3A0_dtau3 [float] Third derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy with

respect to tau [-]

16 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> lemmon2000_air_d3A0_dtau3(132.6312/200.0, 13000/10447.7)
17.10538866838

chemicals.air.lemmon2000_air_d4A0_dtau4(tau, delta)
Calculates the fourth temperature derivative of ideal gas Helmholtz energy of air according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d4A0_dtau4 [float] Fourth derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy

with respect to tau [-]

Examples

>>> lemmon2000_air_d4A0_dtau4(126.192/200.0, 13000/10447.7)
-94.815532727

1.3.5 Dry Air Residual Terms

chemicals.air.lemmon2000_air_Ar(tau, delta)
Calculates the residual Helmholtz energy of air according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
Ar [float] Residual dimensionless Helmholtz energy Ar/(RT) [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt and many multiplies/adds.

Examples

>>> lemmon2000_air_Ar(132.6312/200.0, 13000/10447.7)
-0.34683017661
>>> lemmon2000_air_Ar(0.36842, 0.15880050154579475)
0.0047988122806

chemicals.air.lemmon2000_air_dAr_dtau(tau, delta)
Calculates the first derivative of residual Helmholtz energy of air with respect to tau according to Lemmon
(2000).

Parameters

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 17

chemicals Documentation, Release 1.1.4

tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
dAr_dtau [float] First derivative of residual dimensionless Helmholtz energy Ar/(RT) with re-

spect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 1 divisions and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_dAr_dtau(132.6312/200.0, 13000/10447.7)
-1.8112257495223263

chemicals.air.lemmon2000_air_d2Ar_dtau2(tau, delta)
Calculates the second derivative of residual Helmholtz energy of air with respect to tau according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d2Ar_dtau2 [float] Second derivative of residual dimensionless Helmholtz energy Ar/(RT) with

respect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 2 divisions and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d2Ar_dtau2(132.6312/200.0, 13000/10447.7)
-0.7632109061747

chemicals.air.lemmon2000_air_d3Ar_dtau3(tau, delta)
Calculates the third derivative of residual Helmholtz energy of air with respect to tau according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d3Ar_dtau3 [float] Third derivative of residual dimensionless Helmholtz energy Ar/(RT) with

respect to tau, [-]

18 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 4 divisions and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_dtau3(132.6312/200.0, 13000/10447.7)
0.27922007457420

chemicals.air.lemmon2000_air_d4Ar_dtau4(tau, delta)
Calculates the fourth derivative of residual Helmholtz energy of air with respect to tau according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d4Ar_dtau4 [float] Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT) with

respect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 4 divisions and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_dtau4(132.6312/200.0, 13000/10447.7)
-8.197368061417

chemicals.air.lemmon2000_air_dAr_ddelta(tau, delta)
Calculates the first derivative of residual Helmholtz energy of air with respect to delta according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
dAr_ddelta [float] First derivative of residual dimensionless Helmholtz energy Ar/(RT) with

respect to delta, [-]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 19

chemicals Documentation, Release 1.1.4

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_dAr_ddelta(132.6312/200.0, 13000/10447.7)
-0.1367917666005

chemicals.air.lemmon2000_air_d2Ar_ddelta2(tau, delta)
Calculates the second derivative of residual Helmholtz energy of air with respect to delta according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d2Ar_ddelta2 [float] Second derivative of residual dimensionless Helmholtz energy Ar/(RT)

with respect to delta, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d2Ar_ddelta2(132.6312/200.0, 13000/10447.7)
0.27027259528316

chemicals.air.lemmon2000_air_d3Ar_ddelta3(tau, delta)
Calculates the third derivative of residual Helmholtz energy of air with respect to delta according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d3Ar_ddelta3 [float] Third derivative of residual dimensionless Helmholtz energy Ar/(RT) with

respect to delta, [-]

20 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_ddelta3(132.6312/200.0, 13000/10447.7)
0.1849386546766

chemicals.air.lemmon2000_air_d4Ar_ddelta4(tau, delta)
Calculates the fourth derivative of residual Helmholtz energy of air with respect to delta according to Lemmon
(2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d4Ar_ddelta4 [float] Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT)

with respect to delta, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddelta4(132.6312/200.0, 13000/10447.7)
0.37902213262258

chemicals.air.lemmon2000_air_d2Ar_ddeltadtau(tau, delta)
Calculates the second derivative of residual Helmholtz energy of air with respect to delta and tau according to
Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d2Ar_ddeltadtau [float] Second derivative of residual dimensionless Helmholtz energy

Ar/(RT) with respect to delta and tau, [-]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 21

chemicals Documentation, Release 1.1.4

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d2Ar_ddeltadtau(132.6312/200.0, 13000/10447.7)
-1.359976184125

chemicals.air.lemmon2000_air_d3Ar_ddeltadtau2(tau, delta)
Calculates the third derivative of residual Helmholtz energy of air with respect to delta once and tau twice
according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d3Ar_ddeltadtau2 [float] Third derivative of residual dimensionless Helmholtz energy Ar/(RT)

with respect to delta once and tau twice, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 3 divisions, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_ddeltadtau2(132.6312/200.0, 13000/10447.7)
-0.19089212184849

chemicals.air.lemmon2000_air_d3Ar_ddelta2dtau(tau, delta)
Calculates the third derivative of residual Helmholtz energy of air with respect to delta twice and tau once
according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d3Ar_ddelta2dtau [float] Third derivative of residual dimensionless Helmholtz energy Ar/(RT)

with respect to delta twice and once twice, [-]

22 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 3 divisions, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_ddelta2dtau(132.6312/200.0, 13000/10447.7)
0.01441788198940

chemicals.air.lemmon2000_air_d4Ar_ddelta2dtau2(tau, delta)
Calculates the fourth derivative of residual Helmholtz energy of air with respect to delta twice and tau twice
according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d4Ar_ddelta2dtau2 [float] Fourth derivative of residual dimensionless Helmholtz energy

Ar/(RT) with respect to delta twice and tau twice, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 2 divisions, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddelta2dtau2(132.6312/200.0, 13000/10447.7)
0.1196873112730

chemicals.air.lemmon2000_air_d4Ar_ddeltadtau3(tau, delta)
Calculates the fourth derivative of residual Helmholtz energy of air with respect to delta once and tau thrice
according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d4Ar_ddeltadtau3 [float] Fourth derivative of residual dimensionless Helmholtz energy

Ar/(RT) with respect to delta once and tau thrice, [-]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 23

chemicals Documentation, Release 1.1.4

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 1 division, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddeltadtau3(132.6312/200.0, 13000/10447.7)
2.077739387492

chemicals.air.lemmon2000_air_d4Ar_ddelta3dtau(tau, delta)
Calculates the fourth derivative of residual Helmholtz energy of air with respect to delta thrice and tau once
according to Lemmon (2000).

Parameters
tau [float] Dimensionless temperature, (132.6312 K)/T [-]

delta [float] Dimensionless density, rho/(10447.7 mol/m^3), [-]

Returns
d4Ar_ddelta3dtau [float] Fourth derivative of residual dimensionless Helmholtz energy

Ar/(RT) with respect to delta thrice and tau once, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 1 division, and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddelta3dtau(132.6312/200.0, 13000/10447.7)
-0.26039336747

1.3.6 Humid Air Virial Terms

chemicals.air.TEOS10_BAW_derivatives(T)
Calculates the second molar virial cross coefficient between air and water according to [1].

𝐵𝑎𝑤(𝑇) =
1

𝜌*

3∑︁
𝑖=1

𝑐𝑖(𝜃)
𝑑𝑖

Where 𝜃 = 𝑇/𝑇 * and 𝑇 * = 100 K and 𝜌 = 106 mol/m^3.

Parameters
T [float] Temperature, [K]

Returns
Baw [float] Air-water second molar virial cross coefficient [m^3/mol]

dBaw_dT [float] First temperature derivative of air-water second molar virial cross coefficient
[m^3/(mol*K)]

24 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

d2Baw_dT2 [float] Second temperature derivative of air-water second molar virial cross coef-
ficient [m^3/(mol*K^2)]

d3Baw_dT3 [float] Third temperature derivative of air-water second molar virial cross coeffi-
cient [m^3/(mol*K^3)]

Notes

The coefficients are as follows:

cis = [0.665687E2, -0.238834E3, -0.176755E3]

dis = [-0.237, -1.048, -3.183]

References

[1]

Examples

>>> TEOS10_BAW_derivatives(300.0)
(-2.956727474282386e-05, 2.8009736043809844e-07, -2.425992413058737e-09, 3.
→˓0736974302787557e-11)

chemicals.air.TEOS10_CAAW_derivatives(T)
Calculates the third molar virial cross coefficient between air and air-water according to [1].

𝐶𝑎𝑎𝑤(𝑇) =
1

(𝜌*)2

5∑︁
𝑖=1

𝑐𝑖(𝜃)
1−𝑖

Where 𝜃 = 𝑇/𝑇 * and 𝑇 * = 100 K and 𝜌 = 106 mol/m^3.

Parameters
T [float] Temperature, [K]

Returns
Caaw [float] Air air-water second molar virial cross coefficient [m^6/mol^2]

dCaaw_dT [float] First temperature derivative of air air-water third molar virial cross coefficient
[m^6/(mol^2*K)]

d2Caaw_dT2 [float] Second temperature derivative of air air-water third molar virial cross co-
efficient [m^6/(mol^2*K^2)]

d3Caaw_dT3 [float] Third temperature derivative of air air-water third molar virial cross coef-
ficient [m^6/(mol^2*K^3)]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 25

chemicals Documentation, Release 1.1.4

Notes

The coefficients are as follows:

cis = [0.482737E-9, 1.05678E-7, -6.56394E-5, 0.294442E-1, -3.19317]

References

[1]

Examples

>>> TEOS10_CAAW_derivatives(300.0)
(8.019777407407409e-10, -1.9610345679012353e-12, 1.700556378600824e-14, -1.
→˓0129827160493832e-16)

chemicals.air.TEOS10_CAWW_derivatives(T)
Calculates the third molar virial cross coefficient between air and water-water according to [1].

𝐶𝑎𝑤𝑤(𝑇) =
1

(𝜌*)2
exp

[︃
4∑︁

𝑖=1

𝑑𝑖(𝜃)
1−𝑖

]︃

Where 𝜃 = 𝑇/𝑇 * and 𝑇 * = 100 K and 𝜌 = 106 mol/m^3.

Parameters
T [float] Temperature, [K]

Returns
Caww [float] Air water-water second molar virial cross coefficient [m^6/mol^2]

dCaww_dT [float] First temperature derivative of air water-water third molar virial cross coef-
ficient [m^6/(mol^2*K)]

d2Caww_dT2 [float] Second temperature derivative of air water-water third molar virial cross
coefficient [m^6/(mol^2*K^2)]

d3Caww_dT3 [float] Third temperature derivative of air water-water third molar virial cross
coefficient [m^6/(mol^2*K^3)]

Notes

The coefficients are as follows:

dis = [-0.10728876E2, 0.347802E2, -0.383383E2, 0.334060E2]

26 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> TEOS10_CAWW_derivatives(300.0)
(-1.1555278368039349e-07, 2.6136327775413448e-09, -7.513345818045024e-11, 2.
→˓601834967770415e-12)

1.3.7 Henry’s Law for Air in Water

chemicals.air.iapws04_Henry_air(T)
Calculate the Henry’s law constant of air in water according to the IAPWS-04 standard.

Parameters
T [float] Temperature, [K]

Returns
H [float] Henry’s law constant, [1/Pa]

Notes

The mole fractions of air in this model are 0.7812 N2, 0.2095 O2 and 0.0093 Ar.

References

[1]

Examples

>>> iapws04_Henry_air(320.0)
1.0991553689889531e-10

chemicals.air.iapws04_dHenry_air_dT(T)
Calculate the temperature derivative of Henry’s law constant of air in water according to the IAPWS-04 standard.
As the actual Henry’s law constant must be calculated as well, it is also returned.

Parameters
T [float] Temperature, [K]

Returns
dH_dT [float] First temperature derivative of Henry’s law constant, [1/(Pa*K)]

H [float] Henry’s law constant, [1/Pa]

1.3. Air: Fundamental Equation of State for Air (chemicals.air) 27

chemicals Documentation, Release 1.1.4

Notes

The mole fractions of air in this model are 0.7812 N2, 0.2095 O2 and 0.0093 Ar.

References

[1]

Examples

>>> iapws04_dHenry_air_dT(320.0)
(-8.680064421141611e-13, 1.0991553689889561e-10)

1.4 Combustion Calculations (chemicals.combustion)

This module contains a series of functions for modeling combustion reactions.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Combustion Stoichiometry

• Heat of Combustion

• Heat of Combustion and Stiochiometry

• Basic Combustion Spec Solvers

• Engine Combustion

• Lookup Functions

1.4.1 Combustion Stoichiometry

chemicals.combustion.combustion_stoichiometry(atoms, MW=None, missing_handling='elemental')
Return a dictionary of stoichiometric coefficients of chemical combustion, given a dictionary of a molecule’s
constituent atoms and their counts.

This function is based on the combustion of hydrocarbons; the products for some inorganics can be hard to
predict, and no special handling is included here for them. This reaction is the standard one at standard pressure
with an excess of oxygen; it does not account for partial combustion or nitrous oxides.

Parameters
atoms [dict[str, int]] Dictionary of atoms and their counts, [-]

MW [float, optional] Molecular weight of chemical, used only if missing_handling is ‘Ash’,
[g/mol]

missing_handling [str, optional] How to handle compounds which do not appear in the sto-
ichiometric reaction below. If ‘elemental’, return those atoms in the monatomic state; if
‘ash’, converts all missing attoms to ‘Ash’ in the output at a MW of 1 g/mol, [-]

Returns

28 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

stoichiometry [dict[str, float]] Stoichiometric coefficients of combustion. May inlcude the
following keys for complete combustion: ‘H2O’, ‘CO2’, ‘SO2’, ‘Br2’, ‘I2’, ‘HCl’, ‘HF’
‘P4O10’; if missing_handling is ‘elemental’ can include the other elements; if miss-
ing_handling is ‘ash’, Ash will be present in the output if the compounds whose reactions are
not included here. ‘O2’ is always present, with negative values indicating oxygen is required.
[-]

Notes

The stoichiometry is given by:

𝐶𝑐𝐻ℎ𝑂𝑜𝑁𝑛𝑆𝑠𝐵𝑟𝑏𝐼𝑖𝐶𝑙𝑥𝐹𝑓𝑃𝑝 + 𝑘𝑂2− > 𝑐𝐶𝑂2 +
𝑏

2
𝐵𝑟2 +

𝑖

2
𝐼 + 𝑥𝐻𝐶𝑙 + 𝑓𝐻𝐹 + 𝑠𝑆𝑂2 +

𝑛

2
𝑁2 +

𝑝

4
𝑃4𝑂10 +

ℎ+ 𝑥+ 𝑓

2
𝐻2𝑂

𝑘 = 𝑐+ 𝑠+
ℎ

4
+

5𝑃

4
− 𝑥+ 𝑓

4
− 𝑜

2

Also included in the results is the moles of O2 required per mole of the mixture of the molecule.

HF and HCl are gaseous products in their standard state. P4O10 is a solid in its standard state. Bromine is a
liquid as is iodine. Water depends on the chosen definition of heating value. The other products are gases.

Atoms not in [‘C’, ‘H’, ‘N’, ‘O’, ‘S’, ‘Br’, ‘I’, ‘Cl’, ‘F’, ‘P’] are returned as pure species; i.e. sodium hydroxide
produces water and pure Na.

Examples

Methane gas burning:

>>> combustion_stoichiometry({'C': 1, 'H':4})
{'CO2': 1, 'O2': -2.0, 'H2O': 2.0}

chemicals.combustion.combustion_products_mixture(atoms_list, zs, reactivities=None, CASs=None,
missing_handling='elemental',
combustion_stoichiometries=None)

Calculates the combustion products of a mixture of molecules and their, mole fractions; requires a list of dictio-
naries of each molecule’s constituent atoms and their counts. Products for non-hydrocarbons may not be correct,
but are still calculated.

Parameters
atoms_list [list[dict]] List of dictionaries of atoms and their counts, [-]

zs [list[float]] Mole fractions of each molecule in the mixture, [-]

reactivities [list[bool]] Indicators as to whether to combust each molecule, [-]

CASs [list[str]] CAS numbers of all compounds; non-reacted products will appear in the prod-
ucts indexed by their CAS number, [-]

missing_handling [str, optional] How to handle compounds which do not appear in the stoichio-
metric reaction below. If ‘elemental’, return those atoms in the monatomic state; if ‘Ash’,
converts all missing attoms to ‘Ash’ in the output at a MW of 1 g/mol, [-]

combustion_stoichiometries [list[dict[str, float]]] List of return values from combus-
tion_stoichiometry, can be provided if precomputed [-]

Returns
combustion_producucts [dict] Dictionary of combustion products and their counts, [-]

1.4. Combustion Calculations (chemicals.combustion) 29

chemicals Documentation, Release 1.1.4

Notes

Also included in the results is the moles of O2 required per mole of the mixture to be burnt.

Note that if O2 is in the feed, this will be subtracted from the required O2 amount.

HF and HCl are gaseous products in their standard state. P4O10 is a solid in its standard state. Bromine is a
liquid as is iodine. Water depends on the chosen definition of heating value. The other products are gases.

Note that if instead of mole fractions, mole flows are given - the results are in terms of mole flows as well!

Examples

Mixture of methane and ethane.

>>> combustion_products_mixture([{'H': 4, 'C': 1}, {'H': 6, 'C': 2}, {'Ar': 1}, {'C
→˓': 15, 'H': 32}],
... [.9, .05, .04, .01], reactivities=[True, True, True, False],
... CASs=['74-82-8', '74-84-0', '7440-37-1', '629-62-9'])
{'CO2': 1.0, 'O2': -1.975, 'H2O': 1.9500000000000002, 'Ar': 0.04, '629-62-9': 0.01}

1.4.2 Heat of Combustion

chemicals.combustion.HHV_stoichiometry(stoichiometry, Hf, Hf_chemicals=None)
Return the higher heating value [HHV; in J/mol] based on the theoretical combustion stoichiometry and the heat
of formation of the chemical.

Parameters
stoichiometry [dict[str, float]] Stoichiometric coefficients of combustion. May inlcude the fol-

lowing keys: ‘H2O’, ‘CO2’, ‘SO2’, ‘Br2’, ‘I2’, ‘HCl’, ‘HF’ and ‘P4O10’.

Hf [float] Heat of formation [J/mol].

Hf_chemicals [dict[str, float]] Heat of formation of chemicals present in stoichiometry, [J/mol]

Returns
HHV [float] Higher heating value [J/mol].

Notes

The combustion reaction is based on the following equation:

𝐶𝑐𝐻ℎ𝑂𝑜𝑁𝑛𝑆𝑠𝐵𝑟𝑏𝐼𝑖𝐶𝑙𝑥𝐹𝑓𝑃𝑝 + 𝑘𝑂2− > 𝑐𝐶𝑂2 +
𝑏

2
𝐵𝑟2 +

𝑖

2
𝐼 + 𝑥𝐻𝐶𝑙 + 𝑓𝐻𝐹 + 𝑠𝑆𝑂2 +

𝑛

2
𝑁2 +

𝑝

4
𝑃4𝑂10 +

ℎ+ 𝑥+ 𝑓

2
𝐻2𝑂

𝑘 = 𝑐+ 𝑠+
ℎ

4
+

5𝑃

4
− 𝑥+ 𝑓

4
− 𝑜

2

The HHV is calculated as the heat of reaction.

30 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Burning methane gas:

>>> HHV_stoichiometry({'O2': -2.0, 'CO2': 1, 'H2O': 2.0}, -74520.0)
-890604.0

chemicals.combustion.HHV_modified_Dulong(mass_fractions)
Return higher heating value [HHV; in J/g] based on the modified Dulong’s equation [1].

Parameters
mass_fractions [dict[str, float]] Dictionary of atomic mass fractions [-].

Returns
HHV [float] Higher heating value [J/mol].

Notes

The heat of combustion in J/mol is given by Dulong’s equation [1]:

𝐻𝑐(𝐽/𝑚𝑜𝑙) = 𝑀𝑊 · (338𝐶 + 1428(𝐻 −𝑂/8) + 95𝑆)

This equation is only good for <10 wt. % Oxygen content. Variables C, H, O, and S are atom weight fractions.

References

[1]

Examples

Dry bituminous coal:

>>> HHV_modified_Dulong({'C': 0.716, 'H': 0.054, 'S': 0.016, 'N': 0.016, 'O': 0.093,
→˓ 'Ash': 0.105})
-304.0395

chemicals.combustion.LHV_from_HHV(HHV, N_H2O)
Return the lower heating value [LHV; in J/mol] of a chemical given the higher heating value [HHV; in J/mol]
and the number of water molecules formed per molecule burned.

Parameters
HHV [float] Higher heating value [J/mol].

N_H2O [int] Number of water molecules produced [-].

Returns
LHV [float] Lower heating value [J/mol].

1.4. Combustion Calculations (chemicals.combustion) 31

chemicals Documentation, Release 1.1.4

Notes

The LHV is calculated as follows:

𝐿𝐻𝑉 = 𝐻𝐻𝑉 +𝐻𝑣𝑎𝑝 ·𝐻2𝑂

𝐻𝑣𝑎𝑝 = 44011.496
𝐽

𝑚𝑜𝑙𝐻2𝑂

𝐻2𝑂 =
𝑚𝑜𝑙𝐻2𝑂

𝑚𝑜𝑙

Examples

Methanol lower heat of combustion:

>>> LHV_from_HHV(-726024.0, 2)
-638001.008

1.4.3 Heat of Combustion and Stiochiometry

chemicals.combustion.combustion_data(formula=None, stoichiometry=None, Hf=None, MW=None,
method=None, missing_handling='ash')

Return a CombustionData object (a named tuple) that contains the stoichiometry coefficients of the reactants and
products, the lower and higher heating values [LHV, HHV; in J/mol], the heat of formation [Hf; in J/mol], and
the molecular weight [MW; in g/mol].

Parameters
formula [str, or dict[str, float], optional] Chemical formula as a string or a dictionary of atoms

and their counts.

stoichiometry [dict[str, float], optional] Stoichiometry of combustion reaction.

Hf [float, optional] Heat of formation of given chemical [J/mol]. Required if method is “Stoi-
chiometry”.

MW [float, optional] Molecular weight of chemical [g/mol].

method [“Stoichiometry” or “Dulong”, optional] Method to estimate LHV and HHV.

missing_handling [str, optional] How to handle compounds which do not appear in the stoichio-
metric reaction below. If ‘elemental’, return those atoms in the monatomic state; if ‘Ash’,
converts all missing attoms to ‘Ash’ in the output at a MW of 1 g/mol, [-]

Returns
combustion_data [CombustionData] A combustion data object with the stoichiometric co-

efficients of combustion, higher heating value, heat of formation, and molecular weight as
attributes named stoichiomery, HHV, Hf, and MW, respectively.

32 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The combustion reaction is based on the following equation:

𝐶𝑐𝐻ℎ𝑂𝑜𝑁𝑛𝑆𝑠𝐵𝑟𝑏𝐼𝑖𝐶𝑙𝑥𝐹𝑓𝑃𝑝 + 𝑘𝑂2− > 𝑐𝐶𝑂2 +
𝑏

2
𝐵𝑟2 +

𝑖

2
𝐼 + 𝑥𝐻𝐶𝑙 + 𝑓𝐻𝐹 + 𝑠𝑆𝑂2 +

𝑛

2
𝑁2 +

𝑝

4
𝑃4𝑂10 +

ℎ+ 𝑥+ 𝑓

2
𝐻2𝑂

𝑘 = 𝑐+ 𝑠+
ℎ

4
+

5𝑃

4
− 𝑥+ 𝑓

4
− 𝑜

2

If the method is “Stoichiometry”, the HHV is found using through an energy balance on the reaction (i.e. heat
of reaction). If the method is “Dulong”, Dulong’s equation is used [1]:

𝐻𝑐(𝐽/𝑚𝑜𝑙) = 𝑀𝑊 · (338𝐶 + 1428(𝐻 −𝑂/8) + 95𝑆)

The LHV is calculated as follows:

𝐿𝐻𝑉 = 𝐻𝐻𝑉 +𝐻𝑣𝑎𝑝 ·𝐻2𝑂

𝐻𝑣𝑎𝑝 = 44011.496
𝐽

𝑚𝑜𝑙𝐻2𝑂

𝐻2𝑂 =
𝑚𝑜𝑙𝐻2𝑂

𝑚𝑜𝑙

References

[1]

Examples

Liquid methanol burning:

>>> combustion_data({'H': 4, 'C': 1, 'O': 1}, Hf=-239100)
CombustionData(stoichiometry={'CO2': 1, 'O2': -1.5, 'H2O': 2.0}, HHV=-726024.0, Hf=-
→˓239100, MW=32.04186)

class chemicals.combustion.CombustionData(stoichiometry, HHV, Hf, MW)
Return a CombustionData object (a named tuple) that contains the stoichiometry coefficients of the reactants and
products, the lower and higher heating values [LHV, HHV; in J/mol], the heat of formation [Hf; in J/mol], and
the molecular weight [MW; in g/mol].

Parameters
stoichiometry [dict[str, float]] Stoichiometric coefficients of the reactants and products.

HHV [float] Higher heating value [J/mol].

Hf [float] Heat of formation [J/mol].

MW [float] Molecular weight [g/mol].

Attributes
LHV Lower heating value [LHV; in J/mol]

1.4. Combustion Calculations (chemicals.combustion) 33

chemicals Documentation, Release 1.1.4

1.4.4 Basic Combustion Spec Solvers

chemicals.combustion.fuel_air_spec_solver(zs_air, zs_fuel, CASs, atomss, n_fuel=None, n_air=None,
n_out=None, O2_excess=None, frac_out_O2=None,
frac_out_O2_dry=None, ratio=None, Vm_air=None,
Vm_fuel=None, MW_air=None, MW_fuel=None,
ratio_basis='mass', reactivities=None,
combustion_stoichiometries=None)

Solves the system of equations describing a flow of air mixing with a flow of combustibles and burning com-
pletely. All calculated variables are returned as a dictionary.

Supports solving with any 2 of the extensive variables, or one extensive and one intensive variable:

Extensive variables:

• n_air

• n_fuel

• n_out

Intensive variables:

• O2_excess

• frac_out_O2

• frac_out_O2_dry

• ratio

The variables Vm_air, Vm_fuel, MW_air, and MW_fuel are only required when an air-fuel ratio is given. Howver,
the ratios cannot be calculated for the other solve options without them.

Parameters
zs_air [list[float]] Mole fractions of the air; most not contain any combustibles, [-]

zs_fuel [list[float]] Mole fractions of the fuel; can contain inerts and/or oxygen as well, [-]

CASs [list[str]] CAS numbers of all compounds, [-]

atomss [list[dict[float]]] List of dictionaries of elements and their counts for all molecules in the
mixtures, [-]

n_fuel [float, optional] Flow rate of fuel, [mol/s]

n_air [float, optional] Flow rate of air, [mol/s]

n_out [float, optional] Flow rate of combustion products, remaining oxygen, and inerts, [mol/s]

O2_excess [float, optional] The excess oxygen coming out; (O2 in)/(O2 required) - 1, [-]

frac_out_O2 [float, optional] The mole fraction of oxygen out, [-]

frac_out_O2_dry [float, optional] The mole fraction of oxygen out on a dry basis, [-]

ratio [float, optional] Air-fuel ratio, in the specified basis, [-]

Vm_air [float, optional] Molar volume of air, [m^3/mol]

Vm_fuel [float, optional] Molar volume of fuel, [m^3/mol]

MW_air [float, optional] Molecular weight of air, [g/mol]

MW_fuel [float, optional] Molecular weight of fuel, [g/mol]

ratio_basis [str, optional] One of ‘mass’, ‘mole’, or ‘volume’, [-]

34 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

reactivities [list[bool], optional] Optional list which can be used to mark otherwise combustible
compounds as incombustible and which will leave unreacted, [-]

combustion_stoichiometries [list[dict[str, float]]] List of return values from combus-
tion_stoichiometry, can be provided if precomputed [-]

Returns
results [dict]

• n_fuel : Flow rate of fuel, [mol/s]

• n_air : Flow rate of air, [mol/s]

• n_out : Flow rate of combustion products, remaining oxygen, and inerts, [mol/s]

• O2_excess : The excess oxygen coming out; (O2 in)/(O2 required) - 1, [-]

• frac_out_O2 : The mole fraction of oxygen out, [-]

• frac_out_O2_dry : The mole fraction of oxygen out on a dry basis, [-]

• mole_ratio : Air-fuel mole ratio, [-]

• mass_ratio : Air-fuel mass ratio, [-]

• volume_ratio : Air-fuel volume ratio, [-]

• ns_out : Mole flow rates out, [mol/s]

• zs_out : Mole fractions out, [-]

Notes

Combustion products themselves cannot be set as unreactive.

The function works so long as the flow rates, molar volumes, and molecular weights are in a consistent basis.

The function may also be used to obtain the other ratios, even if both flow rates are known.

Be careful to use standard volumes if the ratio known is at standard conditions!

Examples

>>> zs_air = [0.79, 0.205, 0, 0, 0, 0.0045, 0.0005]
>>> zs_fuel = [0.025, 0.025, 0.85, 0.07, 0.029, 0.0005, 0.0005]
>>> CASs = ['7727-37-9', '7782-44-7', '74-82-8', '74-84-0', '74-98-6', '7732-18-5',
→˓'124-38-9']
>>> atomss = [{'N': 2}, {'O': 2}, {'H': 4, 'C': 1}, {'H': 6, 'C': 2}, {'H': 8, 'C':␣
→˓3}, {'H': 2, 'O': 1}, {'C': 1, 'O': 2}]
>>> ans = fuel_air_spec_solver(zs_air=zs_air, zs_fuel=zs_fuel, CASs=CASs,␣
→˓atomss=atomss, n_fuel=5.0, O2_excess=0.3, Vm_air=0.02493, Vm_fuel=0.02488, MW_
→˓air=28.79341351, MW_fuel=18.55158039)
>>> [round(i, 5) for i in ans['ns_out']]
[51.99524, 3.135, 0.0, 0.0, 0.0, 10.42796, 5.42033]
>>> [round(i, 5) for i in ans['zs_out']]
[0.73255, 0.04417, 0.0, 0.0, 0.0, 0.14692, 0.07637]
>>> ans['frac_out_O2'], ans['frac_out_O2_dry']
(0.04416828172034148, 0.051774902132807)
>>> ans['mole_ratio'], ans['mass_ratio'], ans['volume_ratio']

(continues on next page)

1.4. Combustion Calculations (chemicals.combustion) 35

chemicals Documentation, Release 1.1.4

(continued from previous page)

(13.131707317073175, 20.381372957130615, 13.15809740412517)
>>> ans['n_air']
65.65853658536588

chemicals.combustion.combustion_spec_solver(zs_air, zs_fuel, zs_third, CASs, atomss, n_third,
n_fuel=None, n_air=None, n_out=None,
O2_excess=None, frac_out_O2=None,
frac_out_O2_dry=None, ratio=None, Vm_air=None,
Vm_fuel=None, Vm_third=None, MW_air=None,
MW_fuel=None, MW_third=None, ratio_basis='mass',
reactivities=None, combustion_stoichiometries=None)

Solves the system of equations describing a flow of air mixing with two flow of combustibles, one fixed and one
potentially variable, and burning completely. All calculated variables are returned as a dictionary.

The variables Vm_air, Vm_fuel, Vm_third, MW_air, MW_fuel and MW_third are only required when an air-fuel
ratio is given. Howver, the ratios cannot be calculated for the other solve options without them.

Parameters
zs_air [list[float]] Mole fractions of the air; most not contain any combustibles, [-]

zs_fuel [list[float]] Mole fractions of the fuel; can contain inerts and/or oxygen as well, [-]

zs_third [list[float]]

Mole fractions of the fixed fuel flow; can contain inerts and/or oxygen as well, [-]

CASs [list[str]] CAS numbers of all compounds, [-]

atomss [list[dict[float]]] List of dictionaries of elements and their counts for all molecules in the
mixtures, [-]

n_third [float, optional] Flow rate of third stream, (fixed) fuel flow rate, [mol/s]

n_fuel [float, optional] Flow rate of fuel, [mol/s]

n_air [float, optional] Flow rate of air, [mol/s]

n_out [float, optional] Flow rate of combustion products, remaining oxygen, and inerts, [mol/s]

O2_excess [float, optional] The excess oxygen coming out; (O2 in)/(O2 required) - 1, [-]

frac_out_O2 [float, optional] The mole fraction of oxygen out, [-]

frac_out_O2_dry [float, optional] The mole fraction of oxygen out on a dry basis, [-]

ratio [float, optional] Air-fuel ratio, in the specified basis, [-]

Vm_air [float, optional] Molar volume of air, [m^3/mol]

Vm_fuel [float, optional] Molar volume of fuel, [m^3/mol]

Vm_third [float, optional] Molar volume of second fuel stream, [m^3/mol]

MW_air [float, optional] Molecular weight of air, [g/mol]

MW_fuel [float, optional] Molecular weight of fuel, [g/mol]

MW_third [float, optional] Molecular weight of second fuel stream, [g/mol]

ratio_basis [str, optional] One of ‘mass’, ‘mole’, or ‘volume’, [-]

reactivities [list[bool], optional] Optional list which can be used to mark otherwise combustible
compounds as incombustible and which will leave unreacted, [-]

36 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

combustion_stoichiometries [list[dict[str, float]]] List of return values from combus-
tion_stoichiometry, can be provided if precomputed [-]

Returns
results [dict]

• n_fuel : Flow rate of fuel, [mol/s]

• n_air : Flow rate of air, [mol/s]

• n_out : Flow rate of combustion products, remaining oxygen, and inerts, [mol/s]

• O2_excess : The excess oxygen coming out; (O2 in)/(O2 required) - 1, [-]

• frac_out_O2 : The mole fraction of oxygen out, [-]

• frac_out_O2_dry : The mole fraction of oxygen out on a dry basis, [-]

• mole_ratio : Air-fuel mole ratio, [-]

• mass_ratio : Air-fuel mass ratio, [-]

• volume_ratio : Air-fuel volume ratio, [-]

• ns_out : Mole flow rates out, [mol/s]

• zs_out : Mole fractions out, [-]

Notes

Combustion products themselves cannot be set as unreactive.

The function works so long as the flow rates, molar volumes, and molecular weights are in a consistent basis.

Handling the case of the air feed containing combustibles is not implemented.

Examples

>>> zs_air = [0.79, 0.205, 0, 0, 0, 0.0045, 0.0005]
>>> zs_fuel = [0.025, 0.025, 0.85, 0.07, 0.029, 0.0005, 0.0005]
>>> zs_third = [0.1, 0.005, 0.5, 0.39, 0, 0.005, 0]
>>> CASs = ['7727-37-9', '7782-44-7', '74-82-8', '74-84-0', '74-98-6', '7732-18-5',
→˓'124-38-9']
>>> atomss = [{'N': 2}, {'O': 2}, {'H': 4, 'C': 1}, {'H': 6, 'C': 2}, {'H': 8, 'C':␣
→˓3}, {'H': 2, 'O': 1}, {'C': 1, 'O': 2}]
>>> combustion_stoichiometries = [combustion_stoichiometry(atoms) for atoms in␣
→˓atomss]
>>> ans = combustion_spec_solver(zs_air=zs_air, zs_fuel=zs_fuel, zs_third=zs_third,␣
→˓CASs=CASs, atomss=atomss, n_third=1.0, n_fuel=5.0, O2_excess=0.3, Vm_air=0.02493,␣
→˓Vm_fuel=0.02488, Vm_third=.024, MW_air=28.79341351, MW_fuel=18.55158039, MW_
→˓third=22.0)
>>> ans['n_air']
80.6317073170732

chemicals.combustion.air_fuel_ratio_solver(ratio, Vm_air, Vm_fuel, MW_air, MW_fuel, n_air=None,
n_fuel=None, basis='mass')

Calculates molar flow rate of air or fuel from the other, using a specified air-fuel ratio. Supports ‘mole’, ‘mass’,
and ‘volume’.

1.4. Combustion Calculations (chemicals.combustion) 37

chemicals Documentation, Release 1.1.4

bases for the ratio variable. The ratio must be of the same units - i.e. kg/kg instead of lb/kg.

The mole, mass, and volume air-fuel ratios are calculated in the process and returned as well.

Parameters
ratio [float] Air-fuel ratio, in the specified basis, [-]

Vm_air [float] Molar volume of air, [m^3/mol]

Vm_fuel [float] Molar volume of fuel, [m^3/mol]

MW_air [float] Molecular weight of air, [g/mol]

MW_fuel [float] Molecular weight of fuel, [g/mol]

n_air [float, optional] Molar flow rate of air, [mol/s]

n_fuel [float, optional] Molar flow rate of fuel, [mol/s]

basis [str, optional] One of ‘mass’, ‘mole’, or ‘volume’, [-]

Returns
n_air [float] Molar flow rate of air, [mol/s]

n_fuel [float] Molar flow rate of fuel, [mol/s]

mole_ratio [float] Air-fuel mole ratio, [-]

mass_ratio [float] Air-fuel mass ratio, [-]

volume_ratio [float] Air-fuel volume ratio, [-]

Notes

The function works so long as the flow rates, molar volumes, and molecular weights are in a consistent basis.

The function may also be used to obtain the other ratios, even if both flow rates are known.

Be careful to use standard volumes if the ratio known is at standard conditions!

This function has no provision for mixed units like mass/mole or volume/mass.

Examples

>>> Vm_air = 0.024936627188566596
>>> Vm_fuel = 0.024880983160354486
>>> MW_air = 28.850334
>>> MW_fuel = 17.86651
>>> n_fuel = 5.0
>>> n_air = 25.0
>>> air_fuel_ratio_solver(ratio=5.0, Vm_air=Vm_air, Vm_fuel=Vm_fuel,
... MW_air=MW_air, MW_fuel=MW_fuel, n_air=n_air,
... n_fuel=n_fuel, basis='mole')
(25.0, 5.0, 5.0, 8.073858296891782, 5.011182039683378)

38 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.4.5 Engine Combustion

chemicals.combustion.Perez_Boehman_RON_from_ignition_delay(ignition_delay)
Esimates the research octane number (RON) from a known ignition delay, as shown in [1].

RON = 120.77 − 425.48

𝜏𝐼𝐷

In the above equation, ignition delay is in ms.

Parameters
ignition_delay [float] The ignition delay, [s]

Returns
RON [float] Research Octane Number [-]

Notes

The correlation was developed using 20 components, for a range of approximately 3.6 ms to 67 ms.

References

[1]

Examples

>>> Perez_Boehman_RON_from_ignition_delay(1/150)
56.948

chemicals.combustion.Perez_Boehman_MON_from_ignition_delay(ignition_delay)
Esimates the motor octane number (MON) from a known ignition delay, as shown in [1].

MON = 109.93 − 374.73

𝜏𝐼𝐷

In the above equation, ignition delay is in ms.

Parameters
ignition_delay [float] The ignition delay, [s]

Returns
MON [float] Motor Octane Number [-]

Notes

The correlation was developed using 20 components, for a range of approximately 3.6 ms to 67 ms.

1.4. Combustion Calculations (chemicals.combustion) 39

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Perez_Boehman_MON_from_ignition_delay(1/150)
53.7205

chemicals.combustion.octane_sensitivity(RON, MON)
This function calculates the octane sensitivity of a fuel [1].

OS = RON − MON

Parameters
RON [float] Research octane number, [-]

MON [float] Motor octane number, [-]

Returns
OS [float] Octane sensitivity, [-]

References

[1]

Examples

>>> octane_sensitivity(RON=90, MON=74)
16

chemicals.combustion.AKI(RON, MON)
This function calculates the anti knock index (AKI) of a fuel, also known as (R+M)/2 and by DON [1].

AKI = 0.5RON + 0.5MON

Parameters
RON [float] Research octane number, [-]

MON [float] Motor octane number, [-]

Returns
AKI [float] Average of RON and MON, [-]

40 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This is the number displayed at the gas pumps in North America; in Europe and Asia the RON is displayed.

References

[1]

Examples

>>> AKI(RON=90, MON=74)
82.0

chemicals.combustion.IDT_to_DCN(IDT)
This function converts the ignition delay time [1] into a derived cetane number.

If the ignition delay time is between 3.1 and 6.5 ms:

DCN = 4.46 +
186.6

IDT

Otherwise:

DCN =
(︀
83.99(IDT − 1.512)−0.658

)︀
+ 3.547

Parameters
IDT [float] Ignition delay time, [s]

Returns
DCN [float] Derived cetane number, [-]

Notes

This conversion is described in D6890-168.

References

[1], [2]

Examples

>>> IDT_to_DCN(4e-3)
51.11

1.4. Combustion Calculations (chemicals.combustion) 41

chemicals Documentation, Release 1.1.4

1.4.6 Lookup Functions

chemicals.combustion.RON(CASRN, method=None)
This function handles the retrieval of a chemical’s research octane number (RON). Lookup is based on CASRNs.
Will automatically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 1400 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
RON [float] Research octane number, [-]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

RON_methods

Notes

The available sources are as follows:

• ‘FLORIAN_LIMING’, the experimental values compiled in [1].

• ‘FLORIAN_LIMING_ANN’, a set of predicted values using a QSPR-ANN model developed in the author’s
earlier publication [3], from 260 comonents.

• ‘COMBUSTDB’, a compilation of values from various sources [2].

• ‘COMBUSTDB_PREDICTIONS’, a set of predicted values developed by the author of CombustDB (Travis
Kessler) using the tool [4].

References

[1], [2], [3], [4]

Examples

>>> RON(CASRN='64-17-5')
108.6

chemicals.combustion.RON_methods(CASRN)
Return all methods available to obtain the research octane number (RON) for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the RON with the given inputs.

See also:

RON

42 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.combustion.RON_all_methods = ('FLORIAN_LIMING', 'COMBUSTDB',
'FLORIAN_LIMING_ANN', 'COMBUSTDB_PREDICTIONS')

Tuple of method name keys. See the RON for the actual references

chemicals.combustion.MON(CASRN, method=None)
This function handles the retrieval of a chemical’s motor octane number (MON). Lookup is based on CASRNs.
Will automatically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 1400 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
MON [float] Research octane number, [-]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

MON_methods

Notes

The available sources are as follows:

• ‘FLORIAN_LIMING’, the experimental values compiled in [1].

• ‘FLORIAN_LIMING_ANN’, a set of predicted values using a QSPR-ANN model developed in the author’s
earlier publication [3], from 260 comonents.

• ‘COMBUSTDB’, a compilation of values from various sources [2].

• ‘COMBUSTDB_PREDICTIONS’, a set of predicted values developed by the author of CombustDB (Travis
Kessler) using the tool [4].

References

[1], [2], [3], [4]

Examples

>>> MON(CASRN='64-17-5')
89.7

chemicals.combustion.MON_methods(CASRN)
Return all methods available to obtain the motor octane number (MON) for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the MON with the given inputs.

See also:

MON

1.4. Combustion Calculations (chemicals.combustion) 43

chemicals Documentation, Release 1.1.4

chemicals.combustion.MON_all_methods = ('FLORIAN_LIMING', 'COMBUSTDB',
'FLORIAN_LIMING_ANN', 'COMBUSTDB_PREDICTIONS')

Tuple of method name keys. See the MON for the actual references

chemicals.combustion.ignition_delay(CASRN, method=None)
This function handles the retrieval of a chemical’s ignition delay time (IDT). Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 60 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
ignition_delay [float] Ignition delay time, [s]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in igni-

tion_delay_all_methods

Notes

The available sources are as follows:

• ‘DAHMEN_MARQUARDT’, the experimental values compiled in [1]; all timings come from the IQT
tester device

Note that different measurement devices can give different results.

References

[1]

Examples

>>> ignition_delay(CASRN='110-54-3')
0.0043

chemicals.combustion.ignition_delay_methods(CASRN)
Return all methods available to obtain the ignition delay time (IDT) for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the IDT with the given inputs.

See also:

ignition_delay

chemicals.combustion.ignition_delay_all_methods = ('DAHMEN_MARQUARDT',)
Tuple of method name keys. See the ignition_delay for the actual references

44 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.5 Critical Properties (chemicals.critical)

This module contains lookup functions for critical temperature, critical pressure, critical volume, and critical com-
pressibility factors. It also includes a few relationships between the critical properties, and a variety of critical mixture
property estimation routines.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Critical Temperature

• Critical Pressure

• Critical Volume

• Critical Compressibility Factor

• Critical Property Relationships

• Critical Temperature of Mixtures

• Critical Volume of Mixtures

1.5.1 Critical Temperature

chemicals.critical.Tc(CASRN, method=None)
This function handles the retrieval of a chemical’s critical temperature. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 26000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Tc [float] Critical temperature, [K]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘IUPAC’,

‘MATTHEWS’, ‘CRC’, ‘PD’, ‘WEBBOOK’, ‘PSRK’, ‘PINAMARTINES’, ‘YAWS’, ‘WIL-
SON_JASPERSON’, ‘JOBACK’, ‘HEOS’. All valid values are also held in the list
Tc_all_methods.

See also:

Tc_methods

1.5. Critical Properties (chemicals.critical) 45

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

The available sources are as follows:

• ‘IUPAC’, a series of critically evaluated experimental datum for organic compounds in [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], and [12].

• ‘MATTHEWS’, a series of critically evaluated data for inorganic compounds in [13].

• ‘CRC’, a compillation of critically evaluated data by the TRC as published in [14].

• ‘PSRK’, a compillation of experimental and estimated data published in [15].

• ‘PD’, an older compillation of data published in [16]

• ‘YAWS’, a large compillation of data from a variety of sources; no data points are sourced in the work of
[17].

• ‘WEBBOOK’, a NIST resource [18] containing mostly experimental and averaged values

• ‘JOBACK’, an estimation method for organic substances in [19]

• ‘WILSON_JASPERSON’, an estimation method in [21]

• ‘PINAMARTINES’, a series of values in the supporting material of [20]

• ‘HEOS’, a series of values from the NIST REFPROP Database for Highly Accurate Properties of Industri-
ally Important Fluids (and other high-precision fundamental equations of state)

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]

Examples

>>> Tc(CASRN='64-17-5')
514.71

chemicals.critical.Tc_methods(CASRN)
Return all methods available to obtain the critical temperature for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain Tc with the given inputs.

See also:

Tc

chemicals.critical.Tc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'PD', 'WEBBOOK',
'PSRK', 'PINAMARTINES', 'YAWS', 'WILSON_JASPERSON', 'JOBACK')

Tuple of method name keys. See the Tc for the actual references

46 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.critical.Tc_all_method_types = {'CRC': 'PROCESSED_EXPERIMENTAL', 'HEOS':
'EXPERIMENTAL_REVIEW', 'IUPAC': 'EXPERIMENTAL_REVIEW', 'JOBACK': 'PREDICTED_GC',
'MATTHEWS': 'EXPERIMENTAL_COMPILATION', 'PD': 'EXPERIMENTAL_COMPILATION_SECONDARY',
'PINAMARTINES': 'PROCESSED_EXPERIMENTAL_PREDICTED_SECONDARY', 'PSRK':
'PROCESSED_EXPERIMENTAL_PREDICTED', 'WEBBOOK': 'PROCESSED_EXPERIMENTAL',
'WILSON_JASPERSON': 'PREDICTED_GC', 'YAWS': 'PROCESSED_EXPERIMENTAL_PREDICTED'}

1.5.2 Critical Pressure

chemicals.critical.Pc(CASRN, method=None)
This function handles the retrieval of a chemical’s critical pressure. Lookup is based on CASRNs. Will auto-
matically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 26000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Pc [float] Critical pressure, [Pa]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘IUPAC’,

‘MATTHEWS’, ‘CRC’, ‘PD’, ‘WEBBOOK’, ‘PSRK’, ‘PINAMARTINES’, ‘YAWS’, ‘WIL-
SON_JASPERSON’, ‘JOBACK’, ‘HEOS’. All valid values are also held in the list
Pc_all_methods.

See also:

Pc_methods

Notes

The available sources are as follows:

• ‘IUPAC’, a series of critically evaluated experimental datum for organic compounds in [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], and [12].

• ‘MATTHEWS’, a series of critically evaluated data for inorganic compounds in [13].

• ‘CRC’, a compillation of critically evaluated data by the TRC as published in [14].

• ‘PSRK’, a compillation of experimental and estimated data published in [15].

• ‘PD’, an older compillation of data published in [16]

• ‘YAWS’, a large compillation of data from a variety of sources; no data points are sourced in the work of
[17].

• ‘WEBBOOK’, a NIST resource [18] containing mostly experimental and averaged values

• ‘JOBACK’, an estimation method for organic substances in [19]

• ‘PINAMARTINES’, a series of values in the supporting material of [20]

• ‘WILSON_JASPERSON’, an estimation method in [21]

• ‘HEOS’, a series of values from the NIST REFPROP Database for Highly Accurate Properties of Industri-
ally Important Fluids (and other high-precision fundamental equations of state)

1.5. Critical Properties (chemicals.critical) 47

chemicals Documentation, Release 1.1.4

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]

Examples

>>> Pc(CASRN='64-17-5')
6268000.0

chemicals.critical.Pc_methods(CASRN)
Return all methods available to obtain the critical pressure for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain Pc with the given inputs.

See also:

Pc

chemicals.critical.Pc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'PD', 'WEBBOOK',
'PSRK', 'PINAMARTINES', 'YAWS', 'WILSON_JASPERSON', 'JOBACK')

Tuple of method name keys. See the Pc for the actual references

1.5.3 Critical Volume

chemicals.critical.Vc(CASRN, method=None)
This function handles the retrieval of a chemical’s critical volume. Lookup is based on CASRNs. Will automat-
ically select a data source to use if no method is provided; returns None if the data is not available.

Preferred sources are ‘IUPAC’ for organic chemicals, and ‘MATTHEWS’ for inorganic chemicals. Function has
data for approximately 25000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Vc [float] Critical volume, [m^3/mol]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘IUPAC’,

‘MATTHEWS’, ‘CRC’, ‘WEBBOOK’, ‘PSRK’, ‘PINAMARTINES’, ‘YAWS’, ‘FEDORS’,
‘JOBACK’, ‘HEOS’. All valid values are also held in the list Vc_all_methods.

See also:

Vc_methods

48 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The available sources are as follows:

• ‘IUPAC’, a series of critically evaluated experimental datum for organic compounds in [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], and [12].

• ‘MATTHEWS’, a series of critically evaluated data for inorganic compounds in [13].

• ‘CRC’, a compillation of critically evaluated data by the TRC as published in [14].

• ‘PSRK’, a compillation of experimental and estimated data published in [15].

• ‘YAWS’, a large compillation of data from a variety of sources; no data points are sourced in the work of
[16].

• ‘WEBBOOK’, a NIST resource [17] containing mostly experimental and averaged values

• ‘JOBACK’, an estimation method for organic substances in [18]

• ‘FEDORS’, an estimation methid in [20]

• ‘PINAMARTINES’, a series of values in the supporting material of [19]

• ‘HEOS’, a series of values from the NIST REFPROP Database for Highly Accurate Properties of Industri-
ally Important Fluids (and other high-precision fundamental equations of state)

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]

Examples

>>> Vc(CASRN='64-17-5')
0.000168634064081

chemicals.critical.Vc_methods(CASRN)
Return all methods available to obtain the critical volume for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain Vc with the given inputs.

See also:

Vc

chemicals.critical.Vc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'WEBBOOK',
'PSRK', 'PINAMARTINES', 'YAWS', 'FEDORS', 'JOBACK')

Tuple of method name keys. See the Vc for the actual references

chemicals.critical.Mersmann_Kind_predictor(atoms, coeff=3.645, power=0.5, covalent_radii={'Br': 1.14,
'C': 0.77, 'Cl': 0.99, 'F': 0.71, 'H': 0.37, 'I': 1.33, 'N': 0.71,
'O': 0.6, 'S': 1.04, 'Si': 1.17})

Predicts the critical molar volume of a chemical based only on its atomic composition according to [1] and [2].
This is a crude approach, but provides very reasonable estimates in practice. Optionally, the coeff used and the

1.5. Critical Properties (chemicals.critical) 49

chemicals Documentation, Release 1.1.4

power in the fraction as well as the atomic contributions can be adjusted; this method is general and atomic
contributions can be regressed to predict other properties with this routine.(︁

𝑉𝑐

𝑛𝑎𝑁𝐴

)︁1/3
𝑑𝑎

=
3.645(︁
𝑟𝑎
𝑟𝐻

)︁1/2
𝑟𝑎 = 𝑑𝑎/2

𝑑𝑎 = 2

∑︀
𝑖(𝑛𝑖𝑟𝑖)

𝑛𝑎

In the above equations, 𝑛𝑖 is the number of atoms of species i in the molecule, 𝑟𝑖 is the covalent atomic radius
of the atom, and 𝑛𝑎 is the total number of atoms in the molecule.

Parameters
atoms [dict] Dictionary of atoms and their counts, [-]

coeff [float, optional] Coefficient used in the relationship, [m^2]

power [float, optional] Power applied to the relative atomic radius, [-]

covalent_radii [dict or indexable, optional] Object which can be indexed to atomic contrinbu-
tions (by symbol), [-]

Returns
Vc [float] Predicted critical volume of the chemical, [m^3/mol]

Notes

Using the chemicals.elements.periodic_table covalent radii (from RDKit), the coefficient and power
should be 4.261206523632586 and 0.5597281770786228 respectively for best results.

References

[1], [2]

Examples

Prediction of critical volume of decane:

>>> Mersmann_Kind_predictor({'C': 10, 'H': 22})
0.0005851858957767497

This is compared against the experimental value, 0.000624 (a 6.2% relative error)

Using custom fitted coefficients we can do a bit better:

>>> from chemicals.critical import rcovs_regressed
>>> Mersmann_Kind_predictor({'C': 10, 'H': 22}, coeff=4.261206523632586,
... power=0.5597281770786228, covalent_radii=rcovs_regressed)
0.0005956870915974391

The relative error is only 4.5% now. This is compared to an experimental uncertainty of 5.6%.

Evaluating 1321 critical volumes in the database, the average relative error is 5.0%; standard deviation 6.8%;
and worst value of 79% relative error for phosphorus.

50 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.5.4 Critical Compressibility Factor

chemicals.critical.Zc(CASRN, method=None)
This function handles the retrieval of a chemical’s critical compressibility. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Preferred sources are ‘IUPAC’ for organic chemicals, and ‘MATTHEWS’ for inorganic chemicals. Function has
data for approximately 25000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Zc [float] Critical compressibility, [-]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘IUPAC’,

‘MATTHEWS’, ‘CRC’, ‘PSRK’, ‘YAWS’, ‘HEOS’. All valid values are also held in
Zc_all_methods.

See also:

Zc_methods

Notes

The available sources are as follows:

• ‘IUPAC’, a series of critically evaluated experimental datum for organic compounds in [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], and [12].

• ‘MATTHEWS’, a series of critically evaluated data for inorganic compounds in [13].

• ‘CRC’, a compillation of critically evaluated data by the TRC as published in [14].

• ‘PSRK’, a compillation of experimental and estimated data published in [15].

• ‘YAWS’, a large compillation of data from a variety of sources; no data points are sourced in the work of
[16].

• ‘WEBBOOK’, a NIST resource [17] containing mostly experimental and averaged values

• ‘JOBACK’, an estimation method for organic substances in [18]

• ‘PINAMARTINES’, a series of values in the supporting material of [19]

• ‘HEOS’, a series of values from the NIST REFPROP Database for Highly Accurate Properties of Industri-
ally Important Fluids (and other high-precision fundamental equations of state)

1.5. Critical Properties (chemicals.critical) 51

chemicals Documentation, Release 1.1.4

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]

Examples

>>> Zc(CASRN='64-17-5')
0.247

chemicals.critical.Zc_methods(CASRN)
Return all methods available to obtain the critical compressibility for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain Zc with the given inputs.

See also:

Zc

chemicals.critical.Zc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'WEBBOOK',
'PSRK', 'PINAMARTINES', 'YAWS', 'JOBACK')

Tuple of method name keys. See the Zc for the actual references

1.5.5 Critical Property Relationships

chemicals.critical.critical_surface(Tc=None, Pc=None, Vc=None, method=None)
Function for calculating a critical property of a substance from its other two critical properties. Calls functions
Ihmels, Meissner, and Grigoras, each of which use a general ‘Critical surface’ type of equation. Limited accuracy
is expected due to very limited theoretical backing.

Parameters
Tc [float] Critical temperature of fluid (optional) [K].

Pc [float] Critical pressure of fluid (optional) [Pa].

Vc [float] Critical volume of fluid (optional) [m^3/mol].

method [string] Request calculation uses the requested method.

Returns
Tc, Pc or Vc [float] Critical property of fluid [K], [Pa], or [m^3/mol].

See also:

critical_surface_methods_methods

52 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Decamethyltetrasiloxane [141-62-8]

>>> critical_surface(Tc=599.4, Pc=1.19E6, method='IHMELS')
0.0010927333333333334

chemicals.critical.critical_surface_methods(Tc=None, Pc=None, Vc=None)
Return all methods available to obtain the third critial property for the desired chemical.

Parameters
Tc [float] Critical temperature of fluid (optional) [K].

Pc [float] Critical pressure of fluid (optional) [Pa].

Vc [float] Critical volume of fluid (optional) [m^3/mol].

Returns
methods [list[str]] Methods which can be used to obtain the third critical property with the given

inputs.

See also:

critical_surface

chemicals.critical.critical_surface_all_methods = ('IHMELS', 'MEISSNER', 'GRIGORAS')
Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple. If iterable is specified the tuple is initialized
from iterable’s items.

If the argument is a tuple, the return value is the same object.

chemicals.critical.third_property(CASRN=None, T=False, P=False, V=False)
Function for calculating a critical property of a substance from its other two critical properties, but retrieving
the actual other critical values for convenient calculation. Calls functions Ihmels, Meissner, and Grigoras, each
of which use a general ‘Critical surface’ type of equation. Limited accuracy is expected due to very limited
theoretical backing.

Parameters
CASRN [str] The CAS number of the desired chemical

T [bool] Estimate critical temperature

P [bool] Estimate critical pressure

V [bool] Estimate critical volume

Returns
Tc, Pc or Vc [float] Critical property of fluid [K], [Pa], or [m^3/mol]

1.5. Critical Properties (chemicals.critical) 53

chemicals Documentation, Release 1.1.4

Examples

Decamethyltetrasiloxane [141-62-8]

>>> third_property('141-62-8', V=True)
0.001135732

Succinic acid [110-15-6]

>>> third_property('110-15-6', P=True)
6095016.233766234

chemicals.critical.Ihmels(Tc=None, Pc=None, Vc=None)
Most recent, and most recommended method of estimating critical properties from each other. Two of the three
properties are required. This model uses the “critical surface”, a general plot of Tc vs Pc vs Vc. The model used
421 organic compounds to derive equation. The general equation is in [1]:

𝑃𝑐 = −0.025 + 2.215
𝑇𝑐
𝑉𝑐

Parameters
Tc [float] Critical temperature of fluid (optional) [K]

Pc [float] Critical pressure of fluid (optional) [Pa]

Vc [float] Critical volume of fluid (optional) [m^3/mol]

Returns
Tc, Pc or Vc [float] Critical property of fluid [K], [Pa], or [m^3/mol]

Notes

The prediction of Tc from Pc and Vc is not tested, as this is not necessary anywhere, but it is implemented.
Internal units are MPa, cm^3/mol, and K. A slight error occurs when Pa, cm^3/mol and K are used instead, on
the order of <0.2%. Their equation was also compared with 56 inorganic and elements. Devations of 20% for
<200K or >1000K points.

References

[1]

Examples

Succinic acid [110-15-6]

>>> Ihmels(Tc=851.0, Vc=0.000308)
6095016.233766234

chemicals.critical.Meissner(Tc=None, Pc=None, Vc=None)
Old (1942) relationship for estimating critical properties from each other. Two of the three properties are required.
This model uses the “critical surface”, a general plot of Tc vs Pc vs Vc. The model used 42 organic and inorganic
compounds to derive the equation. The general equation is in [1]:

𝑃𝑐 =
2.08𝑇𝑐
𝑉𝑐 − 8

54 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
Tc [float, optional] Critical temperature of fluid [K]

Pc [float, optional] Critical pressure of fluid [Pa]

Vc [float, optional] Critical volume of fluid [m^3/mol]

Returns
Tc, Pc or Vc [float] Critical property of fluid [K], [Pa], or [m^3/mol]

Notes

The prediction of Tc from Pc and Vc is not tested, as this is not necessary anywhere, but it is implemented.
Internal units are atm, cm^3/mol, and K. A slight error occurs when Pa, cm^3/mol and K are used instead, on
the order of <0.2%. This equation is less accurate than that of Ihmels, but surprisingly close. The author also
proposed means of estimated properties independently.

References

[1]

Examples

Succinic acid [110-15-6]

>>> Meissner(Tc=851.0, Vc=0.000308)
5978445.199999999

chemicals.critical.Grigoras(Tc=None, Pc=None, Vc=None)
Relatively recent (1990) relationship for estimating critical properties from each other. Two of the three properties
are required. This model uses the “critical surface”, a general plot of Tc vs Pc vs Vc. The model used 137 organic
and inorganic compounds to derive the equation. The general equation is in [1]:

𝑃𝑐 = 2.9 + 20.2
𝑇𝑐
𝑉𝑐

Parameters
Tc [float, optional] Critical temperature of fluid [K]

Pc [float, optional] Critical pressure of fluid [Pa]

Vc [float, optional] Critical volume of fluid [m^3/mol]

Returns
Tc, Pc or Vc [float] Critical property of fluid [K], [Pa], or [m^3/mol]

1.5. Critical Properties (chemicals.critical) 55

chemicals Documentation, Release 1.1.4

Notes

The prediction of Tc from Pc and Vc is not tested, as this is not necessary anywhere, but it is implemented.
Internal units are bar, cm^3/mol, and K. A slight error occurs when Pa, cm^3/mol and K are used instead, on
the order of <0.2%. This equation is less accurate than that of Ihmels, but surprisingly close. The author also
investigated an early QSPR model.

References

[1]

Examples

Succinic acid [110-15-6]

>>> Grigoras(Tc=851.0, Vc=0.000308)
5871233.766233766

chemicals.critical.Hekayati_Raeissi(MW, V_sat=None, Tc=None, Pc=None, Vc=None)
Estimation model for missing critical constants of a fluid according to [1]. Based on the molecular weight and
saturation molar volume of a fluid, and requires one of Tc or Pc. Optionally, Vc can be provided to increase the
accuracy of the prediction of Tc or Pc a little.

Parameters
MW [float] Molecular weight of fluid, [g/mol]

V_sat [float, optional] Molar volume of liquid at the saturation pressure of the fluid at 298.15
K. Used if Vc is not provided. [m^3/mol]

Tc [float, optional] Critical temperature of fluid (optional) [K]

Pc [float, optional] Critical pressure of fluid (optional) [Pa]

Vc [float, optional] Critical volume of fluid (optional) [m^3/mol]

Returns
Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Vc [float] Critical volume of fluid [m^3/mol]

Notes

Internal units are kPa, m^3/kmol, and K.

56 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Toluene

>>> Hekayati_Raeissi(MW=92.13842, V_sat=0.00010686, Pc=4108000.0)
(599.7965819136947, 4108000.0, 0.000314909150453723)

chemicals.critical.Tb_Tc_relationship(Tb=None, Tc=None, fit='Perry8E')
This function relates the normal boiling point and the critical point of a compound. It is inspired by the relation-
ship shown in [1] on page 2-468 for inorganic compounds.

𝑇𝑐 = 1.64𝑇𝑏

Parameters
Tb [float, optional] Normal boiling temperature of fluid [K]

Tc [float, optional] Critical temperature of fluid [K]

fit [str, optional] One of ‘Perry8E’, ‘Chemicals2021FitInorganic’, ‘Chemicals2021FitElements’,
‘Chemicals2021FitBinary’, ‘Chemicals2021FitTernary’, Chemicals2021FitOrganic’,
‘Chemicals2021FitBr’, ‘Chemicals2021FitC’, ‘Chemicals2021FitCl’, ‘Chemicals2021FitF’,
‘Chemicals2021FitI’, ‘Chemicals2021FitN’, ‘Chemicals2021FitO’, ‘ ‘Chemicals2021FitSi’.

Returns
Tc or Tb [float] The temperature variable not provided [K]

Notes

Chemicals2021FitBinary applies for inorganic compounds with two types of atoms; Chemicals2021FitTernary
for three; and the various models Chemicals2021FitO, Chemicals2021FitC, etc apply for inorganic compounds
with those elements in them.

The quality of this relationship is low, but if no further information is available it can be used to obtain an
approximate value.

References

[1]

Examples

Tetrabromosilane has a known boiling point of 427.15 K and a critical temperature of 663.0 K.

>>> Tb_Tc_relationship(Tb=427.15, fit='Perry8E')
700.526
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitBr')
668.0626
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitSi')

(continues on next page)

1.5. Critical Properties (chemicals.critical) 57

chemicals Documentation, Release 1.1.4

(continued from previous page)

651.8309
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitBinary')
669.7712
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitInorganic')
686.0029

The performance of the fits is fairly representative. However, because this method should only be used on com-
pounds that don’t have experimental critical points measured, many of the worst outlier chemicals have already
been measured and the performance may be better than expected.

It is recommended to use the methods Chemicals2021FitElements, Chemicals2021FitBinary, and Chemi-
cals2021FitTernary.

1.5.6 Critical Temperature of Mixtures

chemicals.critical.Li(zs, Tcs, Vcs)
Calculates critical temperature of a mixture according to mixing rules in [1]. Better than simple mixing rules.

𝑇𝑐𝑚 =

𝑛∑︁
𝑖=1

Φ𝑖𝑇𝑐𝑖

Φ =
𝑥𝑖𝑉𝑐𝑖∑︀𝑛

𝑗=1 𝑥𝑗𝑉𝑐𝑗

Parameters
zs [array-like] Mole fractions of all components

Tcs [array-like] Critical temperatures of all components, [K]

Vcs [array-like] Critical volumes of all components, [m^3/mol]

Returns
Tcm [float] Critical temperatures of the mixture, [K]

Notes

Reviewed in many papers on critical mixture temperature.

Second example is from Najafi (2015), for ethylene, Benzene, ethylbenzene. This is similar to but not identical
to the result from the article. The experimental point is 486.9 K.

2rd example is from Najafi (2015), for: butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.
Its result is identical to that calculated in the article.

References

[1]

58 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Nitrogen-Argon 50/50 mixture

>>> Li([0.5, 0.5], [126.2, 150.8], [8.95e-05, 7.49e-05])
137.40766423357667

butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.

>>> Li([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6],
... [0.000255, 0.000313, 0.000371])
449.68261498555444

chemicals.critical.Chueh_Prausnitz_Tc(zs, Tcs, Vcs, taus)
Calculates critical temperature of a mixture according to mixing rules in [1].

𝑇𝑐𝑚 =

𝑛∑︁
𝑖

𝜃𝑖𝑇𝑐𝑖 +

𝑛∑︁
𝑖

𝑛∑︁
𝑗

(𝜃𝑖𝜃𝑗𝜏𝑖𝑗)𝑇𝑟𝑒𝑓

𝜃 =
𝑥𝑖𝑉

2/3
𝑐𝑖∑︀𝑛

𝑗=1 𝑥𝑗𝑉
2/3
𝑐𝑗

For a binary mxiture, this simplifies to:

𝑇𝑐𝑚 = 𝜃1𝑇𝑐1 + 𝜃2𝑇𝑐2 + 2𝜃1𝜃2𝜏12

Parameters
zs [array-like] Mole fractions of all components

Tcs [array-like] Critical temperatures of all components, [K]

Vcs [array-like] Critical volumes of all components, [m^3/mol]

taus [array-like of shape zs by zs] Interaction parameters, [-]

Returns
Tcm [float] Critical temperatures of the mixture, [K]

Notes

All parameters, even if zero, must be given to this function.

References

[1], [2]

1.5. Critical Properties (chemicals.critical) 59

chemicals Documentation, Release 1.1.4

Examples

butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.

>>> Chueh_Prausnitz_Tc([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6],
... [0.000255, 0.000313, 0.000371], [[0, 1.92681, 6.80358],
... [1.92681, 0, 1.89312], [6.80358, 1.89312, 0]])
450.122576472349

chemicals.critical.Grieves_Thodos(zs, Tcs, Aijs)
Calculates critical temperature of a mixture according to mixing rules in [1].

𝑇𝑐𝑚 =
∑︁
𝑖

𝑇𝑐𝑖
1 + (1/𝑥𝑖)

∑︀
𝑗 𝐴𝑖𝑗𝑥𝑗

For a binary mxiture, this simplifies to:

𝑇𝑐𝑚 =
𝑇𝑐1

1 + (𝑥2/𝑥1)𝐴12
+

𝑇𝑐2
1 + (𝑥1/𝑥2)𝐴21

Parameters
zs [array-like] Mole fractions of all components

Tcs [array-like] Critical temperatures of all components, [K]

Aijs [array-like of shape zs by zs] Interaction parameters

Returns
Tcm [float] Critical temperatures of the mixture, [K]

Notes

All parameters, even if zero, must be given to this function. Giving 0s gives really bad results however.

References

[1], [2]

Examples

butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.

>>> Grieves_Thodos([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6], [[0, 1.2503, 1.
→˓516], [0.799807, 0, 1.23843], [0.659633, 0.807474, 0]])
450.1839618758971

chemicals.critical.modified_Wilson_Tc(zs, Tcs, Aijs)
Calculates critical temperature of a mixture according to mixing rules in [1]. Equation

𝑇𝑐𝑚 =
∑︁
𝑖

𝑥𝑖𝑇𝑐𝑖 + 𝐶
∑︁
𝑖

𝑥𝑖 ln

⎛⎝𝑥𝑖 +
∑︁
𝑗

𝑥𝑗𝐴𝑖𝑗

⎞⎠𝑇𝑟𝑒𝑓

For a binary mxiture, this simplifies to:

𝑇𝑐𝑚 = 𝑥1𝑇𝑐1 + 𝑥2𝑇𝑐2 + 𝐶[𝑥1 ln(𝑥1 + 𝑥2𝐴12) + 𝑥2 ln(𝑥2 + 𝑥1𝐴21)]

60 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
zs [float] Mole fractions of all components

Tcs [float] Critical temperatures of all components, [K]

Aijs [matrix] Interaction parameters

Returns
Tcm [float] Critical temperatures of the mixture, [K]

Notes

The equation and original article has been reviewed. [1] has 75 binary systems, and additional multicomponent
mixture parameters. All parameters, even if zero, must be given to this function.

2rd example is from [2], for: butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K. Its result is
identical to that calculated in the article.

References

[1], [2]

Examples

>>> modified_Wilson_Tc([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6],
... [[0, 1.174450, 1.274390], [0.835914, 0, 1.21038],
... [0.746878, 0.80677, 0]])
450.03059668230316

1.5.7 Critical Volume of Mixtures

chemicals.critical.Chueh_Prausnitz_Vc(zs, Vcs, nus)
Calculates critical volume of a mixture according to mixing rules in [1] with an interaction parameter.

𝑉𝑐𝑚 =

𝑛∑︁
𝑖

𝜃𝑖𝑉𝑐𝑖 +

𝑛∑︁
𝑖

𝑛∑︁
𝑗

(𝜃𝑖𝜃𝑗𝜈𝑖𝑗)𝑉𝑟𝑒𝑓𝜃 =
𝑥𝑖𝑉

2/3
𝑐𝑖∑︀𝑛

𝑗=1 𝑥𝑗𝑉
2/3
𝑐𝑗

Parameters
zs [float] Mole fractions of all components

Vcs [float] Critical volumes of all components, [m^3/mol]

nus [matrix] Interaction parameters, [cm^3/mol]

Returns
Vcm [float] Critical volume of the mixture, [m^3/mol]

1.5. Critical Properties (chemicals.critical) 61

chemicals Documentation, Release 1.1.4

Notes

All parameters, even if zero, must be given to this function. nu parameters are in cm^3/mol, but are converted
to m^3/mol inside the function

References

[1], [2]

Examples

1-butanol/benzene 0.4271/0.5729 mixture, Vcm = 268.096 mL/mol.

>>> Chueh_Prausnitz_Vc([0.4271, 0.5729], [0.000273, 0.000256], [[0, 5.61847], [5.
→˓61847, 0]])
0.00026620503424517445

chemicals.critical.modified_Wilson_Vc(zs, Vcs, Aijs)
Calculates critical volume of a mixture according to mixing rules in [1] with parameters. Equation

𝑉𝑐𝑚 =
∑︁
𝑖

𝑥𝑖𝑉𝑐𝑖 + 𝐶
∑︁
𝑖

𝑥𝑖 ln

⎛⎝𝑥𝑖 +
∑︁
𝑗

𝑥𝑗𝐴𝑖𝑗

⎞⎠𝑉𝑟𝑒𝑓

For a binary mxiture, this simplifies to:

𝑉𝑐𝑚 = 𝑥1𝑉𝑐1 + 𝑥2𝑉𝑐2 + 𝐶[𝑥1 ln(𝑥1 + 𝑥2𝐴12) + 𝑥2 ln(𝑥2 + 𝑥1𝐴21)]

Parameters
zs [float] Mole fractions of all components

Vcs [float] Critical volumes of all components, [m^3/mol]

Aijs [matrix] Interaction parameters, [cm^3/mol]

Returns
Vcm [float] Critical volume of the mixture, [m^3/mol]

Notes

The equation and original article has been reviewed. All parameters, even if zero, must be given to this function.
C = -2500

All parameters, even if zero, must be given to this function. nu parameters are in cm^3/mol, but are converted
to m^3/mol inside the function

62 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

1-butanol/benzene 0.4271/0.5729 mixture, Vcm = 268.096 mL/mol.

>>> modified_Wilson_Vc([0.4271, 0.5729], [0.000273, 0.000256],
... [[0, 0.6671250], [1.3939900, 0]])
0.0002664335032706881

1.6 Dipole Moment (chemicals.dipole)

This module contains lookup functions for the property dipole moment.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Lookup Functions

1.6.1 Lookup Functions

chemicals.dipole.dipole_moment(CASRN, method=None)
This function handles the retrieval of a chemical’s dipole moment. Lookup is based on CASRNs. Will automat-
ically select a data source to use if no method is provided; returns None if the data is not available.

Preferred source is ‘CCCBDB’. Considerable variation in reported data has found.

Parameters
CASRN [str] CASRN [-]

Returns
dipole [float] Dipole moment, [debye]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘CCCBDB’,

‘MULLER’, or ‘POLING’, ‘PSI4_2022A’. All valid values are also held in the list
dipole_all_methods.

See also:

dipole_moment_methods

1.6. Dipole Moment (chemicals.dipole) 63

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

A total of three sources are available for this function. They are:

• ‘CCCBDB’, a series of critically evaluated data for compounds in [1], intended for use in predictive mod-
eling.

• ‘MULLER’, a collection of data in a group-contribution scheme in [2].

• ‘POLING’, in the appendix in [3].

• ‘PSI4_2022A’, values computed using the Psi4 version 1.3.2 quantum chemistry software, with initialized
positions from rdkit’s EmbedMolecule method, the basis set 6-31G** and the method mp2 [4].

This function returns dipole moment in units of Debye. This is actually a non-SI unit; to convert to SI, multiply
by 3.33564095198e-30 and its units will be in ampere*second^2 or equivalently and more commonly given,
coulomb*second. The constant is the result of 1E-21/c, where c is the speed of light.

References

[1], [2], [3], [4]

Examples

>>> dipole_moment(CASRN='64-17-5')
1.44

chemicals.dipole.dipole_moment_methods(CASRN)
Return all methods available to obtain the dipole moment for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the dipole moment with the given inputs.

See also:

dipole_moment

chemicals.dipole.dipole_moment_all_methods = ('CCCBDB', 'MULLER', 'POLING', 'PSI4_2022A')
Tuple of method name keys. See the dipole for the actual references

1.7 DIPPR Fit Equations (chemicals.dippr)

This module contains implementations of various numered property equations used by the DIPPR, the Design Institude
for Physical Property Research.

No actual data is included in this module; it is just functional implementations of the formulas and some of their
derivatives/integrals.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

64 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

• Equations

• Jacobians (for fitting)

1.7.1 Equations

chemicals.dippr.EQ100(T, A=0, B=0, C=0, D=0, E=0, F=0, G=0, order=0)
DIPPR Equation # 100. Used in calculating the molar heat capacities of liquids and solids, liquid thermal conduc-
tivity, and solid density. All parameters default to zero. As this is a straightforward polynomial, no restrictions
on parameters apply. Note that high-order polynomials like this may need large numbers of decimal places to
avoid unnecessary error.

𝑌 = 𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4 + 𝐹𝑇 5 +𝐺𝑇 6

Parameters
T [float] Temperature, [K]

A-G [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral over T with respect to T are computed
as follows. All derivatives and integrals are easily computed with SymPy.

𝑑𝑌

𝑑𝑇
= 𝐵 + 2𝐶𝑇 + 3𝐷𝑇 2 + 4𝐸𝑇 3 + 5𝐹𝑇 4 + 6𝐺𝑇 5

∫︁
𝑌 𝑑𝑇 = 𝐴𝑇 +

𝐵𝑇 2

2
+
𝐶𝑇 3

3
+
𝐷𝑇 4

4
+
𝐸𝑇 5

5
+
𝐹𝑇 6

6
+
𝐺𝑇 7

7∫︁
𝑌

𝑇
𝑑𝑇 = 𝐴 ln (𝑇) +𝐵𝑇 +

𝐶𝑇 2

2
+
𝐷𝑇 3

3
+
𝐸𝑇 4

4
+
𝐹𝑇 5

5
+
𝐺𝑇 6

6

1.7. DIPPR Fit Equations (chemicals.dippr) 65

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Water liquid heat capacity; DIPPR coefficients normally listed in J/kmol/K.

>>> EQ100(300, 276370., -2090.1, 8.125, -0.014116, 0.0000093701)
75355.81000000003

chemicals.dippr.EQ101(T, A, B, C=0.0, D=0.0, E=0.0, order=0)
DIPPR Equation # 101. Used in calculating vapor pressure, sublimation pressure, and liquid viscosity. All 5
parameters are required. E is often an integer. As the model is exponential, a sufficiently high temperature will
cause an OverflowError. A negative temperature (or just low, if fit poorly) may cause a math domain error.

𝑌 = exp

(︂
𝐴+

𝐵

𝑇
+ 𝐶 · ln𝑇 +𝐷 · 𝑇𝐸

)︂
Parameters

T [float] Temperature, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for n, the
nth derivative of the property is returned. No other integrals or derivatives are implemented,
and an exception will be raised if any other order is given.

Returns
Y [float] Property [constant-specific]

Notes

This function is not integrable for either dT or Y/T dT.

𝑑𝑌

𝑑𝑇
=

(︂
− 𝐵

𝑇 2
+
𝐶

𝑇
+
𝐷𝐸𝑇𝐸

𝑇

)︂
𝑒𝐴+𝐵

𝑇 +𝐶 log (𝑇)+𝐷𝑇𝐸

𝑑2𝑌

𝑑𝑇 2
=

(︁
2𝐵
𝑇 − 𝐶 +𝐷𝐸2𝑇𝐸 −𝐷𝐸𝑇𝐸 +

(︀
−𝐵

𝑇 + 𝐶 +𝐷𝐸𝑇𝐸
)︀2)︁

𝑒𝐴+𝐵
𝑇 +𝐶 log (𝑇)+𝐷𝑇𝐸

𝑇 2

𝑑3𝑌

𝑑𝑇 3
=

(︁
− 6𝐵

𝑇 + 2𝐶 +𝐷𝐸3𝑇𝐸 − 3𝐷𝐸2𝑇𝐸 + 2𝐷𝐸𝑇𝐸 +
(︀
−𝐵

𝑇 + 𝐶 +𝐷𝐸𝑇𝐸
)︀3

+ 3
(︀
−𝐵

𝑇 + 𝐶 +𝐷𝐸𝑇𝐸
)︀ (︀

2𝐵
𝑇 − 𝐶 +𝐷𝐸2𝑇𝐸 −𝐷𝐸𝑇𝐸

)︀)︁
𝑒𝐴+𝐵

𝑇 +𝐶 log (𝑇)+𝐷𝑇𝐸

𝑇 3

References

[1]

66 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Water vapor pressure; DIPPR coefficients normally listed in Pa.

>>> EQ101(300, 73.649, -7258.2, -7.3037, 4.1653E-6, 2)
3537.44834545549

chemicals.dippr.EQ102(T, A, B, C=0.0, D=0.0, order=0)
DIPPR Equation # 102. Used in calculating vapor viscosity, vapor thermal conductivity, and sometimes solid
heat capacity. High values of B raise an OverflowError. All 4 parameters are required. C and D are often 0.

𝑌 =
𝐴 · 𝑇𝐵

1 + 𝐶
𝑇 + 𝐷

𝑇 2

Parameters
T [float] Temperature, [K]

A-D [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral over T with respect to T are computed
as follows. The first derivative is easily computed; the two integrals required Rubi to perform the integration.

𝑑𝑌

𝑑𝑇
=

𝐴𝐵𝑇𝐵

𝑇
(︀
𝐶
𝑇 + 𝐷

𝑇 2 + 1
)︀ +

𝐴𝑇𝐵
(︀

𝐶
𝑇 2 + 2𝐷

𝑇 3

)︀(︀
𝐶
𝑇 + 𝐷

𝑇 2 + 1
)︀2

∫︁
𝑌 𝑑𝑇 = −

2𝐴𝑇𝐵+3 hyp2f1
(︁

1, 𝐵 + 3, 𝐵 + 4,− 2𝑇
𝐶−

√
𝐶2−4𝐷

)︁
(𝐵 + 3)

(︀
𝐶 +

√
𝐶2 − 4𝐷

)︀√
𝐶2 − 4𝐷

+
2𝐴𝑇𝐵+3 hyp2f1

(︁
1, 𝐵 + 3, 𝐵 + 4,− 2𝑇

𝐶+
√
𝐶2−4𝐷

)︁
(𝐵 + 3)

(︀
𝐶 −

√
𝐶2 − 4𝐷

)︀√
𝐶2 − 4𝐷

∫︁
𝑌

𝑇
𝑑𝑇 = −

2𝐴𝑇𝐵+2 hyp2f1
(︁

1, 𝐵 + 2, 𝐵 + 3,− 2𝑇
𝐶+

√
𝐶2−4𝐷

)︁
(𝐵 + 2)

(︀
𝐶 +

√
𝐶2 − 4𝐷

)︀√
𝐶2 − 4𝐷

+
2𝐴𝑇𝐵+2 hyp2f1

(︁
1, 𝐵 + 2, 𝐵 + 3,− 2𝑇

𝐶−
√
𝐶2−4𝐷

)︁
(𝐵 + 2)

(︀
𝐶 −

√
𝐶2 − 4𝐷

)︀√
𝐶2 − 4𝐷

1.7. DIPPR Fit Equations (chemicals.dippr) 67

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Water vapor viscosity; DIPPR coefficients normally listed in Pa*s.

>>> EQ102(300, 1.7096E-8, 1.1146, 0, 0)
9.860384711890639e-06

chemicals.dippr.EQ104(T, A, B, C=0.0, D=0.0, E=0.0, order=0)
DIPPR Equation #104. Often used in calculating second virial coefficients of gases. All 5 parameters are re-
quired. C, D, and E are normally large values.

𝑌 = 𝐴+
𝐵

𝑇
+

𝐶

𝑇 3
+
𝐷

𝑇 8
+

𝐸

𝑇 9

Parameters
T [float] Temperature, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral over T with respect to T are computed
as follows. All expressions can be obtained with SymPy readily.

𝑑𝑌

𝑑𝑇
= − 𝐵

𝑇 2
− 3𝐶

𝑇 4
− 8𝐷

𝑇 9
− 9𝐸

𝑇 10∫︁
𝑌 𝑑𝑇 = 𝐴𝑇 +𝐵 ln (𝑇) − 1

56𝑇 8

(︀
28𝐶𝑇 6 + 8𝐷𝑇 + 7𝐸

)︀
∫︁
𝑌

𝑇
𝑑𝑇 = 𝐴 ln (𝑇) − 1

72𝑇 9

(︀
72𝐵𝑇 8 + 24𝐶𝑇 6 + 9𝐷𝑇 + 8𝐸

)︀

68 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Water second virial coefficient; DIPPR coefficients normally dimensionless.

>>> EQ104(300, 0.02222, -26.38, -16750000, -3.894E19, 3.133E21)
-1.1204179007265156

chemicals.dippr.EQ105(T, A, B, C, D, order=0)
DIPPR Equation #105. Often used in calculating liquid molar density. All 4 parameters are required. C is
sometimes the fluid’s critical temperature.

𝑌 =
𝐴

𝐵1+(1− 𝑇
𝐶)

𝐷

Parameters
T [float] Temperature, [K]

A-D [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1,
2, and 3, that derivative of the property is returned; No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float] Property [constant-specific]

Notes

This expression can be integrated in terms of the incomplete gamma function for dT, however nans are the only
output from that function. For Y/T dT no integral could be found.

𝑑𝑌

𝑑𝑇
=
𝐴𝐵−(1− 𝑇

𝐶)
𝐷−1𝐷

(︀
1 − 𝑇

𝐶

)︀𝐷
log (𝐵)

𝐶
(︀
1 − 𝑇

𝐶

)︀
𝑑2𝑌

𝑑𝑇 2
=
𝐴𝐵−(1− 𝑇

𝐶)
𝐷−1𝐷

(︀
1 − 𝑇

𝐶

)︀𝐷 (︁
𝐷
(︀
1 − 𝑇

𝐶

)︀𝐷
log (𝐵) −𝐷 + 1

)︁
log (𝐵)

𝐶2
(︀
1 − 𝑇

𝐶

)︀2
𝑑3𝑌

𝑑𝑇 3
=
𝐴𝐵−(1− 𝑇

𝐶)
𝐷−1𝐷

(︀
1 − 𝑇

𝐶

)︀𝐷 (︁
𝐷2
(︀
1 − 𝑇

𝐶

)︀2𝐷
log (𝐵)

2 − 3𝐷2
(︀
1 − 𝑇

𝐶

)︀𝐷
log (𝐵) +𝐷2 + 3𝐷

(︀
1 − 𝑇

𝐶

)︀𝐷
log (𝐵) − 3𝐷 + 2

)︁
log (𝐵)

𝐶3
(︀
1 − 𝑇

𝐶

)︀3

1.7. DIPPR Fit Equations (chemicals.dippr) 69

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Hexane molar density; DIPPR coefficients normally in kmol/m^3.

>>> EQ105(300., 0.70824, 0.26411, 507.6, 0.27537)
7.593170096339237

chemicals.dippr.EQ106(T, Tc, A, B, C=0.0, D=0.0, E=0.0, order=0)
DIPPR Equation #106. Often used in calculating liquid surface tension, and heat of vaporization. Only param-
eters A and B parameters are required; many fits include no further parameters. Critical temperature is also
required.

𝑌 = 𝐴(1 − 𝑇𝑟)𝐵+𝐶𝑇𝑟+𝐷𝑇 2
𝑟 +𝐸𝑇 3

𝑟

𝑇𝑟 =
𝑇

𝑇𝑐

Parameters
T [float] Temperature, [K]

Tc [float] Critical temperature, [K]

A-D [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1,
2, and 3, that derivative of the property is returned; No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float] Property [constant-specific]

Notes

This form is used by Yaws with only the parameters A and B.

The integral could not be found, but the integral over T actually could, again in terms of hypergeometric functions.

𝑑𝑌

𝑑𝑇
= 𝐴

(︂
− 𝑇

𝑇𝑐
+ 1

)︂𝐵+𝐶𝑇
𝑇𝑐

+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

⎛⎝(︂ 𝐶
𝑇𝑐

+
2𝐷𝑇

𝑇 2
𝑐

+
3𝑒𝑇 2

𝑇 3
𝑐

)︂
log

(︂
− 𝑇

𝑇𝑐
+ 1

)︂
−
𝐵 + 𝐶𝑇

𝑇𝑐
+ 𝐷𝑇 2

𝑇 2
𝑐

+ 𝑒𝑇 3

𝑇 3
𝑐

𝑇𝑐

(︁
− 𝑇

𝑇𝑐
+ 1
)︁

⎞⎠

𝑑2𝑌

𝑑𝑇 2
=

𝐴
(︁
− 𝑇

𝑇𝑐
+ 1
)︁𝐵+𝐶𝑇

𝑇𝑐
+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

⎛⎝2
(︁
𝐷 + 3𝑒𝑇

𝑇𝑐

)︁
log
(︁
− 𝑇

𝑇𝑐
+ 1
)︁

+

(︃(︁
𝐶 + 2𝐷𝑇

𝑇𝑐
+ 3𝑒𝑇 2

𝑇 2
𝑐

)︁
log
(︁
− 𝑇

𝑇𝑐
+ 1
)︁

+
𝐵+𝐶𝑇

𝑇𝑐
+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

𝑇
𝑇𝑐

−1

)︃2

+
2

(︂
𝐶+ 2𝐷𝑇

𝑇𝑐
+ 3𝑒𝑇2

𝑇2
𝑐

)︂
𝑇
𝑇𝑐

−1
−

𝐵+𝐶𝑇
𝑇𝑐

+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

(𝑇
𝑇𝑐

−1)
2

⎞⎠
𝑇 2
𝑐

𝑑3𝑌

𝑑𝑇 3
=

𝐴
(︁
− 𝑇

𝑇𝑐
+ 1
)︁𝐵+𝐶𝑇

𝑇𝑐
+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

⎛⎝ 6(𝐷+ 3𝑒𝑇
𝑇𝑐

)
𝑇
𝑇𝑐

−1
+

(︃(︁
𝐶 + 2𝐷𝑇

𝑇𝑐
+ 3𝑒𝑇 2

𝑇 2
𝑐

)︁
log
(︁
− 𝑇

𝑇𝑐
+ 1
)︁

+
𝐵+𝐶𝑇

𝑇𝑐
+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

𝑇
𝑇𝑐

−1

)︃3

+ 3

(︃(︁
𝐶 + 2𝐷𝑇

𝑇𝑐
+ 3𝑒𝑇 2

𝑇 2
𝑐

)︁
log
(︁
− 𝑇

𝑇𝑐
+ 1
)︁

+
𝐵+𝐶𝑇

𝑇𝑐
+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

𝑇
𝑇𝑐

−1

)︃⎛⎝2
(︁
𝐷 + 3𝑒𝑇

𝑇𝑐

)︁
log
(︁
− 𝑇

𝑇𝑐
+ 1
)︁

+
2

(︂
𝐶+ 2𝐷𝑇

𝑇𝑐
+ 3𝑒𝑇2

𝑇2
𝑐

)︂
𝑇
𝑇𝑐

−1
−

𝐵+𝐶𝑇
𝑇𝑐

+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

(𝑇
𝑇𝑐

−1)
2

⎞⎠+ 6𝑒 log
(︁
− 𝑇

𝑇𝑐
+ 1
)︁
−

3

(︂
𝐶+ 2𝐷𝑇

𝑇𝑐
+ 3𝑒𝑇2

𝑇2
𝑐

)︂
(𝑇

𝑇𝑐
−1)

2 +
2

(︂
𝐵+𝐶𝑇

𝑇𝑐
+𝐷𝑇2

𝑇2
𝑐

+ 𝑒𝑇3

𝑇3
𝑐

)︂
(𝑇

𝑇𝑐
−1)

3

⎞⎠
𝑇 3
𝑐

70 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Water surface tension; DIPPR coefficients normally in Pa*s.

>>> EQ106(300, 647.096, 0.17766, 2.567, -3.3377, 1.9699)
0.07231499373541

chemicals.dippr.EQ107(T, A=0, B=0, C=0, D=0, E=0, order=0)
DIPPR Equation #107. Often used in calculating ideal-gas heat capacity. All 5 parameters are required. Also
called the Aly-Lee equation.

𝑌 = 𝐴+𝐵

[︂
𝐶/𝑇

sinh(𝐶/𝑇)

]︂2
+𝐷

[︂
𝐸/𝑇

cosh(𝐸/𝑇)

]︂2
Parameters

T [float] Temperature, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral over T with respect to T are computed
as follows. The derivative is obtained via SymPy; the integrals from Wolfram Alpha.

𝑑𝑌

𝑑𝑇
=

2𝐵𝐶3 cosh
(︀
𝐶
𝑇

)︀
𝑇 4 sinh3

(︀
𝐶
𝑇

)︀ − 2𝐵𝐶2

𝑇 3 sinh2
(︀
𝐶
𝑇

)︀ +
2𝐷𝐸3 sinh

(︀
𝐸
𝑇

)︀
𝑇 4 cosh3

(︀
𝐸
𝑇

)︀ − 2𝐷𝐸2

𝑇 3 cosh2
(︀
𝐸
𝑇

)︀
∫︁
𝑌 𝑑𝑇 = 𝐴𝑇 +

𝐵𝐶

tanh
(︀
𝐶
𝑇

)︀ −𝐷𝐸 tanh

(︂
𝐸

𝑇

)︂
∫︁
𝑌

𝑇
𝑑𝑇 = 𝐴 ln (𝑇) +

𝐵𝐶

𝑇 tanh
(︀
𝐶
𝑇

)︀ −𝐵 ln

(︂
sinh

(︂
𝐶

𝑇

)︂)︂
− 𝐷𝐸

𝑇
tanh

(︂
𝐸

𝑇

)︂
+𝐷 ln

(︂
cosh

(︂
𝐸

𝑇

)︂)︂

1.7. DIPPR Fit Equations (chemicals.dippr) 71

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

Water ideal gas molar heat capacity; DIPPR coefficients normally in J/kmol/K

>>> EQ107(300., 33363., 26790., 2610.5, 8896., 1169.)
33585.90452768923

chemicals.dippr.EQ114(T, Tc, A, B, C, D, order=0)
DIPPR Equation #114. Rarely used, normally as an alternate liquid heat capacity expression. All 4 parameters
are required, as well as critical temperature.

𝑌 =
𝐴2

𝜏
+𝐵 − 2𝐴𝐶𝜏 −𝐴𝐷𝜏2 − 1

3
𝐶2𝜏3 − 1

2
𝐶𝐷𝜏4 − 1

5
𝐷2𝜏5

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature, [K]

Tc [float] Critical temperature, [K]

A-D [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral over T with respect to T are computed
as follows. All expressions can be obtained with SymPy readily.

𝑑𝑌

𝑑𝑇
=

𝐴2

𝑇𝑐

(︁
− 𝑇

𝑇𝑐
+ 1
)︁2 +

2𝐴

𝑇𝑐
𝐶 +

2𝐴

𝑇𝑐
𝐷

(︂
− 𝑇

𝑇𝑐
+ 1

)︂
+
𝐶2

𝑇𝑐

(︂
− 𝑇

𝑇𝑐
+ 1

)︂2

+
2𝐶

𝑇𝑐
𝐷

(︂
− 𝑇

𝑇𝑐
+ 1

)︂3

+
𝐷2

𝑇𝑐

(︂
− 𝑇

𝑇𝑐
+ 1

)︂4

∫︁
𝑌 𝑑𝑇 = −𝐴2𝑇𝑐 ln (𝑇 − 𝑇𝑐) +

𝐷2𝑇 6

30𝑇 5
𝑐

− 𝑇 5

10𝑇 4
𝑐

(︀
𝐶𝐷 + 2𝐷2

)︀
+

𝑇 4

12𝑇 3
𝑐

(︀
𝐶2 + 6𝐶𝐷 + 6𝐷2

)︀
− 𝑇 3

3𝑇 2
𝑐

(︀
𝐴𝐷 + 𝐶2 + 3𝐶𝐷 + 2𝐷2

)︀
+
𝑇 2

2𝑇𝑐

(︀
2𝐴𝐶 + 2𝐴𝐷 + 𝐶2 + 2𝐶𝐷 +𝐷2

)︀
+ 𝑇

(︂
−2𝐴𝐶 −𝐴𝐷 +𝐵 − 𝐶2

3
− 𝐶𝐷

2
− 𝐷2

5

)︂
∫︁
𝑌

𝑇
𝑑𝑇 = −𝐴2 ln

(︂
𝑇 +

−60𝐴2𝑇𝑐 + 60𝐴𝐶𝑇𝑐 + 30𝐴𝐷𝑇𝑐 − 30𝐵𝑇𝑐 + 10𝐶2𝑇𝑐 + 15𝐶𝐷𝑇𝑐 + 6𝐷2𝑇𝑐
60𝐴2 − 60𝐴𝐶 − 30𝐴𝐷 + 30𝐵 − 10𝐶2 − 15𝐶𝐷 − 6𝐷2

)︂
+
𝐷2𝑇 5

25𝑇 5
𝑐

− 𝑇 4

8𝑇 4
𝑐

(︀
𝐶𝐷 + 2𝐷2

)︀
+

𝑇 3

9𝑇 3
𝑐

(︀
𝐶2 + 6𝐶𝐷 + 6𝐷2

)︀
− 𝑇 2

2𝑇 2
𝑐

(︀
𝐴𝐷 + 𝐶2 + 3𝐶𝐷 + 2𝐷2

)︀
+
𝑇

𝑇𝑐

(︀
2𝐴𝐶 + 2𝐴𝐷 + 𝐶2 + 2𝐶𝐷 +𝐷2

)︀
+

1

30

(︀
30𝐴2 − 60𝐴𝐶 − 30𝐴𝐷 + 30𝐵 − 10𝐶2 − 15𝐶𝐷 − 6𝐷2

)︀
ln

(︂
𝑇 +

1

60𝐴2 − 60𝐴𝐶 − 30𝐴𝐷 + 30𝐵 − 10𝐶2 − 15𝐶𝐷 − 6𝐷2

(︀
−30𝐴2𝑇𝑐 + 60𝐴𝐶𝑇𝑐 + 30𝐴𝐷𝑇𝑐 − 30𝐵𝑇𝑐 + 10𝐶2𝑇𝑐 + 15𝐶𝐷𝑇𝑐 + 6𝐷2𝑇𝑐 + 𝑇𝑐

(︀
30𝐴2 − 60𝐴𝐶 − 30𝐴𝐷 + 30𝐵 − 10𝐶2 − 15𝐶𝐷 − 6𝐷2

)︀)︀)︂
Strictly speaking, the integral over T has an imaginary component, but only the real component is relevant and
the complex part discarded.

72 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Hydrogen liquid heat capacity; DIPPR coefficients normally in J/kmol/K.

>>> EQ114(20, 33.19, 66.653, 6765.9, -123.63, 478.27)
19423.948911676463

chemicals.dippr.EQ115(T, A, B, C=0, D=0, E=0, order=0)
DIPPR Equation #115. No major uses; has been used as an alternate liquid viscosity expression, and as a model
for vapor pressure. Only parameters A and B are required.

𝑌 = exp

(︂
𝐴+

𝐵

𝑇
+ 𝐶 ln𝑇 +𝐷𝑇 2 +

𝐸

𝑇 2

)︂
Parameters

T [float] Temperature, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1,
2, and 3, that derivative of the property is returned; No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float] Property [constant-specific]

Notes

No coefficients found for this expression. This function is not integrable for either dT or Y/T dT.

𝑑𝑌

𝑑𝑇
=

(︂
− 𝐵

𝑇 2
+
𝐶

𝑇
+ 2𝐷𝑇 − 2𝐸

𝑇 3

)︂
𝑒𝐴+𝐵

𝑇 +𝐶 log (𝑇)+𝐷𝑇 2+ 𝐸
𝑇2

𝑑2𝑌

𝑑𝑇 2
=

(︃
2𝐵

𝑇 3
− 𝐶

𝑇 2
+ 2𝐷 +

6𝐸

𝑇 4
+

(︂
𝐵

𝑇 2
− 𝐶

𝑇
− 2𝐷𝑇 +

2𝐸

𝑇 3

)︂2
)︃
𝑒𝐴+𝐵

𝑇 +𝐶 log (𝑇)+𝐷𝑇 2+ 𝐸
𝑇2

𝑑3𝑌

𝑑𝑇 3
= −

(︃
3

(︂
2𝐵

𝑇 3
− 𝐶

𝑇 2
+ 2𝐷 +

6𝐸

𝑇 4

)︂(︂
𝐵

𝑇 2
− 𝐶

𝑇
− 2𝐷𝑇 +

2𝐸

𝑇 3

)︂
+

(︂
𝐵

𝑇 2
− 𝐶

𝑇
− 2𝐷𝑇 +

2𝐸

𝑇 3

)︂3

+
2
(︀
3𝐵
𝑇 − 𝐶 + 12𝐸

𝑇 2

)︀
𝑇 3

)︃
𝑒𝐴+𝐵

𝑇 +𝐶 log (𝑇)+𝐷𝑇 2+ 𝐸
𝑇2

References

[1]

chemicals.dippr.EQ116(T, Tc, A, B, C, D, E, order=0)
DIPPR Equation #116. Used to describe the molar density of water fairly precisely; no other uses listed. All 5
parameters are needed, as well as the critical temperature.

𝑌 = 𝐴+𝐵𝜏0.35 + 𝐶𝜏2/3 +𝐷𝜏 + 𝐸𝜏4/3

𝜏 = 1 − 𝑇

𝑇𝑐

1.7. DIPPR Fit Equations (chemicals.dippr) 73

chemicals Documentation, Release 1.1.4

Parameters
T [float] Temperature, [K]

Tc [float] Critical temperature, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T and integral with respect to T are computed as follows. The integral divided
by T with respect to T has an extremely complicated (but still elementary) integral which can be read from the
source. It was computed with Rubi; the other expressions can readily be obtained with SymPy.

𝑑𝑌

𝑑𝑇
= − 7𝐵

20𝑇𝑐

(︁
− 𝑇

𝑇𝑐
+ 1
)︁ 13

20

− 2𝐶

3𝑇𝑐 3

√︁
− 𝑇

𝑇𝑐
+ 1

− 𝐷

𝑇𝑐
− 4𝐸

3𝑇𝑐

3

√︂
− 𝑇

𝑇𝑐
+ 1

∫︁
𝑌 𝑑𝑇 = 𝐴𝑇 − 20𝐵

27
𝑇𝑐

(︂
− 𝑇

𝑇𝑐
+ 1

)︂ 27
20

− 3𝐶

5
𝑇𝑐

(︂
− 𝑇

𝑇𝑐
+ 1

)︂ 5
3

+𝐷

(︂
− 𝑇 2

2𝑇𝑐
+ 𝑇

)︂
− 3𝐸

7
𝑇𝑐

(︂
− 𝑇

𝑇𝑐
+ 1

)︂ 7
3

References

[1]

Examples

Water liquid molar density; DIPPR coefficients normally in kmol/m^3.

>>> EQ116(300., 647.096, 17.863, 58.606, -95.396, 213.89, -141.26)
55.17615446406527

chemicals.dippr.EQ127(T, A, B, C, D, E, F, G, order=0)
DIPPR Equation #127. Rarely used, and then only in calculating ideal-gas heat capacity. All 7 parameters are
required.

𝑌 = 𝐴+𝐵

[︃(︀
𝐶
𝑇

)︀2
exp

(︀
𝐶
𝑇

)︀(︀
exp 𝐶

𝑇 − 1
)︀2
]︃

+𝐷

[︃(︀
𝐸
𝑇

)︀2
exp

(︀
𝐸
𝑇

)︀(︀
exp 𝐸

𝑇 − 1
)︀2
]︃

+ 𝐹

[︃(︀
𝐺
𝑇

)︀2
exp

(︀
𝐺
𝑇

)︀(︀
exp 𝐺

𝑇 − 1
)︀2
]︃

Parameters
T [float] Temperature, [K]

A-G [float] Parameter for the equation; chemical and property specific [-]

74 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

order [int, optional] Order of the calculation. 0 for the calculation of the result itself; for 1, the
first derivative of the property is returned, for -1, the indefinite integral of the property with
respect to temperature is returned; and for -1j, the indefinite integral of the property divided
by temperature with respect to temperature is returned. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
Y [float]

Property [constant-specific; if order == 1, property/K; if order == -1, property*K; if
order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral over T with respect to T are computed
as follows. All expressions can be obtained with SymPy readily.

𝑑𝑌

𝑑𝑇
= − 𝐵𝐶3𝑒

𝐶
𝑇

𝑇 4
(︁
𝑒

𝐶
𝑇 − 1

)︁2 +
2𝐵𝐶3𝑒

2𝐶
𝑇

𝑇 4
(︁
𝑒

𝐶
𝑇 − 1

)︁3 − 2𝐵𝐶2𝑒
𝐶
𝑇

𝑇 3
(︁
𝑒

𝐶
𝑇 − 1

)︁2 − 𝐷𝐸3𝑒
𝐸
𝑇

𝑇 4
(︁
𝑒

𝐸
𝑇 − 1

)︁2 +
2𝐷𝐸3𝑒

2𝐸
𝑇

𝑇 4
(︁
𝑒

𝐸
𝑇 − 1

)︁3 − 2𝐷𝐸2𝑒
𝐸
𝑇

𝑇 3
(︁
𝑒

𝐸
𝑇 − 1

)︁2 − 𝐹𝐺3𝑒
𝐺
𝑇

𝑇 4
(︁
𝑒

𝐺
𝑇 − 1

)︁2 +
2𝐹𝐺3𝑒

2𝐺
𝑇

𝑇 4
(︁
𝑒

𝐺
𝑇 − 1

)︁3 − 2𝐹𝐺2𝑒
𝐺
𝑇

𝑇 3
(︁
𝑒

𝐺
𝑇 − 1

)︁2
∫︁
𝑌 𝑑𝑇 = 𝐴𝑇 +

𝐵𝐶2

𝐶𝑒
𝐶
𝑇 − 𝐶

+
𝐷𝐸2

𝐸𝑒
𝐸
𝑇 − 𝐸

+
𝐹𝐺2

𝐺𝑒
𝐺
𝑇 −𝐺∫︁

𝑌

𝑇
𝑑𝑇 = 𝐴 ln (𝑇) +𝐵𝐶2

(︂
1

𝐶𝑇𝑒
𝐶
𝑇 − 𝐶𝑇

+
1

𝐶𝑇
− 1

𝐶2
ln
(︁
𝑒

𝐶
𝑇 − 1

)︁)︂
+𝐷𝐸2

(︂
1

𝐸𝑇𝑒
𝐸
𝑇 − 𝐸𝑇

+
1

𝐸𝑇
− 1

𝐸2
ln
(︁
𝑒

𝐸
𝑇 − 1

)︁)︂
+ 𝐹𝐺2

(︂
1

𝐺𝑇𝑒
𝐺
𝑇 −𝐺𝑇

+
1

𝐺𝑇
− 1

𝐺2
ln
(︁
𝑒

𝐺
𝑇 − 1

)︁)︂

References

[1]

Examples

Ideal gas heat capacity of methanol; DIPPR coefficients normally in J/kmol/K

>>> EQ127(20., 3.3258E4, 3.6199E4, 1.2057E3, 1.5373E7, 3.2122E3, -1.5318E7, 3.
→˓2122E3)
33258.0

1.7.2 Jacobians (for fitting)

chemicals.dippr.EQ101_fitting_jacobian(Ts, A, B, C, D, E)
Compute and return the Jacobian of the property predicted by DIPPR Equation # 101 with respect to all the
coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

Returns
jac [list[list[float, 5], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

1.7. DIPPR Fit Equations (chemicals.dippr) 75

chemicals Documentation, Release 1.1.4

chemicals.dippr.EQ102_fitting_jacobian(Ts, A, B, C, D)
Compute and return the Jacobian of the property predicted by DIPPR Equation # 102 with respect to all the
coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

A-D [float] Parameter for the equation; chemical and property specific [-]

Returns
jac [list[list[float, 4], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.dippr.EQ105_fitting_jacobian(Ts, A, B, C, D)
Compute and return the Jacobian of the property predicted by DIPPR Equation # 105 with respect to all the
coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

A-D [float] Parameter for the equation; chemical and property specific [-]

Returns
jac [list[list[float, 4], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.dippr.EQ106_fitting_jacobian(Ts, Tc, A, B, C, D, E)
Compute and return the Jacobian of the property predicted by DIPPR Equation # 106 with respect to all the
coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

Tc [float] Critical temperature, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

Returns
jac [list[list[float, 5], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.dippr.EQ107_fitting_jacobian(Ts, A, B, C, D, E)
Compute and return the Jacobian of the property predicted by DIPPR Equation # 107 with respect to all the
coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

A-E [float] Parameter for the equation; chemical and property specific [-]

Returns
jac [list[list[float, 5], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

76 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.8 Periodic Table (chemicals.elements)

This module contains a complete periodic table, routines for working with chemical formulas, computing molecular
weight, computing mass fractions and atom fractions, and assorted other tasks.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Periodic Table and Elements

• Working with Formulas

• Working with Parsed Formulas

1.8.1 Periodic Table and Elements

chemicals.elements.periodic_table = <chemicals.elements.PeriodicTable object>
Single instance of the PeriodicTable class. Use this, not the PeriodicTable class directly.

A brief overview of using the periodic table and its elements:

>>> periodic_table.Na
<Element Sodium (Na), number 11, MW=22.98977>
>>> periodic_table.U.MW
238.02891
>>> periodic_table['Th'].CAS
'7440-29-1'
>>> periodic_table.lead.protons
82
>>> periodic_table['7440-57-5'].symbol
'Au'
>>> len(periodic_table)
118
>>> 'gold' in periodic_table
True
>>> periodic_table.He.protons, periodic_table.He.neutrons, periodic_table.He.
→˓electrons # Standard number of protons, neutrons, electrons
(2, 2, 2)
>>> periodic_table.He.phase # Phase of the element in the standard state
'g'
>>> periodic_table.He.Hf # Heat of formation in standard state in J/mol - by␣
→˓definition 0
0.0
>>> periodic_table.He.S0 # Absolute entropy (J/(mol*K) in standard state - non-zero)
126.2
>>> periodic_table.Kr.block, periodic_table.Kr.period, periodic_table.Kr.group
('p', 4, 18)
>>> periodic_table.Rn.InChI
'Rn'
>>> periodic_table.Rn.smiles
'[Rn]'
>>> periodic_table.Pu.number
94

(continues on next page)

1.8. Periodic Table (chemicals.elements) 77

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

(continued from previous page)

>>> periodic_table.Pu.PubChem
23940
>>> periodic_table.Bi.InChI_key
'JCXGWMGPZLAOME-UHFFFAOYSA-N'

class chemicals.elements.Element(number, symbol, name, MW, CAS, AReneg, rcov, rvdw, maxbonds, elneg,
ionization, elaffinity, period, group, PubChem, phase, Hf, S0,
InChI_key=None)

Class for storing data on chemical elements. Supports most common properties. If a property is not available, it
is set to None.

The elements are created automatically and should be accessed via the periodic_table interface.

Attributes
number [int] Atomic number, [-]

name [str] name, [-]

symbol [str] Elemental symbol, [-]

MW [float] Molecular weight, [g/mol]

CAS [str] CAS number, [-]

period [str] Period in the periodic table, [-]

group [str] Group in the periodic table, [-]

block [str] Which block of the periodic table the element is in.

AReneg [float] Allred and Rochow electronegativity, [-]

rcov [float] Covalent radius, [Angstrom]

rvdw [float] Van der Waals radius, [Angstrom]

maxbonds [float] Maximum valence of a bond with this element, [-]

elneg [float] Pauling electronegativity, [-]

ionization [float] Ionization potential, [eV]

ionization [float] elaffinity affinity, [eV]

protons [int] The number of protons of the element.

electrons [int] The number of electrons of the element.

InChI [str] The InChI identifier of the element.

InChI_key [str] 25-character hash of the compound’s InChI, [-]

smiles [str] The SMILES identification string of the element.

PubChem [int] PubChem Compound identifier (CID) of the chemical, [-]

phase [str] Standard state at 1 atm and 298.15 K, [-]

Hf [float] Enthalpy of formation of the element in its standard state (0 by definition), [J/mol]

S0 [float] Standard absolute entropy of the element in its standard state (1 bar, 298.15 K),
[J/mol/K]

78 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

class chemicals.elements.PeriodicTable(elements)
Periodic Table object for use in dealing with elements.

As there is only one periodic table of elements, this is automatically initialized into the object periodic_table;
there is no need to construct a new instance of this class.

Parameters
elements [list[Element]] List of Element objects, [-]

See also:

periodic_table

Element

Notes

Can be checked to sese if an element in in this, can be iterated over, and as a current length of 118 elements.

References

[1]

1.8.2 Working with Formulas

chemicals.elements.simple_formula_parser(formula)
Basic formula parser, primarily for obtaining element counts from formulas as formated in PubChem. Handles
formulas with integer or decimal counts (with period separator), but no brackets, no hydrates, no charges, no
isotopes, and no group multipliers.

Strips charges from the end of a formula first. Accepts repeated chemical units. Performs no sanity checking that
elements are actually elements. As it uses regular expressions for matching, errors are mostly just ignored.

Parameters
formula [str] Formula string, very simply formats only.

Returns
atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

Notes

Inspiration taken from the thermopyl project, at https://github.com/choderalab/thermopyl.

1.8. Periodic Table (chemicals.elements) 79

https://github.com/choderalab/thermopyl

chemicals Documentation, Release 1.1.4

Examples

>>> simple_formula_parser('CO2')
{'C': 1, 'O': 2}

chemicals.elements.nested_formula_parser(formula, check=True)
Improved formula parser which handles braces and their multipliers, as well as rational element counts.

Strips charges from the end of a formula first. Accepts repeated chemical units. Performs no sanity checking that
elements are actually elements. As it uses regular expressions for matching, errors are mostly just ignored.

Parameters
formula [str] Formula string, very simply formats only.

check [bool] If check is True, a simple check will be performed to determine if a formula is not
a formula and an exception will be raised if it is not, [-]

Returns
atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

Notes

Inspired by the approach taken by CrazyMerlyn on a reddit DailyProgrammer challenge, at https://www.reddit.
com/r/dailyprogrammer/comments/6eerfk/20170531_challenge_317_intermediate_counting/

Examples

>>> nested_formula_parser('Pd(NH3)4.0001+2')
{'Pd': 1, 'N': 4.0001, 'H': 12.0003}

chemicals.elements.charge_from_formula(formula)
Basic formula parser to determine the charge from a formula - given that the charge is already specified as one
element of the formula.

Performs no sanity checking that elements are actually elements.

Parameters
formula [str] Formula string, very simply formats only, ending in one of ‘+x’, ‘-x’, n*’+’, or

n*’-’ or any of them surrounded by brackets but always at the end of a formula.

Returns
charge [int] Charge of the molecule, [faraday]

80 Chapter 1. Key Features & Capabilities

https://www.reddit.com/r/dailyprogrammer/comments/6eerfk/20170531_challenge_317_intermediate_counting/
https://www.reddit.com/r/dailyprogrammer/comments/6eerfk/20170531_challenge_317_intermediate_counting/

chemicals Documentation, Release 1.1.4

Examples

>>> charge_from_formula('Br3-')
-1
>>> charge_from_formula('Br3(-)')
-1

chemicals.elements.serialize_formula(formula)
Basic formula serializer to construct a consistently-formatted formula. This is necessary for handling user-
supplied formulas, which are not always well formatted.

Performs no sanity checking that elements are actually elements.

Parameters
formula [str] Formula string as parseable by the method nested_formula_parser, [-]

Returns
formula [str] A consistently formatted formula to describe a molecular formula, [-]

Examples

>>> serialize_formula('Pd(NH3)4+3')
'H12N4Pd+3'

chemicals.elements.atoms_to_Hill(atoms)
Determine the Hill formula of a compound, given a dictionary of its atoms and their counts, in the format {sym-
bol: count}.

Parameters
atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

Returns
Hill_formula [str] Hill formula, [-]

Notes

The Hill system is as follows:

If the chemical has ‘C’ in it, this is listed first, and then if it has ‘H’ in it as well as ‘C’, then that goes next. All
elements are sorted alphabetically afterwards, including ‘H’ if ‘C’ is not present. All elements are followed by
their count, unless it is 1.

1.8. Periodic Table (chemicals.elements) 81

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> atoms_to_Hill({'H': 5, 'C': 2, 'Br': 1})
'C2H5Br'

1.8.3 Working with Parsed Formulas

chemicals.elements.molecular_weight(atoms)
Calculates molecular weight of a molecule given a dictionary of its atoms and their counts, in the format {symbol:
count}.

𝑀𝑊 =
∑︁
𝑖

𝑛𝑖𝑀𝑊𝑖

Parameters
atoms [dict] Dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

Returns
MW [float] Calculated molecular weight [g/mol]

Notes

Elemental data is from rdkit, with CAS numbers added. An exception is raised if an incorrect element symbol
is given. Elements up to 118 are supported, as are deutreium and tritium.

References

[1]

Examples

>>> molecular_weight({'H': 12, 'C': 20, 'O': 5}) # DNA
332.30628

chemicals.elements.similarity_variable(atoms, MW=None)
Calculates the similarity variable of an compound, as defined in [1]. Currently only applied for certain heat
capacity estimation routines.

𝛼 =
𝑁

𝑀𝑊
=

∑︀
𝑖 𝑛𝑖∑︀

𝑖 𝑛𝑖𝑀𝑊𝑖

Parameters
atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

82 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

MW [float, optional] Molecular weight, [g/mol]

Returns
similarity_variable [float] Similarity variable as defined in [1], [mol/g]

Notes

Molecular weight is optional, but speeds up the calculation slightly. It is calculated using the function molecu-
lar_weight if not specified.

References

[1]

Examples

>>> similarity_variable({'H': 32, 'C': 15})
0.2212654140784498

chemicals.elements.index_hydrogen_deficiency(atoms)
Calculate the index of hydrogen deficiency of a compound, given a dictionary of its atoms and their counts, in
the format {symbol: count}.

Parameters
atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

Returns
HDI [float] Hydrogen deficiency index, [-]

Notes

The calculation is according to:

IDH = 0.5 (2𝐶 + 2 +𝑁 −𝐻 −𝑋 + 0𝑂)

where X is the number of halogen atoms. The number of oxygen atoms does not impact this calculation.

References

[1]

1.8. Periodic Table (chemicals.elements) 83

chemicals Documentation, Release 1.1.4

Examples

Agelastatin A:

>>> index_hydrogen_deficiency({'C': 12, 'H': 13, 'Br': 1, 'N': 4, 'O': 3})
8.0

chemicals.elements.atom_fractions(atoms)
Calculates the atomic fractions of each element in a compound, given a dictionary of its atoms and their counts,
in the format {symbol: count}.

𝑎𝑖 =
𝑛𝑖∑︀
𝑖 𝑛𝑖

Parameters
atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

Returns
afracs [dict] dictionary of atomic fractions of individual atoms, indexed by symbol with proper

capitalization, [-]

Notes

No actual data on the elements is used, so incorrect or custom compounds would not raise an error.

References

[1]

Examples

>>> atom_fractions({'H': 12, 'C': 20, 'O': 5})
{'H': 0.32432432432432434, 'C': 0.5405405405405406, 'O': 0.13513513513513514}

chemicals.elements.mass_fractions(atoms, MW=None)
Calculates the mass fractions of each element in a compound, given a dictionary of its atoms and their counts,
in the format {symbol: count}.

𝑤𝑖 =
𝑛𝑖𝑀𝑊𝑖∑︀
𝑖 𝑛𝑖𝑀𝑊𝑖

Parameters
atoms [dict] Dictionary of counts of individual atoms, indexed by symbol with proper capital-

ization, [-]

MW [float, optional] Molecular weight, [g/mol]

Returns
mfracs [dict] Dictionary of mass fractions of individual atoms, indexed by symbol with proper

capitalization, [-]

84 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Molecular weight is optional, but speeds up the calculation slightly. It is calculated using the function molecu-
lar_weight if not specified.

Elemental data is from rdkit, with CAS numbers added. An exception is raised if an incorrect element symbol
is given. Elements up to 118 are supported.

References

[1]

Examples

>>> mass_fractions({'H': 12, 'C': 20, 'O': 5})
{'H': 0.03639798802478244, 'C': 0.7228692758981262, 'O': 0.24073273607709128}

chemicals.elements.mixture_atomic_composition(atomss, zs)
Simple function to calculate the atomic average composition of a mixture, using the mole fractions of each species
and their own atomic compositions.

Parameters
atomss [list[dict[(str, int)]]] List of dictionaries of atomic compositions, [-]

zs [list[float]] Mole fractions of each component, [-]

Returns
atoms [dict[(str, int)]] Atomic composition

Examples

>>> mixture_atomic_composition([{'O': 2}, {'N': 1, 'O': 2}, {'C': 1, 'H': 4}], [0.
→˓95, 0.025, .025])
{'O': 1.95, 'N': 0.025, 'C': 0.025, 'H': 0.1}

chemicals.elements.mixture_atomic_composition_ordered(atomss, zs)
Simple function to calculate the atomic average composition of a mixture, using the mole fractions of each species
and their own atomic compositions. Returns the result as a sorted list with atomic numbers from low to high.

Parameters
atomss [list[dict[(str, int)]]] List of dictionaries of atomic compositions, [-]

zs [list[float]] Mole fractions of each component; this can also be a molar flow rate and then the
abundances will be flows, [-]

Returns
abundances [list[float]] Number of atoms of each element per mole of the feed, [-]

atom_keys [list[str]] Atomic elements, sorted from lowest atomic number to highest

1.8. Periodic Table (chemicals.elements) 85

chemicals Documentation, Release 1.1.4

Notes

Useful to ensure a matrix order is consistent in multiple steps.

Examples

>>> mixture_atomic_composition_ordered([{'O': 2}, {'N': 1, 'O': 2}, {'C': 1, 'H': 4}
→˓], [0.95, 0.025, .025])
([0.1, 0.025, 0.025, 1.95], ['H', 'C', 'N', 'O'])

chemicals.elements.atom_matrix(atomss, atom_IDs=None)
Simple function to create a matrix of elements in each compound, where each row has the same elements.

Parameters
atomss [list[dict[(str, int)]]] List of dictionaries of atomic compositions, [-]

atom_IDs [list[str], optional] Optionally, a subset (or simply ordered differently) of elements to
consider, [-]

Returns
matrix [list[list[float]]] The number of each element in each compound as a matrix, indexed as

[compound][element], [-]

Examples

>>> atom_matrix([{'C': 1, 'H': 4}, {'C': 2, 'H': 6}, {'N': 2}, {'O': 2}, {'H': 2, 'O
→˓': 1}, {'C': 1, 'O': 2}])
[[4, 1, 0.0, 0.0], [6, 2, 0.0, 0.0], [0.0, 0.0, 2, 0.0], [0.0, 0.0, 0.0, 2], [2, 0.
→˓0, 0.0, 1], [0.0, 1, 0.0, 2]]

1.9 Environmental Properties (chemicals.environment)

This module contains lookup functions for three important environmental properties - Global Warming Potential, Ozone
Depletion Potential, and octanol-water partition coefficient.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Global Warming Potential

• Ozone Depletion Potential

• Octanol-Water Partition Coefficient

86 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.9.1 Global Warming Potential

chemicals.environment.GWP(CASRN, method=None)
This function handles the retrieval of a chemical’s Global Warming Potential, relative to CO2. Lookup is based
on CASRNs.

There are three sources of data:

• IPCC Fifth Assessment Report (AR5) from 2014 [2]

• IPCC Fourth Assessment Report (AR4) from 2007 [1]

• IPCC Second Assesment Report or (SAR) from 1995 [1]

This function returns the GWP for the 20yr outlook from the AR5 by default.

Parameters
CASRN [str] CASRN [-]

Returns
GWP [float] Global warming potential, [(impact/mass chemical)/(impact/mass CO2)]

Other Parameters
method [string, optional] The method name to use. Accepted methods are (‘IPCC (2014) 100yr’,

‘IPCC (2014) 20yr’, ‘IPCC (2007) 100yr’, ‘IPCC (2007) 20yr’, ‘IPCC (2007) 500yr’, ‘IPCC
(1995) 100yr’). All valid values are also held in the variable GWP_all_methods.

See also:

GWP_methods

Notes

“Fossil methane” is included in the IPCC reports to take into account different isotopic composition, but as that
has the same CAS number it is not included in this function.

Six of the entries in [2] are actually duplicates; the entries with data similar to more recent data [3] were prefered.

References

[1], [2], [3]

Examples

Methane, 20-yr outlook AR5

>>> GWP(CASRN='74-82-8')
84.0

Methane, specifying the default method explicitly (this is recommended the default data source may be updated
in the future)

>>> GWP(CASRN='74-82-8', method='IPCC (2014) 100yr')
28.0

Methane, 20-year values from 1995 and 2007

1.9. Environmental Properties (chemicals.environment) 87

chemicals Documentation, Release 1.1.4

>>> (GWP(CASRN='74-82-8', method='IPCC (1995) 100yr'), GWP(CASRN='74-82-8', method=
→˓'IPCC (2007) 100yr'))
(21.0, 25.0)

chemicals.environment.GWP_methods(CASRN)
Return all methods available to obtain GWP for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain GWP with the given inputs.

See also:

GWP

chemicals.environment.GWP_all_methods = ('IPCC (2014) 100yr', 'IPCC (2014) 20yr', 'IPCC
(2007) 100yr', 'IPCC (2007) 20yr', 'IPCC (2007) 500yr', 'IPCC (1995) 100yr')

Tuple of method name keys. See the GWP for the actual references

1.9.2 Ozone Depletion Potential

chemicals.environment.ODP(CASRN, method=None)
This function handles the retrieval of a chemical’s Ozone Depletion Potential, relative to CFC-11 (trichloroflu-
oromethane). Lookup is based on CASRNs. Will automatically select a data source to use if no method is
provided; returns None if the data is not available.

Returns the ODP of a chemical according to [2] when a method is not specified. If a range is provided in [2], the
highest value is returned.

Parameters
CASRN [str] CASRN [-]

Returns
ODP [float or str] Ozone Depletion potential, [(impact/mass chemical)/(impact/mass CFC-11)];

if method selected has string in it, this will be returned as a string regardless of if a range is
given or a number

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘ODP2 Max’, ‘ODP2

Min’, ‘ODP2 string’, ‘ODP2 logarithmic average’, and methods for older values are ‘ODP1
Max’, ‘ODP1 Min’, ‘ODP1 string’, and ‘ODP1 logarithmic average’. All valid values are
also held in the list ODP_methods.

88 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Values are tabulated only for a small number of halogenated hydrocarbons, responsible for the largest impact.
The original values of ODP as defined in the Montreal Protocol are also available, as methods with the ODP1
prefix.

All values are somewhat emperical, as actual reaction rates of chemicals with ozone depend on temperature
which depends on latitude, longitude, time of day, weather, and the concentrations of other pollutants.

All data is from [1]. Several mixtures listed in [1] are not included here as they are not pure species. Methods for
values in [2] are ‘ODP2 Max’, ‘ODP2 Min’, ‘ODP2 string’, ‘ODP2 logarithmic average’, and methods for older
values are ‘ODP1 Max’, ‘ODP1 Min’, ‘ODP1 string’, and ‘ODP1 logarithmic average’.

References

[1], [2]

Examples

Dichlorotetrafluoroethane, according to [2].

>>> ODP(CASRN='76-14-2')
0.58

chemicals.environment.ODP_methods(CASRN)
Return all methods available to obtain ODP for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain ODP with the given inputs.

See also:

ODP

chemicals.environment.ODP_all_methods = ('ODP2 Max', 'ODP1 Max', 'ODP2 logarithmic
average', 'ODP1 logarithmic average', 'ODP2 Min', 'ODP1 Min', 'ODP2 string', 'ODP1
string')

Tuple of method name keys. See the ODP for the actual references

1.9.3 Octanol-Water Partition Coefficient

chemicals.environment.logP(CASRN, method=None)
This function handles the retrieval of a chemical’s octanol-water partition coefficient. Lookup is based on CAS-
RNs. Will automatically select a data source to use if no method is provided; returns None if the data is not
available.

Parameters
CASRN [str] CASRN [-]

Returns

1.9. Environmental Properties (chemicals.environment) 89

chemicals Documentation, Release 1.1.4

logP [float] Octanol-water partition coefficient, [-]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘SYRRES’, ‘CRC’,

and ‘WIKIDATA’. All valid values are also held in the list logP_methods.

Notes

Although matimatically this could be expressed with a logarithm in any base, reported values are published using
a base 10 logarithm.

log10 𝑃𝑜𝑐𝑡/𝑤𝑎𝑡 = log10

(︃
[𝑠𝑜𝑙𝑢𝑡𝑒]

𝑢𝑛−𝑖𝑜𝑛𝑖𝑧𝑒𝑑
𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝑠𝑜𝑙𝑢𝑡𝑒]
𝑢𝑛−𝑖𝑜𝑛𝑖𝑧𝑒𝑑
𝑤𝑎𝑡𝑒𝑟

)︃

References

[1], [2]

Examples

>>> logP('67-56-1')
-0.74
>>> logP('100-66-3', 'WIKIDATA')
2.11

chemicals.environment.logP_methods(CASRN)
Return all methods available to obtain logP for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain logP with the given inputs.

See also:

logP

chemicals.environment.logP_all_methods = ('SYRRES', 'CRC', 'WIKIDATA')
Tuple of method name keys. See the logP for the actual references

1.10 Exceptions Generated by Chemicals (chemicals.exceptions)

This module contains various exception classes that may be raised by chemicals.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

class chemicals.exceptions.UnderspecifiedError
Generic error to raise when not enough values are given.

Attributes

90 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

args

Methods

with_traceback Exception.with_traceback(tb) -- set
self.__traceback__ to tb and return self.

class chemicals.exceptions.OverspeficiedError
Generic error to raise when too many values are given.

Attributes
args

Methods

with_traceback Exception.with_traceback(tb) -- set
self.__traceback__ to tb and return self.

class chemicals.exceptions.TrivialSolutionError(message, comp_difference=None, iterations=None,
err=None)

Error raised SS converges to trivial solution.

Attributes
args

Methods

with_traceback Exception.with_traceback(tb) -- set
self.__traceback__ to tb and return self.

class chemicals.exceptions.PhaseCountReducedError(message, zs=None, Ks=None)
Error raised SS inner flash loop says all Ks are under 1 or above 1.

Attributes
args

Methods

with_traceback Exception.with_traceback(tb) -- set
self.__traceback__ to tb and return self.

class chemicals.exceptions.PhaseExistenceImpossible(message, zs=None, T=None, P=None)
Error raised SS inner flash loop says all Ks are under 1 or above 1.

Attributes
args

1.10. Exceptions Generated by Chemicals (chemicals.exceptions) 91

chemicals Documentation, Release 1.1.4

Methods

with_traceback Exception.with_traceback(tb) -- set
self.__traceback__ to tb and return self.

1.11 Ideal VLE and Flash Initialization (chemicals.flash_basic)

This module contains the ideal flash solver; two flash initialization routines; a vapor-liquid equilibrium constant corre-
lation; a liquid-water equilibrium constant correlation, and a definition function to show the commonly used calculation
frameworks.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Ideal Flash Function

• Flash Initialization

• Equilibrium Constants

1.11.1 Ideal Flash Function

chemicals.flash_basic.flash_ideal(zs, funcs, Tcs=None, T=None, P=None, VF=None)
PVT flash model using ideal, composition-independent equation. Solves the various cases of composition-
independent models.

Capable of solving with two of T, P, and VF for the other one; that results in three solve modes, but for VF=1
and VF=0, there are additional solvers; for a total of seven solvers implemented.

The function takes a list of callables that take T in Kelvin as an argument, and return vapor pressure. The callables
can include the effect of non-ideal pure component fugacity coefficients. For the (T, P) and (P, VF) cases, the
Poynting correction factor can be easily included as well but not the (T, VF) case as the callable only takes T as
an argument. Normally the Poynting correction factor is used with activity coefficient models with composition
dependence.

Both flash_wilson and flash_Tb_Tc_Pc are specialized cases of this function and have the same functionality but
with the model built right in.

Even when using more complicated models, this is useful for obtaining initial

This model uses flash_inner_loop to solve the Rachford-Rice problem.

Parameters
zs [list[float]] Mole fractions of the phase being flashed, [-]

funcs [list[Callable]] Functions to calculate ideal or real vapor pressures, take temperature in
Kelvin and return pressure in Pa, [-]

Tcs [list[float], optional] Critical temperatures of all species; uses as upper bounds and only for
the case that T is not specified; if they are needed and not given, it is assumed a method
solve_prop exists in each of funcs which will accept P in Pa and return temperature in K, [K]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

92 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

VF [float, optional] Molar vapor fraction, [-]

Returns
T [float] Temperature, [K]

P [float] Pressure, [Pa]

VF [float] Molar vapor fraction, [-]

xs [list[float]] Mole fractions of liquid phase, [-]

ys [list[float]] Mole fractions of vapor phase, [-]

Notes

For the cases where VF is 1 or 0 and T is known, an explicit solution is used. For the same cases where P and
VF are known, there is no explicit solution available.

There is an internal Tmax parameter, set to 50000 K; which, in the event of convergence of the Secant method,
is used as a bounded for a bounded solver. It is used in the PVF solvers.

Examples

Basic case with four compounds, usingthe Antoine equation as a model and solving for vapor pressure:

>>> from chemicals import Antoine, Ambrose_Walton
>>> Tcs = [369.83, 425.12, 469.7, 507.6]
>>> Antoine_As = [8.92828, 8.93266, 8.97786, 9.00139]
>>> Antoine_Bs = [803.997, 935.773, 1064.84, 1170.88]
>>> Antoine_Cs = [-26.11, -34.361, -41.136, -48.833]
>>> Psat_funcs = []
>>> for i in range(4):
... def Psat_func(T, A=Antoine_As[i], B=Antoine_Bs[i], C=Antoine_Cs[i]):
... return Antoine(T, A, B, C)
... Psat_funcs.append(Psat_func)
>>> zs = [.4, .3, .2, .1]
>>> T, P, VF, xs, ys = flash_ideal(T=330.55, P=1e6, zs=zs, funcs=Psat_funcs,␣
→˓Tcs=Tcs)
>>> round(VF, 10)
1.00817e-05

Similar case, using the Ambrose-Walton corresponding states method to estimate vapor pressures:

>>> Tcs = [369.83, 425.12, 469.7, 507.6]
>>> Pcs = [4248000.0, 3796000.0, 3370000.0, 3025000.0]
>>> omegas = [0.152, 0.193, 0.251, 0.2975]
>>> Psat_funcs = []
>>> for i in range(4):
... def Psat_func(T, Tc=Tcs[i], Pc=Pcs[i], omega=omegas[i]):
... return Ambrose_Walton(T, Tc, Pc, omega)
... Psat_funcs.append(Psat_func)
>>> _, P, VF, xs, ys = flash_ideal(T=329.151, VF=0, zs=zs, funcs=Psat_funcs,␣
→˓Tcs=Tcs)
>>> round(P, 3)
1000013.343

1.11. Ideal VLE and Flash Initialization (chemicals.flash_basic) 93

chemicals Documentation, Release 1.1.4

Case with fugacities in the liquid phase, vapor phase, activity coefficients in the liquid phase, and Poynting
correction factors.

>>> Tcs = [647.14, 514.0]
>>> Antoine_As = [10.1156, 10.3368]
>>> Antoine_Bs = [1687.54, 1648.22]
>>> Antoine_Cs = [-42.98, -42.232]
>>> gammas = [1.1, .75]
>>> fugacities_gas = [.995, 0.98]
>>> fugacities_liq = [.9999, .9998]
>>> Poyntings = [1.000001, .999999]
>>> zs = [.5, .5]
>>> funcs = []
>>> for i in range(2):
... def K_over_P(T, A=Antoine_As[i], B=Antoine_Bs[i], C=Antoine_Cs[i],␣
→˓fl=fugacities_liq[i],
... fg=fugacities_gas[i], gamma=gammas[i], poy=Poyntings[i]):
... return Antoine(T, A, B, C)*gamma*poy*fl/fg
... funcs.append(K_over_P)
>>> _, _, VF, xs, ys = flash_ideal(zs, funcs, Tcs=Tcs, P=1e5, T=364.0)
>>> VF, xs, ys
(0.5108639717, [0.55734934039, 0.44265065960], [0.44508982795, 0.554910172040])

Note that while this works for PT composition independent flashes - an outer iterating loop is needed for com-
position dependence!

1.11.2 Flash Initialization

chemicals.flash_basic.flash_wilson(zs, Tcs, Pcs, omegas, T=None, P=None, VF=None)
PVT flash model using Wilson’s equation - useful for obtaining initial guesses for more rigorous models, or it
can be used as its own model. Capable of solving with two of T, P, and VF for the other one; that results in three
solve modes, but for VF=1 and VF=0, there are additional solvers; for a total of seven solvers implemented.

This model uses flash_inner_loop to solve the Rachford-Rice problem.

𝐾𝑖 =
𝑃𝑐

𝑃
exp

(︂
5.37(1 + 𝜔)

[︂
1 − 𝑇𝑐

𝑇

]︂)︂
Parameters

zs [list[float]] Mole fractions of the phase being flashed, [-]

Tcs [list[float]] Critical temperatures of all species, [K]

Pcs [list[float]] Critical pressures of all species, [Pa]

omegas [list[float]] Acentric factors of all species, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

VF [float, optional] Molar vapor fraction, [-]

Returns
T [float] Temperature, [K]

P [float] Pressure, [Pa]

94 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

VF [float] Molar vapor fraction, [-]

xs [list[float]] Mole fractions of liquid phase, [-]

ys [list[float]] Mole fractions of vapor phase, [-]

Notes

For the cases where VF is 1 or 0 and T is known, an explicit solution is used. For the same cases where P and
VF are known, there is no explicit solution available.

There is an internal Tmax parameter, set to 50000 K; which, in the event of convergence of the Secant method, is
used as a bounded for a bounded solver. It is used in the PVF solvers. This typically allows pressures up to 2 GPa
to be converged to. However, for narrow-boiling mixtures, the PVF failure may occur at much lower pressures.

Examples

>>> Tcs = [305.322, 540.13]
>>> Pcs = [4872200.0, 2736000.0]
>>> omegas = [0.099, 0.349]
>>> zs = [0.4, 0.6]
>>> flash_wilson(zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas, T=300, P=1e5)
(300, 100000.0, 0.422194532936, [0.02093881508003, 0.979061184919], [0.918774185622,
→˓ 0.0812258143])

chemicals.flash_basic.flash_Tb_Tc_Pc(zs, Tbs, Tcs, Pcs, T=None, P=None, VF=None)
PVT flash model using a model published in [1], which provides a PT surface using only each compound’s
boiling temperature and critical temperature and pressure. This is useful for obtaining initial guesses for more
rigorous models, or it can be used as its own model. Capable of solving with two of T, P, and VF for the other
one; that results in three solve modes, but for VF=1 and VF=0, there are additional solvers; for a total of seven
solvers implemented.

This model uses flash_inner_loop to solve the Rachford-Rice problem.

𝐾𝑖 =
𝑃

(︁
1
𝑇 − 1

𝑇𝑏,𝑖

)︁
/
(︁

1
𝑇𝑐,𝑖

− 1
𝑇𝑏,𝑖

)︁
𝑐,𝑖

𝑃

Parameters
zs [list[float]] Mole fractions of the phase being flashed, [-]

Tbs [list[float]] Boiling temperatures of all species, [K]

Tcs [list[float]] Critical temperatures of all species, [K]

Pcs [list[float]] Critical pressures of all species, [Pa]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

VF [float, optional] Molar vapor fraction, [-]

Returns
T [float] Temperature, [K]

P [float] Pressure, [Pa]

VF [float] Molar vapor fraction, [-]

1.11. Ideal VLE and Flash Initialization (chemicals.flash_basic) 95

chemicals Documentation, Release 1.1.4

xs [list[float]] Mole fractions of liquid phase, [-]

ys [list[float]] Mole fractions of vapor phase, [-]

Notes

For the cases where VF is 1 or 0 and T is known, an explicit solution is used. For the same cases where P and
VF are known, there is no explicit solution available.

There is an internal Tmax parameter, set to 50000 K; which, in the event of convergence of the Secant method,
is used as a bounded for a bounded solver. It is used in the PVF solvers. This typically allows pressures up to 2
MPa to be converged to. Failures may still occur for other conditions.

This model is based on [1], which aims to estimate dew and bubble points using the same K value formulation
as used here. While this implementation uses a numerical solver to provide an exact bubble/dew point estimate,
[1] suggests a sequential substitution and flowchart based solver with loose tolerances. That model was also
implemented, but found to be slower and less reliable than this implementation.

References

[1]

Examples

>>> Tcs = [305.322, 540.13]
>>> Pcs = [4872200.0, 2736000.0]
>>> Tbs = [184.55, 371.53]
>>> zs = [0.4, 0.6]
>>> flash_Tb_Tc_Pc(zs=zs, Tcs=Tcs, Pcs=Pcs, Tbs=Tbs, T=300, P=1e5)
(300, 100000.0, 0.3807040748145, [0.0311578430365, 0.968842156963], [0.
→˓9999999998827, 1.1729141887e-10])

1.11.3 Equilibrium Constants

chemicals.flash_basic.K_value(P=None, Psat=None, phi_l=None, phi_g=None, gamma=None,
Poynting=1.0)

Calculates the equilibrium K-value assuming Raoult’s law, or an equation of state model, or an activity coefficient
model, or a combined equation of state-activity model.

The calculation procedure will use the most advanced approach with the provided inputs:

• If P, Psat, phi_l, phi_g, and gamma are provided, use the combined approach.

• If P, Psat, and gamma are provided, use the modified Raoult’s law.

• If phi_l and phi_g are provided, use the EOS only method.

• If P and Psat are provided, use Raoult’s law.

Definitions:

𝐾𝑖 =
𝑦𝑖
𝑥𝑖

96 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Raoult’s law:

𝐾𝑖 =
𝑃 𝑠𝑎𝑡
𝑖

𝑃

Activity coefficient, no EOS (modified Raoult’s law):

𝐾𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖

𝑃

Equation of state only:

𝐾𝑖 =
𝜑𝑙𝑖
𝜑𝑣𝑖

=
𝑓 𝑙𝑖𝑦𝑖
𝑓𝑣𝑖 𝑥𝑖

Combined approach (liquid reference fugacity coefficient is normally calculated the saturation pressure for it as
a pure species; vapor fugacity coefficient calculated normally):

𝐾𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖 𝜑𝑙,𝑟𝑒𝑓𝑖

𝜑𝑣𝑖𝑃

Combined approach, with Poynting Correction Factor (liquid molar volume in the integral is for i as a pure species
only):

𝐾𝑖 =

𝛾𝑖𝑃
𝑠𝑎𝑡
𝑖 𝜑𝑙,𝑟𝑒𝑓𝑖 exp

[︂ ∫︀ 𝑃
𝑃𝑠𝑎𝑡
𝑖

𝑉 𝑙
𝑖 𝑑𝑃

𝑅𝑇

]︂
𝜑𝑣𝑖𝑃

Parameters
P [float] System pressure, optional

Psat [float] Vapor pressure of species i, [Pa]

phi_l [float] Fugacity coefficient of species i in the liquid phase, either at the system conditions
(EOS-only case) or at the saturation pressure of species i as a pure species (reference condi-
tion for the combined approach), optional [-]

phi_g [float] Fugacity coefficient of species i in the vapor phase at the system conditions, op-
tional [-]

gamma [float] Activity coefficient of species i in the liquid phase, optional [-]

Poynting [float] Poynting correction factor, optional [-]

Returns
K [float] Equilibrium K value of component i, calculated with an approach depending on the

provided inputs [-]

Notes

The Poynting correction factor is normally simplified as follows, due to a liquid’s low pressure dependency:

𝐾𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖 𝜑𝑙,𝑟𝑒𝑓𝑖 exp

[︁
𝑉𝑙(𝑃−𝑃 𝑠𝑎𝑡

𝑖)
𝑅𝑇

]︁
𝜑𝑣𝑖𝑃

1.11. Ideal VLE and Flash Initialization (chemicals.flash_basic) 97

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

Raoult’s law:

>>> K_value(101325, 3000.)
0.029607698001480384

Modified Raoult’s law:

>>> K_value(P=101325, Psat=3000, gamma=0.9)
0.026646928201332347

EOS-only approach:

>>> K_value(phi_l=1.6356, phi_g=0.88427)
1.8496613025433408

Gamma-phi combined approach:

>>> K_value(P=1E6, Psat=1938800, phi_l=1.4356, phi_g=0.88427, gamma=0.92)
2.8958055544121137

Gamma-phi combined approach with a Poynting factor:

>>> K_value(P=1E6, Psat=1938800, phi_l=1.4356, phi_g=0.88427, gamma=0.92,
... Poynting=0.999)
2.8929097488577016

chemicals.flash_basic.Wilson_K_value(T, P, Tc, Pc, omega)
Calculates the equilibrium K-value for a component using Wilson’s heuristic mode. This is very useful for
initialization of stability tests and flashes.

𝐾𝑖 =
𝑃𝑐

𝑃
exp

(︂
5.37(1 + 𝜔)

[︂
1 − 𝑇𝑐

𝑇

]︂)︂
Parameters

T [float] System temperature, [K]

P [float] System pressure, [Pa]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
K [float] Equilibrium K value of component, calculated via the Wilson heuristic [-]

98 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

There has been little literature exploration of other formlulas for the same purpose. This model may be useful
even for activity coefficient models.

Note the K-values are independent of composition; the correlation is applicable up to 3.5 MPa.

A description for how this function was generated can be found in [2].

References

[1], [2]

Examples

Ethane at 270 K and 76 bar:

>>> Wilson_K_value(270.0, 7600000.0, 305.4, 4880000.0, 0.098)
0.2963932297479371

The “vapor pressure” predicted by this equation can be calculated by multiplying by pressure:

>>> Wilson_K_value(270.0, 7600000.0, 305.4, 4880000.0, 0.098)*7600000.0
2252588.546084322

chemicals.flash_basic.PR_water_K_value(T, P, Tc, Pc)
Calculates the equilibrium K-value for a component against water according to the Peng and Robinson (1976)
heuristic.

𝐾𝑖 = 106
𝑃𝑟𝑖

𝑇𝑟𝑖

Parameters
T [float] System temperature, [K]

P [float] System pressure, [Pa]

Tc [float] Critical temperature of chemical [K]

Pc [float] Critical pressure of chemical [Pa]

Returns
K [float] Equilibrium K value of component with water as the other phase (not as the reference),

calculated via this heuristic [-]

Notes

Note the K-values are independent of composition.

1.11. Ideal VLE and Flash Initialization (chemicals.flash_basic) 99

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Octane at 300 K and 1 bar:

>>> PR_water_K_value(300, 1e5, 568.7, 2490000.0)
76131.19143239626

1.12 Heat Capacity (chemicals.heat_capacity)

This module contains many heat capacity model equations, heat capacity estimation equations, enthalpy and entropy
integrals of those heat capacity equations, enthalpy/entropy flash initialization routines, and many dataframes of coef-
ficients.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Gas Heat Capacity Model Equations

• Gas Heat Capacity Estimation Models

• Gas Heat Capacity Theory

• Liquid Heat Capacity Model Equations

• Liquid Heat Capacity Estimation Models

• Solid Heat Capacity Estimation Models

• Utility methods

• Fit Coefficients

1.12.1 Gas Heat Capacity Model Equations

chemicals.heat_capacity.TRCCp(T, a0, a1, a2, a3, a4, a5, a6, a7)
Calculates ideal gas heat capacity using the model developed in [1]. The ideal gas heat capacity is given by:

𝐶𝑝 = 𝑅
(︀
𝑎0 + (𝑎1/𝑇

2) exp(−𝑎2/𝑇) + 𝑎3𝑦
2 + (𝑎4 − 𝑎5/(𝑇 − 𝑎7)2)𝑦𝑗

)︀
𝑦 =

𝑇 − 𝑎7
𝑇 + 𝑎6

for 𝑇 > 𝑎7 otherwise 0

Parameters
T [float] Temperature [K]

a1-a7 [float] Coefficients

Returns
Cp [float] Ideal gas heat capacity , [J/mol/K]

100 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

j is set to 8. Analytical integrals are available for this expression.

References

[1]

Examples

>>> TRCCp(300, 4.0, 7.65E5, 720., 3.565, -0.052, -1.55E6, 52., 201.)
42.065271080974654

chemicals.heat_capacity.TRCCp_integral(T, a0, a1, a2, a3, a4, a5, a6, a7, I=0)
Integrates ideal gas heat capacity using the model developed in [1]. Best used as a delta only. The difference in
enthalpy with respect to 0 K is given by:

𝐻(𝑇) −𝐻𝑟𝑒𝑓

𝑅𝑇
= 𝑎0 + 𝑎1𝑥(𝑎2)/(𝑎2𝑇) + 𝐼/𝑇 + ℎ(𝑇)/𝑇

ℎ(𝑇) = (𝑎5 + 𝑎7)

[︂
(2𝑎3 + 8𝑎4) ln(1 − 𝑦) +

{︂
𝑎3

(︂
1 +

1

1 − 𝑦

)︂
+ 𝑎4

(︂
7 +

1

1 − 𝑦

)︂}︂
𝑦 + 𝑎4

{︀
3𝑦2 + (5/3)𝑦3 + 𝑦4 + (3/5)𝑦5 + (1/3)𝑦6

}︀
+ (1/7)

{︂
𝑎4 −

𝑎5
(𝑎6 + 𝑎7)2

}︂
𝑦7
]︂

ℎ(𝑇) = 0 for 𝑇 ≤ 𝑎7𝑦 =
𝑇 − 𝑎7
𝑇 + 𝑎6

for 𝑇 > 𝑎7 otherwise 0

Parameters
T [float] Temperature [K]

a1-a7 [float] Coefficients

I [float, optional] Integral offset

Returns
H-H(0) [float] Difference in enthalpy from 0 K , [J/mol]

Notes

Analytical integral as provided in [1] and verified with numerical integration.

References

[1]

1.12. Heat Capacity (chemicals.heat_capacity) 101

chemicals Documentation, Release 1.1.4

Examples

>>> TRCCp_integral(298.15, 4.0, 7.65E5, 720., 3.565, -0.052, -1.55E6, 52.,
... 201., 1.2)
10802.536262068483

chemicals.heat_capacity.TRCCp_integral_over_T(T, a0, a1, a2, a3, a4, a5, a6, a7, J=0)
Integrates ideal gas heat capacity over T using the model developed in [1]. Best used as a delta only. The
difference in ideal-gas entropy with respect to 0 K is given by:

𝑆∘

𝑅
= 𝐽 + 𝑎0 ln𝑇 +

𝑎1
𝑎22

(︁
1 +

𝑎2
𝑇

)︁
𝑥(𝑎2) + 𝑠(𝑇)𝑠(𝑇) =

[︃{︃
𝑎3 +

(︂
𝑎4𝑎

2
7 − 𝑎5
𝑎26

)︂(︂
𝑎7
𝑎6

)︂4
}︃(︂

𝑎7
𝑎6

)︂2

ln 𝑧 + (𝑎3 + 𝑎4) ln

(︂
𝑇 + 𝑎6
𝑎6 + 𝑎7

)︂
+

7∑︁
𝑖=1

{︃(︂
𝑎4𝑎

2
7 − 𝑎5
𝑎26

)︂(︂
−𝑎7
𝑎6

)︂6−𝑖

− 𝑎4

}︃
𝑦𝑖

𝑖
−
{︂
𝑎3
𝑎6

(𝑎6 + 𝑎7) +
𝑎5𝑦

6

7𝑎7(𝑎6 + 𝑎7)

}︂
𝑦

]︃

𝑠(𝑇) = 0 for 𝑇 ≤ 𝑎7

𝑧 =
𝑇

𝑇 + 𝑎6
· 𝑎7 + 𝑎6

𝑎7

𝑦 =
𝑇 − 𝑎7
𝑇 + 𝑎6

for 𝑇 > 𝑎7 otherwise 0

Parameters
T [float] Temperature [K]

a1-a7 [float] Coefficients

J [float, optional] Integral offset

Returns
S-S(0) [float] Difference in entropy from 0 K , [J/mol/K]

Notes

Analytical integral as provided in [1] and verified with numerical integration.

References

[1]

Examples

>>> TRCCp_integral_over_T(300, 4.0, 124000, 245, 50.539, -49.469,
... 220440000, 560, 78)
213.80156219151888

chemicals.heat_capacity.Shomate(T, A, B, C, D, E)
Calculates heat capacity using the Shomate polynomial model [1]. The heat capacity is given by:

𝐶𝑝 = 𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 +
𝐸

𝑇 2

Parameters
T [float] Temperature [K]

102 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

A [float] Parameter, [J/(mol*K)]

B [float] Parameter, [J/(mol*K^2)]

C [float] Parameter, [J/(mol*K^3)]

D [float] Parameter, [J/(mol*K^4)]

E [float] Parameter, [J*K/(mol)]

Returns
Cp [float] Heat capacity , [J/mol/K]

Notes

Analytical integrals are available for this expression. In some sources such as [1], the equation is written with
temperature in units of kilokelvin. The coefficients can be easily adjusted to be in the proper SI form.

References

[1]

Examples

Coefficients for water vapor from [1]:

>>> water_low_gas_coeffs = [30.09200, 6.832514/1e3, 6.793435/1e6, -2.534480/1e9, 0.
→˓082139*1e6]
>>> Shomate(500, *water_low_gas_coeffs)
35.21836175

chemicals.heat_capacity.Shomate_integral(T, A, B, C, D, E)
Calculates the enthalpy integral using the Shomate polynomial model [1]. The difference in enthalpy with respect
to 0 K is given by:

𝐻(𝑇) −𝐻0 = 𝐴𝑇 +
𝐵𝑇 2

2
+
𝐶𝑇 3

3
+
𝐷𝑇 4

4
− 𝐸

𝑇

Parameters
T [float] Temperature [K]

A [float] Parameter, [J/(mol*K)]

B [float] Parameter, [J/(mol*K^2)]

C [float] Parameter, [J/(mol*K^3)]

D [float] Parameter, [J/(mol*K^4)]

E [float] Parameter, [J*K/(mol)]

Returns
H-H(0) [float] Difference in enthalpy from 0 K , [J/mol]

1.12. Heat Capacity (chemicals.heat_capacity) 103

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Coefficients for water vapor from [1]:

>>> water_low_gas_coeffs = [30.09200, 6.832514/1e3, 6.793435/1e6, -2.534480/1e9, 0.
→˓082139*1e6]
>>> Shomate_integral(500, *water_low_gas_coeffs)
15979.2447

chemicals.heat_capacity.Shomate_integral_over_T(T, A, B, C, D, E)
Integrates the heat capacity over T using the model developed in [1]. The difference in entropy with respect to 0
K is given by:

𝑠(𝑇) = 𝐴 log (𝑇) +𝐵𝑇 +
𝐶𝑇 2

2
+
𝐷𝑇 3

3
− 𝐸

2𝑇 2

Parameters
T [float] Temperature [K]

A [float] Parameter, [J/(mol*K)]

B [float] Parameter, [J/(mol*K^2)]

C [float] Parameter, [J/(mol*K^3)]

D [float] Parameter, [J/(mol*K^4)]

E [float] Parameter, [J*K/(mol)]

Returns
S-S(0) [float] Difference in entropy from 0 K , [J/mol/K]

References

[1]

Examples

Coefficients for water vapor from [1]:

>>> water_low_gas_coeffs = [30.09200, 6.832514/1e3, 6.793435/1e6, -2.534480/1e9, 0.
→˓082139*1e6]
>>> Shomate_integral_over_T(500, *water_low_gas_coeffs)
191.00554

class chemicals.heat_capacity.ShomateRange(coeffs, Tmin, Tmax)
Implementation of a range of the Shomate equation presented in [1] for calculating the heat capacity of a chemical.
Implements the enthalpy and entropy integrals as well.

Parameters
coeffs [list[float]] Six coefficients for the equation, [-]

104 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Tmin [float] Minimum temperature any experimental data was available at, [K]

Tmax [float] Maximum temperature any experimental data was available at, [K]

References

[1]

Methods

calculate(T) Return heat capacity as a function of temperature.
calculate_integral(Ta, Tb) Return the enthalpy integral of heat capacity from Ta

to Tb.
calculate_integral_over_T(Ta, Tb) Return the entropy integral of heat capacity from Ta

to Tb.

calculate(T)
Return heat capacity as a function of temperature.

Parameters
T [float] Temperature, [K]

Returns
Cp [float] Liquid heat capacity as T, [J/mol/K]

calculate_integral(Ta, Tb)
Return the enthalpy integral of heat capacity from Ta to Tb.

Parameters
Ta [float] Initial temperature, [K]

Tb [float] Final temperature, [K]

Returns
dH [float] Enthalpy difference between Ta and Tb, [J/mol]

calculate_integral_over_T(Ta, Tb)
Return the entropy integral of heat capacity from Ta to Tb.

Parameters
Ta [float] Initial temperature, [K]

Tb [float] Final temperature, [K]

Returns
dS [float] Entropy difference between Ta and Tb, [J/mol/K]

chemicals.heat_capacity.Poling(T, a, b, c, d, e)
Return the ideal-gas molar heat capacity of a chemical using polynomial regressed coefficients as described by
Poling et. al. [1].

Parameters
T [float] Temperature, [K]

a,b,c,d,e [float] Regressed coefficients.

1.12. Heat Capacity (chemicals.heat_capacity) 105

chemicals Documentation, Release 1.1.4

Returns
Cpgm [float] Gas molar heat capacity, [J/mol/K]

See also:

Poling_integral

Poling_integral_over_T

Notes

The ideal gas heat capacity is given by:

𝐶𝑛 = 𝑅 * (𝑎+ 𝑏𝑇 + 𝑐𝑇 2 + 𝑑𝑇 3 + 𝑒𝑇 4)

The data is based on the Poling data bank.

References

[1]

Examples

Compute the gas heat capacity of Methane at 300 K:

>>> Poling(T=300., a=4.568, b=-0.008975, c=3.631e-05, d=-3.407e-08, e=1.091e-11)
35.850973388425

chemicals.heat_capacity.Poling_integral(T, a, b, c, d, e)
Return the integral of the ideal-gas constant-pressure heat capacity of a chemical using polynomial regressed
coefficients as described by Poling et. al. [1].

Parameters
T [float] Temperature, [K]

a,b,c,d,e [float] Regressed coefficients.

Returns
H [float] Difference in enthalpy from 0 K, [J/mol]

See also:

Poling

Poling_integral_over_T

106 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Integral was computed with SymPy.

References

[1]

Examples

Compute the gas enthalpy of Methane at 300 K (with reference to 0 K):

>>> Poling_integral(T=300., a=4.568, b=-0.008975, c=3.631e-05, d=-3.407e-08, e=1.
→˓091e-11)
10223.67533722261

chemicals.heat_capacity.Poling_integral_over_T(T, a, b, c, d, e)
Return the integral over temperature of the ideal-gas constant-pressure heat capacity of a chemical using poly-
nomial regressed coefficients as described by Poling et. al. [1].

Parameters
T [float] Temperature, [K]

a,b,c,d,e [float] Regressed coefficients.

Returns
S [float] Difference in entropy from 0 K, [J/mol/K]

See also:

Poling

Poling_integral

Notes

Integral was computed with SymPy.

References

[1]

Examples

Compute the gas entropy of Methane at 300 K (with reference to 0 K):

>>> Poling_integral_over_T(T=300., a=4.568, b=-0.008975, c=3.631e-05, d=-3.407e-08,␣
→˓e=1.091e-11)
205.46526328058

1.12. Heat Capacity (chemicals.heat_capacity) 107

chemicals Documentation, Release 1.1.4

chemicals.heat_capacity.PPDS2(T, Ts, C_low, C_inf, a1, a2, a3, a4, a5)
Calculates the ideal-gas heat capacity using the [1] emperical (parameter-regressed) method, called the PPDS 2
equation for heat capacity.

𝐶0
𝑝

𝑅
= 𝐶𝑙𝑜𝑤 + (𝐶inf −𝐶𝑙𝑜𝑤)𝑦2(1+(𝑦−1)[

∑︀4
𝑖=0 𝑎𝑖𝑦𝑖])

𝑦 =
𝑇

𝑇 + 𝑇𝑠
Parameters

T [float] Temperature of fluid [K]

Ts [float] Fit temperature; no physical meaning [K]

C_low [float] Fit parameter equal to Cp/R at a low temperature, [-]

C_inf [float] Fit parameter equal to Cp/R at a high temperature, [-]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

a5 [float] Regression parameter, [-]

Returns
Cpgm [float] Gas molar heat capacity, [J/mol/K]

References

[1]

Examples

n-pentane at 350 K from [1]

>>> PPDS2(T=350.0, Ts=462.493, C_low=4.54115, C_inf=9.96847, a1=-103.419, a2=695.
→˓484, a3=-2006.1, a4=2476.84, a5=-1186.47)
136.46338956689

1.12.2 Gas Heat Capacity Estimation Models

chemicals.heat_capacity.Lastovka_Shaw(T, similarity_variable, cyclic_aliphatic=False, MW=None,
term_A=None)

Calculate ideal-gas constant-pressure heat capacity with the similarity variable concept and method as shown in
[1].

𝑡𝑒𝑟𝑚𝐴 = 𝐴1 +𝐴2 * 𝑎 if cyclic aliphatic

𝑡𝑒𝑟𝑚𝐴 =

(︃
𝐴2 +

𝐴1 −𝐴2

1 + exp(𝛼−𝐴3

𝐴4
)

)︃
if not cyclic aliphatic

𝐶0
𝑝 = 𝑡𝑒𝑟𝑚𝐴 + (𝐵11 +𝐵12𝛼)

(︂
− (𝐶11 + 𝐶12𝛼)

𝑇

)︂2
exp(−(𝐶11 + 𝐶12𝛼)/𝑇)

[1 − exp(−(𝐶11 + 𝐶12𝛼)/𝑇)]2
+ (𝐵21 +𝐵22𝛼)

(︂
− (𝐶21 + 𝐶22𝛼)

𝑇

)︂2
exp(−(𝐶21 + 𝐶22𝛼)/𝑇)

[1 − exp(−(𝐶21 + 𝐶22𝛼)/𝑇)]2

108 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
T [float] Temperature of gas [K]

similarity_variable [float] Similarity variable as defined in [1], [mol/g]

cyclic_aliphatic: bool, optional Whether or not chemical is cyclic aliphatic, [-]

MW [float, optional] Molecular weight, [g/mol]

term_A [float, optional] Term A in Lastovka-Shaw equation, [J/g]

Returns
Cpg [float] Gas constant-pressure heat capacity, J/mol/K if MW given; J/kg/K otherwise

Notes

Original model is in terms of J/g/K.

A1 = -0.1793547 text{ if cyclic aliphatic}

A1 = 0.58 text{ if not cyclic aliphatic}

A2 = 3.86944439 text{ if cyclic aliphatic}

A2 = 1.25 text{ if not cyclic aliphatic}

A3 = 0.17338003

A4 = 0.014

B11 = 0.73917383

B12 = 8.88308889

C11 = 1188.28051

C12 = 1813.04613

B21 = 0.0483019

B22 = 4.35656721

C21 = 2897.01927

C22 = 5987.80407

References

[1]

Examples

Estimate the heat capacity of n-decane gas in J/kg/K:

>>> Lastovka_Shaw(1000.0, 0.22491)
3730.2807601773725

Estimate the heat capacity of n-decane gas in J/mol/K:

1.12. Heat Capacity (chemicals.heat_capacity) 109

chemicals Documentation, Release 1.1.4

>>> Lastovka_Shaw(1000.0, 0.22491, MW=142.28)
530.7443465580366

chemicals.heat_capacity.Lastovka_Shaw_integral(T, similarity_variable, cyclic_aliphatic=False,
MW=None, term_A=None)

Calculate the integral of ideal-gas constant-pressure heat capacity with the similarity variable concept and method
as shown in [1].

Parameters
T [float] Temperature of gas [K]

cyclic_aliphatic: bool, optional Whether or not chemical is cyclic aliphatic, [-]

MW [float, optional] Molecular weight, [g/mol]

term_A [float, optional] Term A in Lastovka-Shaw equation, [J/g]

Returns
H [float] Difference in enthalpy from 0 K, J/mol if MW given; J/kg otherwise

See also:

Lastovka_Shaw

Lastovka_Shaw_integral_over_T

Notes

Original model is in terms of J/g/K. Integral was computed with SymPy.

References

[1]

Examples

>>> Lastovka_Shaw_integral(300.0, 0.1333)
5283095.816018478

chemicals.heat_capacity.Lastovka_Shaw_integral_over_T(T, similarity_variable, cyclic_aliphatic=False,
MW=None, term_A=None)

Calculate the integral over temperature of ideal-gas constant-pressure heat capacity with the similarity variable
concept and method as shown in [1].

Parameters
T [float] Temperature of gas [K]

similarity_variable [float] Similarity variable as defined in [1], [mol/g]

cyclic_aliphatic: bool, optional Whether or not chemical is cyclic aliphatic, [-]

MW [float, optional] Molecular weight, [g/mol]

term_A [float, optional] Term A in Lastovka-Shaw equation, [J/g]

Returns

110 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

S [float] Difference in entropy from 0 K, [J/mol/K if MW given; J/kg/K otherwise]

See also:

Lastovka_Shaw

Lastovka_Shaw_integral

Notes

Original model is in terms of J/g/K. Note that the model is for predicting mass heat capacity, not molar heat
capacity like most other methods! Integral was computed with SymPy.

References

[1]

Examples

>>> Lastovka_Shaw_integral_over_T(300.0, 0.1333)
3609.791928945323

chemicals.heat_capacity.Lastovka_Shaw_T_for_Hm(Hm, MW, similarity_variable, T_ref=298.15,
factor=1.0, cyclic_aliphatic=None, term_A=None)

Uses the Lastovka-Shaw ideal-gas heat capacity correlation to solve for the temperature which has a specified
Hm, as is required in PH flashes, as shown in [1].

Parameters
Hm [float] Molar enthalpy spec, [J/mol]

MW [float] Molecular weight of the pure compound or mixture average, [g/mol]

similarity_variable [float] Similarity variable as defined in [1], [mol/g]

T_ref [float, optional] Reference enthlapy temperature, [K]

factor [float, optional] A factor to increase or decrease the predicted value of the method, [-]

cyclic_aliphatic: bool, optional Whether or not chemical is cyclic aliphatic, [-]

term_A [float, optional] Term A in Lastovka-Shaw equation, [J/g]

Returns
T [float] Temperature of gas to meet the molar enthalpy spec, [K]

See also:

Lastovka_Shaw

Lastovka_Shaw_integral

Lastovka_Shaw_integral_over_T

1.12. Heat Capacity (chemicals.heat_capacity) 111

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Lastovka_Shaw_T_for_Hm(Hm=55000, MW=80.0, similarity_variable=0.23)
600.0943429567602

chemicals.heat_capacity.Lastovka_Shaw_T_for_Sm(Sm, MW, similarity_variable, T_ref=298.15,
factor=1.0, cyclic_aliphatic=None, term_A=None)

Uses the Lastovka-Shaw ideal-gas heat capacity correlation to solve for the temperature which has a specified
Sm, as is required in PS flashes, as shown in [1].

Parameters
Sm [float] Molar entropy spec, [J/mol/K]

MW [float] Molecular weight of the pure compound or mixture average, [g/mol]

similarity_variable [float] Similarity variable as defined in [1], [mol/g]

T_ref [float, optional] Reference enthlapy temperature, [K]

factor [float, optional] A factor to increase or decrease the predicted value of the method, [-]

cyclic_aliphatic: bool, optional Whether or not chemical is cyclic aliphatic, [-]

term_A [float, optional] Term A in Lastovka-Shaw equation, [J/g]

Returns
T [float] Temperature of gas to meet the molar entropy spec, [K]

See also:

Lastovka_Shaw

Lastovka_Shaw_integral

Lastovka_Shaw_integral_over_T

References

[1]

Examples

>>> Lastovka_Shaw_T_for_Sm(Sm=112.80, MW=72.151, similarity_variable=0.2356)
603.4298291570276

chemicals.heat_capacity.Lastovka_Shaw_term_A(similarity_variable, cyclic_aliphatic)
Return Term A in Lastovka-Shaw equation.

Parameters
similarity_variable [float] Similarity variable as defined in [1], [mol/g]

cyclic_aliphatic: bool, optional Whether or not chemical is cyclic aliphatic, [-]

112 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Returns
term_A [float] Term A in Lastovka-Shaw equation, [J/g]

See also:

Lastovka_Shaw

Lastovka_Shaw_integral

Lastovka_Shaw_integral_over_T

References

[1]

1.12.3 Gas Heat Capacity Theory

chemicals.heat_capacity.Cpg_statistical_mechanics(T, thetas, linear=False)
Calculates the ideal-gas heat capacity using of a molecule using its characteristic temperatures, themselves calcu-
lated from each of the frequencies of vibration of the molecule. These can be obtained from spectra or quantum
mechanical calculations.

𝐶0
𝑝

𝑅
=
𝐶0

𝑝

𝑅
rotational +

𝐶0
𝑝

𝑅
translational +

𝐶0
𝑝

𝑅
vibrational

𝐶0
𝑝

𝑅
rotational = 2.5

𝐶0
𝑝

𝑅
translational = 1 if linear else 1.5

𝐶0
𝑝

𝑅
vibrational =

3𝑛𝐴−6+𝛿∑︁
𝑖=1

(︂
𝜃𝑖
𝑇

)︂2
[︃

exp(𝜃𝑖/𝑇)

(exp(𝜃𝑖/𝑇) − 1)
2

]︃
In the above equation, 𝑑𝑒𝑙𝑡𝑎 is 1 if the molecule is linear otherwise 0.

Parameters
T [float] Temperature of fluid [K]

thetas [list[float]] Characteristic temperatures, [K]

Returns
Cpgm [float] Gas molar heat capacity at specified temperature, [J/mol/K]

Notes

This equation implies that there is a maximum heat capacity for an ideal gas, and all diatomic or larger gases

Monoatomic gases have a simple heat capacity of 2.5R, the lower limit for ideal gas heat capacity. This function
does not cover that type of a gas. At very low temperatures hydrogen behaves like a monoatomic gas as well.

1.12. Heat Capacity (chemicals.heat_capacity) 113

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Sample calculation in [1] for ammonia:

>>> thetas = [1360, 2330, 2330, 4800, 4880, 4880]
>>> Cpg_statistical_mechanics(300.0, thetas)
35.55983440173097

chemicals.heat_capacity.Cpg_statistical_mechanics_integral(T, thetas, linear=False)
Calculates the integral of ideal-gas heat capacity using of a molecule using its characteristic temperatures.∫︁

𝐶0
𝑝 = 2.5𝑅𝑇 +𝑅𝑇 if linear else 1.5𝑅𝑇 +

∫︁
𝐶0

𝑝vibrational

∫︁
𝐶0

𝑝vibrational = 𝑅

3𝑛𝐴−6+𝛿∑︁
𝑖=1

𝜃𝑖
exp(𝜃𝑖/𝑇) − 1

Parameters
T [float] Temperature of fluid [K]

thetas [list[float]] Characteristic temperatures, [K]

Returns
H [float] Integrated gas molar heat capacity at specified temperature, [J/mol]

Examples

>>> thetas = [1360, 2330, 2330, 4800, 4880, 4880]
>>> Cpg_statistical_mechanics_integral(300.0, thetas)
10116.6053294

chemicals.heat_capacity.Cpg_statistical_mechanics_integral_over_T(T, thetas, linear=False)

Calculates the integral over T of ideal-gas heat capacity using of a molecule using its characteristic temper-
atures. ∫︁

𝐶0
𝑝

𝑇
= 2.5𝑅 log(𝑇) + 1𝑅 log(𝑇) if linear else 1.5𝑅 log(𝑇) +

∫︁
𝐶0

𝑝

𝑇
vibrational

∫︁
𝐶0

𝑝

𝑇
vibrational =

3𝑛𝐴−6+𝛿∑︁
𝑖=1

𝜃𝑖
𝑇 exp(𝜃𝑖/𝑇) − 𝑇

− log(exp(𝜃𝑖/𝑇) − 1) + 𝜃𝑖/𝑇

Parameters
T [float] Temperature of fluid [K]

thetas [list[float]] Characteristic temperatures, [K]

Returns
S [float] Entropy integral of gas molar heat capacity at specified temperature, [J/mol/K]

114 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> thetas = [1360, 2330, 2330, 4800, 4880, 4880]
>>> Cpg_statistical_mechanics_integral_over_T(300.0, thetas)
190.25658088

chemicals.heat_capacity.vibration_frequency_cm_to_characteristic_temperature(frequency,
scale=1)

Convert a vibrational frequency in units of 1/cm to a characteristic temperature for use in calculating heat capacity.

𝜃 =
100 · ℎ · 𝑐 · scale

𝑘

Parameters
frequency [float] Vibrational frequency, [1/cm]

scale [float] A scale factor used to adjust the frequency for differences in experimental vs. cal-
culated values, [-]

Returns
theta [float] Characteristic temperature [K]

Notes

In the equation, k is Boltzmann’s constant, c is the speed of light, and h is the Planck constant.

A scale factor for the MP2/6-31G** method recommended by NIST is 0.9365. Using this scale factor will not
improve results in all cases however.

Examples

>>> vibration_frequency_cm_to_characteristic_temperature(667)
959.6641613636505

1.12.4 Liquid Heat Capacity Model Equations

chemicals.heat_capacity.Zabransky_quasi_polynomial(T, Tc, a1, a2, a3, a4, a5, a6)
Calculates liquid heat capacity using the model developed in [1].

𝐶

𝑅
= 𝐴1 ln(1 − 𝑇𝑟) +

𝐴2

1 − 𝑇𝑟
+

𝑚∑︁
𝑗=0

𝐴𝑗+3𝑇
𝑗
𝑟

Parameters
T [float] Temperature [K]

Tc [float] Critical temperature of fluid, [K]

a1-a6 [float] Coefficients

Returns
Cp [float] Liquid heat capacity, [J/mol/K]

1.12. Heat Capacity (chemicals.heat_capacity) 115

chemicals Documentation, Release 1.1.4

Notes

Used only for isobaric heat capacities, not saturation heat capacities. Designed for reasonable extrapolation
behavior caused by using the reduced critical temperature. Used by the authors of [1] when critical temperature
was available for the fluid. Analytical integrals are available for this expression.

References

[1]

Examples

>>> Zabransky_quasi_polynomial(330, 591.79, -3.12743, 0.0857315, 13.7282, 1.28971,␣
→˓6.42297, 4.10989)
165.472878778683

chemicals.heat_capacity.Zabransky_quasi_polynomial_integral(T, Tc, a1, a2, a3, a4, a5, a6)
Calculates the integral of liquid heat capacity using the quasi-polynomial model developed in [1].

Parameters
T [float] Temperature [K]

a1-a6 [float] Coefficients

Returns
H [float] Difference in enthalpy from 0 K, [J/mol]

Notes

The analytical integral was derived with SymPy; it is a simple polynomial plus some logarithms.

References

[1]

Examples

>>> H2 = Zabransky_quasi_polynomial_integral(300, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> H1 = Zabransky_quasi_polynomial_integral(200, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> H2 - H1
14662.031376528757

chemicals.heat_capacity.Zabransky_quasi_polynomial_integral_over_T(T, Tc, a1, a2, a3, a4, a5, a6)
Calculates the integral of liquid heat capacity over T using the quasi-polynomial model developed in [1].

Parameters
T [float] Temperature [K]

a1-a6 [float] Coefficients

116 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Returns
S [float] Difference in entropy from 0 K, [J/mol/K]

Notes

The analytical integral was derived with Sympy. It requires the Polylog(2,x) function, which is unimplemented
in SciPy. A very accurate numerical approximation was implemented as fluids.numerics.polylog2. Rela-
tively slow due to the use of that special function.

References

[1]

Examples

>>> S2 = Zabransky_quasi_polynomial_integral_over_T(300, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> S1 = Zabransky_quasi_polynomial_integral_over_T(200, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> S2 - S1
59.16999297436473

chemicals.heat_capacity.Zabransky_cubic(T, a1, a2, a3, a4)
Calculates liquid heat capacity using the model developed in [1].

𝐶

𝑅
=

3∑︁
𝑗=0

𝐴𝑗+1

(︂
𝑇

100K

)︂𝑗

Parameters
T [float] Temperature [K]

a1 [float] Coefficient, [-]

a2 [float] Coefficient, [-]

a3 [float] Coefficient, [-]

a4 [float] Coefficient, [-]

Returns
Cp [float] Liquid heat capacity, [J/mol/K]

Notes

Most often form used in [1]. Analytical integrals are available for this expression.

1.12. Heat Capacity (chemicals.heat_capacity) 117

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Zabransky_cubic(298.15, 20.9634, -10.1344, 2.8253, -0.256738)
75.31465144297

chemicals.heat_capacity.Zabransky_cubic_integral(T, a1, a2, a3, a4)
Calculates the integral of liquid heat capacity using the model developed in [1].

Parameters
T [float] Temperature [K]

a1 [float] Coefficient, [-]

a2 [float] Coefficient, [-]

a3 [float] Coefficient, [-]

a4 [float] Coefficient, [-]

Returns
H [float] Difference in enthalpy from 0 K, [J/mol]

Notes

The analytical integral was derived with Sympy; it is a simple polynomial.

References

[1]

Examples

>>> Zabransky_cubic_integral(298.15, 20.9634, -10.1344, 2.8253, -0.256738)
31051.690370364

chemicals.heat_capacity.Zabransky_cubic_integral_over_T(T, a1, a2, a3, a4)
Calculates the integral of liquid heat capacity over T using the model developed in [1].

Parameters
T [float] Temperature [K]

a1 [float] Coefficient, [-]

a2 [float] Coefficient, [-]

a3 [float] Coefficient, [-]

a4 [float] Coefficient, [-]

Returns
S [float] Difference in entropy from 0 K, [J/mol/K]

118 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The analytical integral was derived with Sympy; it is a simple polynomial, plus a logarithm

References

[1]

Examples

>>> Zabransky_cubic_integral_over_T(298.15, 20.9634, -10.1344, 2.8253,
... -0.256738)
24.732465342840

class chemicals.heat_capacity.ZabranskySpline(coeffs, Tmin, Tmax)
Implementation of the cubic spline method presented in [1] for calculating the heat capacity of a chemical.
Implements the enthalpy and entropy integrals as well.

𝐶

𝑅
=

3∑︁
𝑗=0

𝐴𝑗+1

(︂
𝑇

100

)︂𝑗

Parameters
coeffs [list[float]] Six coefficients for the equation, [-]

Tmin [float] Minimum temperature any experimental data was available at, [K]

Tmax [float] Maximum temperature any experimental data was available at, [K]

References

[1]

Methods

calculate(T) Return heat capacity as a function of temperature.
calculate_integral(Ta, Tb) Return the enthalpy integral of heat capacity from Ta

to Tb.
calculate_integral_over_T(Ta, Tb) Return the entropy integral of heat capacity from Ta

to Tb.

calculate(T)
Return heat capacity as a function of temperature.

Parameters
T [float] Temperature, [K]

Returns
Cp [float] Liquid heat capacity as T, [J/mol/K]

1.12. Heat Capacity (chemicals.heat_capacity) 119

chemicals Documentation, Release 1.1.4

calculate_integral(Ta, Tb)
Return the enthalpy integral of heat capacity from Ta to Tb.

Parameters
Ta [float] Initial temperature, [K]

Tb [float] Final temperature, [K]

Returns
dH [float] Enthalpy difference between Ta and Tb, [J/mol]

calculate_integral_over_T(Ta, Tb)
Return the entropy integral of heat capacity from Ta to Tb.

Parameters
Ta [float] Initial temperature, [K]

Tb [float] Final temperature, [K]

Returns
dS [float] Entropy difference between Ta and Tb, [J/mol/K]

class chemicals.heat_capacity.ZabranskyQuasipolynomial(coeffs, Tc, Tmin, Tmax)
Quasi-polynomial object for calculating the heat capacity of a chemical. Implements the enthalpy and entropy
integrals as well.

𝐶

𝑅
= 𝐴1 ln(1 − 𝑇𝑟) +

𝐴2

1 − 𝑇𝑟
+

𝑚∑︁
𝑗=0

𝐴𝑗+3𝑇
𝑗
𝑟

Parameters
coeffs [list[float]] Six coefficients for the equation, [-]

Tc [float] Critical temperature of the chemical, as used in the formula, [K]

Tmin [float] Minimum temperature any experimental data was available at, [K]

Tmax [float] Maximum temperature any experimental data was available at, [K]

References

[1]

Methods

calculate(T) Return the heat capacity as a function of temperature.
calculate_integral(Ta, Tb) Return the enthalpy integral of heat capacity from Ta

to Tb.
calculate_integral_over_T(Ta, Tb) Return the entropy integral of heat capacity from Ta

to Tb.

calculate(T)
Return the heat capacity as a function of temperature.

Parameters

120 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

T [float] Temperature, [K]

Returns
Cp [float] Liquid heat capacity as T, [J/mol/K]

calculate_integral(Ta, Tb)
Return the enthalpy integral of heat capacity from Ta to Tb.

Parameters
Ta [float] Initial temperature, [K]

Tb [float] Final temperature, [K]

Returns
dH [float] Enthalpy difference between Ta and Tb, [J/mol]

calculate_integral_over_T(Ta, Tb)
Return the entropy integral of heat capacity from Ta to Tb.

Parameters
Ta [float] Initial temperature, [K]

Tb [float] Final temperature, [K]

Returns
dS [float] Entropy difference between Ta and Tb, [J/mol/K]

chemicals.heat_capacity.PPDS15(T, Tc, a0, a1, a2, a3, a4, a5)
Calculates the saturation liquid heat capacity using the [1] emperical (parameter-regressed) method, called the
PPDS 15 equation for heat capacity.

𝐶𝑝,𝑙

𝑅
=
𝑎0
𝜏

+ 𝑎1 + 𝑎2𝜏 + 𝑎3𝜏
2 + 𝑎4𝜏

3 + 𝑎5𝜏
4

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a0 [float] Regression parameter, [-]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

a5 [float] Regression parameter, [-]

Returns
Cplm [float] Liquid molar saturation heat capacity, [J/mol/K]

1.12. Heat Capacity (chemicals.heat_capacity) 121

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Benzene at 400 K from [1]

>>> PPDS15(T=400.0, Tc=562.05, a0=0.198892, a1=24.1389, a2=-20.2301, a3=5.72481,␣
→˓a4=4.43613e-7, a5=-3.10751e-7)
161.8983143509

chemicals.heat_capacity.TDE_CSExpansion(T, Tc, b, a1, a2=0.0, a3=0.0, a4=0.0)
Calculates the saturation liquid heat capacity using the [1] CSExpansion method from NIST’s TDE:

𝐶𝑝,𝑙 =
𝑏

𝜏
+ 𝑎1 + 𝑎2𝑇 + 𝑎3𝑇

2 + 𝑎4𝑇
3

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

b [float] Regression parameter, [-]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

Returns
Cplm [float] Liquid molar saturation heat capacity, [J/mol/K]

References

[1]

Examples

2-methylquinoline at 550 K from [1]

>>> TDE_CSExpansion(550.0, 778.0, 0.626549, 120.705, 0.255987, 0.000381027, -3.
→˓03077e-7)
328.472042686

122 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.12.5 Liquid Heat Capacity Estimation Models

chemicals.heat_capacity.Rowlinson_Poling(T, Tc, omega, Cpgm)
Calculate liquid constant-pressure heat capacity with the [1] CSP method. This equation is not terrible accurate.

The heat capacity of a liquid is given by:

𝐶𝑝𝐿 − 𝐶𝑝𝑔

𝑅
= 1.586 +

0.49

1 − 𝑇𝑟
+ 𝜔

[︂
4.2775 +

6.3(1 − 𝑇𝑟)1/3

𝑇𝑟
+

0.4355

1 − 𝑇𝑟

]︂
Parameters

T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

omega [float] Acentric factor for fluid, [-]

Cpgm [float] Constant-pressure gas heat capacity, [J/mol/K]

Returns
Cplm [float] Liquid constant-pressure heat capacity, [J/mol/K]

Notes

Poling compared 212 substances, and found error at 298K larger than 10% for 18 of them, mostly associating.
Of the other 194 compounds, AARD is 2.5%.

References

[1]

Examples

>>> Rowlinson_Poling(350.0, 435.5, 0.203, 91.21)
143.80196224081436

chemicals.heat_capacity.Rowlinson_Bondi(T, Tc, omega, Cpgm)
Calculate liquid constant-pressure heat capacity with the CSP method shown in [1].

The heat capacity of a liquid is given by:

𝐶𝑝𝐿 − 𝐶𝑝𝑖𝑔

𝑅
= 1.45 + 0.45(1 − 𝑇𝑟)−1 + 0.25𝜔[17.11 + 25.2(1 − 𝑇𝑟)1/3𝑇−1

𝑟 + 1.742(1 − 𝑇𝑟)−1]

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

omega [float] Acentric factor for fluid, [-]

Cpgm [float] Constant-pressure gas heat capacity, [J/mol/K]

Returns
Cplm [float] Liquid constant-pressure heat capacity, [J/mol/K]

1.12. Heat Capacity (chemicals.heat_capacity) 123

chemicals Documentation, Release 1.1.4

Notes

Less accurate than Rowlinson_Poling.

References

[1], [2], [3]

Examples

>>> Rowlinson_Bondi(T=373.28, Tc=535.55, omega=0.323, Cpgm=119.342)
175.3976263003074

chemicals.heat_capacity.Dadgostar_Shaw(T, similarity_variable, MW=None, terms=None)
Calculate liquid constant-pressure heat capacity with the similarity variable concept and method as shown in [1].

𝐶𝑝 = 24.5(𝑎11𝛼+ 𝑎12𝛼
2) + (𝑎21𝛼+ 𝑎22𝛼

2)𝑇 + (𝑎31𝛼+ 𝑎32𝛼
2)𝑇 2

Parameters
T [float] Temperature of liquid [K]

similarity_variable [float] similarity variable as defined in [1], [mol/g]

MW [float, optional] Molecular weight of the pure compound or mixture average, [g/mol]

terms [float, optional] Terms in Dadgostar-Shaw equation as computed by
Dadgostar_Shaw_terms

Returns
Cpl [float] Liquid constant-pressure heat capacity, J/mol/K if MW given; J/kg/K otherwise

Notes

Many restrictions on its use. Original model is in terms of J/g/K. Note that the model is for predicting mass heat
capacity, not molar heat capacity like most other methods! a11 = -0.3416; a12 = 2.2671; a21 = 0.1064; a22 =
-0.3874l; a31 = -9.8231E-05; a32 = 4.182E-04

References

[1]

Examples

>>> Dadgostar_Shaw(355.6, 0.139)
1802.5291501191516

chemicals.heat_capacity.Dadgostar_Shaw_integral(T, similarity_variable, MW=None, terms=None)
Calculate the integral of liquid constant-pressure heat capacity with the similarity variable concept and method
as shown in [1].

Parameters

124 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

T [float] Temperature of gas [K]

similarity_variable [float] similarity variable as defined in [1], [mol/g]

MW [float, optional] Molecular weight of the pure compound or mixture average, [g/mol]

terms [float, optional] Terms in Dadgostar-Shaw equation as computed by
Dadgostar_Shaw_terms

Returns
H [float] Difference in enthalpy from 0 K, J/mol if MW given; J/kg otherwise

See also:

Dadgostar_Shaw

Dadgostar_Shaw_integral_over_T

Notes

Original model is in terms of J/g/K. Note that the model is for predicting mass heat capacity, not molar heat
capacity like most other methods! Integral was computed with SymPy.

References

[1]

Examples

>>> Dadgostar_Shaw_integral(300.0, 0.1333)
238908.15142664989

chemicals.heat_capacity.Dadgostar_Shaw_integral_over_T(T, similarity_variable, MW=None,
terms=None)

Calculate the integral of liquid constant-pressure heat capacity with the similarity variable concept and method
as shown in [1].

Parameters
T [float] Temperature of gas [K]

similarity_variable [float] similarity variable as defined in [1], [mol/g]

MW [float, optional] Molecular weight of the pure compound or mixture average, [g/mol]

terms [float, optional] Terms in Dadgostar-Shaw equation as computed by
Dadgostar_Shaw_terms

Returns
S [float] Difference in entropy from 0 K, J/mol/K if MW given; J/kg/K otherwise

See also:

Dadgostar_Shaw

Dadgostar_Shaw_integral

1.12. Heat Capacity (chemicals.heat_capacity) 125

chemicals Documentation, Release 1.1.4

Notes

Original model is in terms of J/g/K. Note that the model is for predicting mass heat capacity, not molar heat
capacity like most other methods! Integral was computed with SymPy.

References

[1]

Examples

>>> Dadgostar_Shaw_integral_over_T(300.0, 0.1333)
1201.1409113147918

chemicals.heat_capacity.Dadgostar_Shaw_terms(similarity_variable)
Return terms for the computation of Dadgostar-Shaw heat capacity equation.

Parameters
similarity_variable [float] Similarity variable, [mol/g]

Returns
first [float] First term, [-]

second [float] Second term, [-]

third [float] Third term, [-]

See also:

Dadgostar_Shaw

1.12.6 Solid Heat Capacity Estimation Models

chemicals.heat_capacity.Perry_151(T, a, b, c, d)
Return the solid molar heat capacity of a chemical using the Perry 151 method, as described in [1].

Parameters
a,b,c,d [float] Regressed coefficients.

Returns
Cps [float] Solid constant-pressure heat capacity, [J/mol/K]

Notes

The solid heat capacity is given by:

𝐶𝑛 = 4.184(𝑎+ 𝑏𝑇 +
𝑐

𝑇 2
+ 𝑑𝑇 2)

Coefficients are listed in section 2, table 151 of [1]. Note that the original model was in a Calorie basis, but has
been translated to Joules.

126 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Heat capacity of solid aluminum at 300 K:

>>> Perry_151(300, 4.8, 0.00322, 0., 0.)
24.124944

chemicals.heat_capacity.Lastovka_solid(T, similarity_variable, MW=None)
Calculate solid constant-pressure heat capacity with the similarity variable concept and method as shown in [1].

𝐶𝑝 = 3(𝐴1𝛼+𝐴2𝛼
2)𝑅

(︂
𝜃

𝑇

)︂2
exp(𝜃/𝑇)

[exp(𝜃/𝑇) − 1]2
+ (𝐶1𝛼+ 𝐶2𝛼

2)𝑇 + (𝐷1𝛼+𝐷2𝛼
2)𝑇 2

Parameters
T [float] Temperature of solid [K]

similarity_variable [float] similarity variable as defined in [1], [mol/g]

MW [float, optional] Molecular weight of the pure compound or mixture average, [g/mol]

Returns
Cps [float] Solid constant-pressure heat capacity, J/mol/K if MW given; J/kg/K otherwise

Notes

Many restrictions on its use. Trained on data with MW from 12.24 g/mol to 402.4 g/mol, C mass fractions from
61.3% to 95.2%, H mass fractions from 3.73% to 15.2%, N mass fractions from 0 to 15.4%, O mass fractions
from 0 to 18.8%, and S mass fractions from 0 to 29.6%. Recommended for organic compounds with low mass
fractions of hetero-atoms and especially when molar mass exceeds 200 g/mol. This model does not show and
effects of phase transition but should not be used passed the triple point. Original model is in terms of J/g/K.
Note that the model s for predicting mass heat capacity, not molar heat capacity like most other methods!

A1 = 0.013183

A2 = 0.249381

𝜃 = 151.8675

C1 = 0.026526

C2 = -0.024942

D1 = 0.000025

D2 = -0.000123

1.12. Heat Capacity (chemicals.heat_capacity) 127

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Lastovka_solid(300, 0.2139)
1682.0637469909211

chemicals.heat_capacity.Lastovka_solid_integral(T, similarity_variable, MW=None)
Integrates solid constant-pressure heat capacity with the similarity variable concept and method as shown in [1].

uses an explicit form as derived with Sympy.

Parameters
T [float] Temperature of solid [K]

similarity_variable [float] similarity variable as defined in [1], [mol/g]

MW [float, optional] Molecular weight of the pure compound or mixture average, [g/mol]

Returns
H [float] Difference in enthalpy from 0 K, J/mol if MW given; J/kg otherwise

See also:

Lastovka_solid

Notes

Original model is in terms of J/g/K. Note that the model is for predicting mass heat capacity, not molar heat
capacity like most other methods!

References

[1]

Examples

>>> Lastovka_solid_integral(300, 0.2139)
283246.1519409122

chemicals.heat_capacity.Lastovka_solid_integral_over_T(T, similarity_variable, MW=None)
Integrates over T solid constant-pressure heat capacity with the similarity variable concept and method as shown
in [1].

uses an explicit form as derived with Sympy.

Parameters
T [float] Temperature of solid [K]

similarity_variable [float] similarity variable as defined in [1], [mol/g]

MW [float, optional] Molecular weight of the pure compound or mixture average, [g/mol]

128 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Returns
S [float] Difference in entropy from 0 K, J/mol/K if MW given; J/kg/K otherwise

See also:

Lastovka_solid

Notes

Original model is in terms of J/g/K. Note that the model is for predicting mass heat capacity, not molar heat
capacity like most other methods!

References

[1]

Examples

>>> Lastovka_solid_integral_over_T(300, 0.2139)
1947.5537561495564

1.12.7 Utility methods

class chemicals.heat_capacity.PiecewiseHeatCapacity(models)
Create a PiecewiseHeatCapacity object for calculating heat capacity and the enthalpy and entropy integrals using
piecewise models.

Parameters
models [Iterable[HeatCapacity]] Piecewise heat capacity objects, [-]

Attributes
Tmax
Tmin
models

Methods

calculate(T) Return the heat capacity as a function of temperature.
calculate_integral(Ta, Tb) Return the enthalpy integral of heat capacity from Ta

to Tb.
calculate_integral_over_T(Ta, Tb) Return the entropy integral of heat capacity from Ta

to Tb.
force_calculate(T) Return the heat capacity as a function of temperature.
force_calculate_integral(Ta, Tb) Return the enthalpy integral of heat capacity from Ta

to Tb.
force_calculate_integral_over_T(Ta, Tb) Return the entropy integral of heat capacity from Ta

to Tb.

1.12. Heat Capacity (chemicals.heat_capacity) 129

chemicals Documentation, Release 1.1.4

1.12.8 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.heat_capacity.Cp_data_Poling
Constains data for gases and liquids from [3]. Simple polynomials for gas heat capacity (not suitable for extrap-
olation) are available for 308 chemicals. Additionally, constant values in at 298.15 K are available for 348 gases.
Constant values in at 298.15 K are available for 245 liquids.

chemicals.heat_capacity.TRC_gas_data
A rigorous expression from [1] for modeling gas heat capacity. Coefficients for 1961 chemicals are available.

chemicals.heat_capacity.CRC_standard_data
Constant values tabulated in [4] at 298.15 K. Data is available for 533 gases. Data is available for 433 liquids.
Data is available for 529 solids.

chemicals.heat_capacity.Cp_dict_PerryI
Simple polynomials from [5] with vaious exponents selected for each expression. Coefficients are in units of
calories/mol/K. The full expression is 𝐶𝑝 = 𝑎+ 𝑏𝑇 + 𝑐/𝑇 2 + 𝑑𝑇 2. Data is available for 284 compounds. Some
compounds have gas data, some have liquid data, and have solid (crystal structure) data, sometimes multiple
coefficients for different solid phases.

chemicals.heat_capacity.zabransky_dicts
Complicated fits covering different cases and with different forms from [2].

chemicals.heat_capacity.Cp_dict_characteristic_temperatures_adjusted_psi4_2022a
Theoretically calculated chatacteristic temperatures from vibrational frequencies using psi4

chemicals.heat_capacity.Cp_dict_characteristic_temperatures_psi4_2022a
Theoretically calculated chatacteristic temperatures from vibrational frequencies using psi4, adjusted using a
recommended coefficient

In [1]: import chemicals

In [2]: chemicals.heat_capacity.Cp_data_Poling
Out[2]:

Chemical Tmin ... Cpg Cpl
CAS ...
56-23-5 tetrachloromethane 200.0 ... 83.43 131.60
60-29-7 diethyl ether 100.0 ... 119.46 172.60
62-53-3 benzeneamine (aniline) 50.0 ... 107.90 191.90
64-17-5 ethanol 50.0 ... 65.21 112.25
64-18-6 methanoic acid (formic acid) 50.0 ... 53.45 99.17
...
14940-65-9 tritium oxide NaN ... 34.96 NaN
16747-38-9 2,3,3,4-tetramethylpentane 200.0 ... 218.30 275.70
20291-95-6 2,2,5-trimethylheptane 200.0 ... 229.20 306.40
800000-51-5 hydrogen, normal NaN ... 28.83 NaN
800000-54-8 deuterium, normal NaN ... 29.20 NaN

[368 rows x 10 columns]

In [3]: chemicals.heat_capacity.TRC_gas_data
Out[3]:

Chemical Tmin ... J Hfg
CAS ...
50-00-0 Methanal 50.0 ... 3.46 -104700.0

(continues on next page)

130 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

50-32-8 Benzo[a]pyrene 298.0 ... 13.44 324000.0
53-70-3 Dibenz[a,h]anthracene 298.0 ... 16.63 375000.0
56-23-5 Tetrachloromethane 200.0 ... 9.58 -93700.0
56-55-3 Benz[a]anthracene 298.0 ... 11.45 328000.0
...
800000-46-8 2,2,(3RS,4RS)-Tetramethylhexane 200.0 ... 22.45 -188600.0
800000-47-9 2,(3RS,4SR),5-Tetramethylhexane 200.0 ... 22.32 193700.0
800000-48-0 2,(3RS,4RS),5-Tetramethylhexane 200.0 ... 22.14 -194600.0
800000-56-0 1-Methylbutyl radical 200.0 ... 22.25 54600.0
800002-32-8 Propenoic acid (Dimer) 50.0 ... 13.83 -686000.0

[1961 rows x 14 columns]

In [4]: chemicals.heat_capacity.CRC_standard_data
Out[4]:

Chemical Hfs ... S0g Cpg
CAS ...
50-00-0 Formaldehyde NaN ... 218.8 35.4
50-32-8 Benzo[a]pyrene NaN ... NaN 254.8
50-69-1 D-Ribose -1047200.0 ... NaN NaN
50-78-2 2-(Acetyloxy)benzoic acid -815600.0 ... NaN NaN
50-81-7 L-Ascorbic acid -1164600.0 ... NaN NaN
...
92141-86-1 Cesium metaborate -972000.0 ... NaN NaN
99685-96-8 Carbon [fullerene-C60] 2327000.0 ... 544.0 512.0
114489-96-2 Isobutyl 2-chloropropanoate NaN ... NaN NaN
115383-22-7 Carbon [fullerene-C70] 2555000.0 ... 614.0 585.0
116836-32-9 sec-Butyl pentanoate NaN ... NaN NaN

[2470 rows x 13 columns]

In [5]: chemicals.heat_capacity.Cp_dict_PerryI['124-38-9'] # gas only
Out[5]:
{'g': {'Formula': 'CO2',
'Phase': 'g',
'Subphase': None,
'Const': 10.34,
'Lin': 0.00274,
'Quadinv': -195500.0,
'Quad': 0,
'Tmin': 273.0,
'Tmax': 1200.0,
'Error': '1a'}}

In [6]: chemicals.heat_capacity.Cp_dict_PerryI['7704-34-9'] # crystal and gas
Out[6]:
{'g': {'Formula': 'H2S',
'Phase': 'g',
'Subphase': None,
'Const': 7.2,
'Lin': 0.0036,
'Quadinv': 0,

(continues on next page)

1.12. Heat Capacity (chemicals.heat_capacity) 131

chemicals Documentation, Release 1.1.4

(continued from previous page)

'Quad': 0,
'Tmin': 300.0,
'Tmax': 600.0,
'Error': 8.0},
'c': {'Formula': 'S',
'Phase': 'c',
'Subphase': 'monoclinic',
'Const': 4.38,
'Lin': 0.0044,
'Quadinv': 0,
'Quad': 0,
'Tmin': 368.0,
'Tmax': 392.0,
'Error': 3.0}}

In [7]: chemicals.heat_capacity.Cp_dict_PerryI['7440-57-5'] # crystal and liquid
Out[7]:
{'c': {'Formula': 'Au',
'Phase': 'c',
'Subphase': None,
'Const': 5.61,
'Lin': 0.00144,
'Quadinv': 0,
'Quad': 0,
'Tmin': 273.0,
'Tmax': 1336.0,
'Error': 2.0},
'l': {'Formula': 'Au',
'Phase': 'l',
'Subphase': None,
'Const': 7.0,
'Lin': 0,
'Quadinv': 0,
'Quad': 0,
'Tmin': 1336.0,
'Tmax': 1573.0,
'Error': 5.0}}

In [8]: chemicals.heat_capacity.zabransky_dicts.keys()
Out[8]: dict_keys(['Zabransky spline, averaged heat capacity', 'Zabransky␣
→˓quasipolynomial, averaged heat capacity', 'Zabransky spline, constant-pressure',
→˓'Zabransky quasipolynomial, constant-pressure', 'Zabransky spline, saturation',
→˓'Zabransky quasipolynomial, saturation'])

132 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.13 IAPWS: International Association for the Properties of Water and
Steam (chemicals.iapws)

This module contains the core of the IAPWS-95 and IAPWS-97 standards. The objective of this module is to contain
extremely fast functions to calculate several basic properties of water.

The simplest interfaces are iapws95_rho for density calculation only and iapws95_properties for some basic
properties.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• IAPWS-95 Basic Solvers

• IAPWS-97 Basic Solvers

• IAPWS-95 Properties

• IAPWS Saturation Pressure/Temperature

• IAPWS Saturation Density

• IAPWS Constants

• IAPWS-97 Region 1

• IAPWS-97 Region 2

• IAPWS-97 Region 3

• IAPWS-97 Region 3 PT Backwards Equation Boundaries

• IAPWS-97 Region 3 PT Backwards Equations

• IAPWS-97 Region 5

• IAPWS-95 Ideal Gas Terms

• IAPWS-95 Residual Terms

1.13.1 IAPWS-95 Basic Solvers

chemicals.iapws.iapws95_rho(T, P)
Calculate the density of water according to the IAPWS-95 standard given a temperature T and pressure P. The
phase is determined in this calculation.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water, [kg/m^3]

See also:

iapws95_rhol_sat

iapws95_rhog_sat

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)133

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

There is a sudden transition at the saturation pressure between liquid and vapor density, by design.

This solution is iterative due to the nature of the equation. The solution procedure begins with IAPWS-97’s
explicit equations as an initial guess, extrapolating when out of range. If the temperature is under the critical
temperature, the saturation density is calculated, and used to ensure the solver begins in the feasible region.
Newton’s method converges extremely, normally after 2 or 3 iterations.

Temperatures under 273.15 K are not officially supported by [1], but a solution is still attempted down to 235 K.

References

[1]

Examples

>>> iapws95_rho(T=300.0, P=1e6)
996.96002269499

1 GPa and 5000 K are suggested as upper limits of [1] although there are no hardcoded limits for temperature
and pressure.

>>> iapws95_rho(T=5000.0, P=1e9)
326.79451662743

chemicals.iapws.iapws95_P(T, rho)
Calculate the pressure of water according to the IAPWS-95 standard given a temperature T and mass density
rho.

Parameters
T [float] Temperature, [K]

rho [float] Mass density of water, [kg/m^3]

Returns
P [float] Pressure, [Pa]

Notes

The IAPWS-95 model is explicit with inputs of temperature and density, so this is a direct calculation with no
iteration required.

134 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> iapws95_P(330.0, iapws95_rho(T=330.0, P=8e5))
8e5
>>> iapws95_P(823.0, 40.393893559703734)
14e6

Not all temperature and density inputs provide a stable solution; for example anything between the vapor and gas
saturation curves. In some but not all of these cases a negative pressure is returned:

>>> iapws95_P(T=300, rho=300)
-1.526394720e+23

chemicals.iapws.iapws95_T(P, rho)
Calculate the temperature of water according to the IAPWS-95 standard given a density rho and pressure P.

Parameters
P [float] Pressure, [Pa]

rho [float] Mass density of water, [kg/m^3]

Returns
T [float] Temperature, [K]

Notes

This solution is iterative due to the nature of the equation. The solution procedure begins with IAPWS-97’s
equations as an initial guess, extrapolating when out of range. Newton’s method converges extremely, normally
after 2 or 3 iterations.

Due to water’s unique density curve, there is a temperature region spanning 273.15 K to 280.005 K where there
are two solutions. No guarantee is made as to which solution will be returned.

References

[1]

Examples

>>> iapws95_T(P=1e6, rho=995.0)
306.461547194

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)135

chemicals Documentation, Release 1.1.4

1.13.2 IAPWS-97 Basic Solvers

chemicals.iapws.iapws97_rho(T, P, use_95_boundary=False)
Calculate the density of water in kg/m^3 according to the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

use_95_boundary [bool, optional] If True, respect the IAPWS-95 vapor pressure curve instead
of the IF-97 one, [-]

Returns
rho [float] Mass density of water, [kg/m^3]

Notes

The range of validity of this formulation is as follows:

For 𝑃 ≤ 100 MPa:

273.15 K ≤ 𝑇 ≤ 1073.15 K

For 𝑃 ≤ 50 MPa:

1073.15 K ≤ 𝑇 ≤ 2273.15 K

A ValueError is raised if the temperature or the pressure is out of bounds.

IAPWS is implemented in four regions in the T -P domain: Region 1 (liquid), region 2 (gas and supercritical
gas), region 5 (high temperature gas), and region 3 (near-critical). Significant discontinuities exist between the
transitions of each regions. In region 3, there are 26 sub-regions and the correlation has the least accuracy.

For many applications, the discontinuities in IF-97 can be problematic and the slower IAPWS-95 must be used.
IAPWS-95 also has a wider range of applicability.

References

[1]

Examples

>>> iapws97_rho(648.6, 22.5e6)
353.06081088726
>>> iapws97_rho(330.0, 8e5)
985.10498080770
>>> iapws97_rho(823.0, 14e6)
40.39293607288123
>>> iapws97_rho(2000.0, 3e7)
32.11456228328856

chemicals.iapws.iapws97_P(T, rho)
Calculate the pressure of water according to the IAPWS-97 standard given a temperature T and mass density
rho.

136 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
T [float] Temperature, [K]

rho [float] Mass density of water, [kg/m^3]

Returns
P [float] Pressure, [Pa]

Notes

The range of validity of this formulation is as follows:

For 𝑃 ≤ 100 MPa:

273.15 K ≤ 𝑇 ≤ 1073.15 K

For 𝑃 ≤ 50 MPa:

1073.15 K ≤ 𝑇 ≤ 2273.15 K

A ValueError is raised if the temperature or density is out of bounds.

Newton’s method with analytical derivatives is used here to solve these equations. The solver tolerance is as tight
as it can be without causing wasted iterations that do not improve the result at all. Pressure changes quickly with
density however, and some discrepancy between solvers is to be expected.

For region 3, there are really two formulations present in IAPWS-97. There is a Helmholtz energy equation
(Temperature and density dependent), and also 26 separate backwards equations for rho which depend on T and
P. The Helmholtz energy equation is much more accurate and does not have discontinuities. The two sets of
equations agree closely not not perfectly. By design, iapws97_rho implements the 26 T-P equations and this
implements the Helmholtz energy equation. This means that in region 3 solutions will not be consistent. For
consistency requirements, IAPWS-95 is recommended.

This solver does not have any issues with multiple solutions. The solvers have been checked to achieve a relative
solution tolerance of 5e-9 on 100 million points.

References

[1]

Examples

>>> iapws97_P(330.0, iapws97_rho(T=330.0, P=8e5))
8e5
>>> iapws97_P(823.0, 40.39293607288123)
14e6
>>> iapws97_P(T=2000.0, rho=32.11456228328856)
3e7

Region 3 point - does not implement the same equations as iapws97_rho!

>>> iapws97_P(648.6, iapws97_rho(T=648.6, P=22.5e6))
22499974.093936257

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)137

chemicals Documentation, Release 1.1.4

chemicals.iapws.iapws97_T(P, rho)
Calculate the temperature of water according to the IAPWS-97 standard given a pressure P and mass density
rho.

Parameters
P [float] Pressure, [Pa]

rho [float] Mass density of water, [kg/m^3]

Returns
T [float] Temperature, [K]

Notes

The range of validity of this formulation is as follows:

For 𝑃 ≤ 100 MPa:

273.15 K ≤ 𝑇 ≤ 1073.15 K

For 𝑃 ≤ 50 MPa:

1073.15 K ≤ 𝑇 ≤ 2273.15 K

A ValueError is raised if the pressure or density is out of bounds.

Newton’s method with analytical derivatives is used here to solve these equations. The solver tolerance is as tight
as it can be without causing wasted iterations that do not improve the result at all.

Due to water’s unique density curve, there is a temperature region spanning 273.15 K to 280.005 K where there
are two solutions. No guarantee is made as to which solution will be returned.

References

[1]

Examples

>>> iapws97_T(8e5, iapws97_rho(T=330.0, P=8e5))
330.0
>>> iapws97_T(14e6, 40.39293607288123)
823.0
>>> iapws97_T(P=3e7, rho=32.11456228328856)
2000.0

138 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.13.3 IAPWS-95 Properties

chemicals.iapws.iapws95_properties(T, P)
Calculate some basic properties of water according to the IAPWS-95 standard given a temperature T and pressure
P.

The properties are density rho, internal energy U, entropy S, enthalpy H, isochoric heat capacity Cv, isobaric
heat capacity Cp, speed of sound w, Joule-Thomson coefficient JT, isothermal throttling coefficient delta_T,
isentropic temperature-pressure coefficient beta_s, and the derivative of mass density with respect to pressure at
constant temperature drho_dP.

This function is intended as a demonstration of how to use the IAPWS-95 equations. For that reason, mass-units
are used in all returned variables.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water, [kg/m^3]

U [float] Internal energy of water, [J/(kg)]

S [float] Entropy of water, [J/(kg*K)]

H [float] Enthalpy of water, [J/(kg)]

Cv [float] Isochoric heat capacity, [J/(kg*K)]

Cp [float] Isobaric heat capacity, [J/(kg*K)]

w [float] Speed of sound, [m/s]

JT [float] Joule-Thomson coefficient, [K/Pa]

delta_T [float] Isothermal throttling coefficient, [J/(kg*Pa)]

beta_s [float] Isentropic temperature-pressure coefficient, [K/Pa]

drho_dP [float] Derivative of mass density with respect to pressure at constant temperature,
[kg/(m^3*Pa)]

Notes

Hundreds of useful properties can be obtained from the IAPWS-95 model. It is intended for this function to
serve as a useful starting point to those. Calculating every property with every set of units is beyond the scope of
chemicals. The functions like iapws95_dAr_ddelta can be used directly in your own implementation - where
you can calculate only those properties which are necessary, for maximum speed.

The formulas are as follows:

𝑢(𝛿, 𝜏)

𝑅𝑇
= 𝜏 (𝜑o𝜏 + 𝜑r𝜏)

𝑠(𝛿, 𝜏)

𝑅
= 𝜏 (𝜑o𝜏 + 𝜑r𝜏) − 𝜑o − 𝜑r

ℎ(𝛿, 𝜏)

𝑅𝑇
= 1 + 𝜏 (𝜑o𝜏 + 𝜑r𝜏) + 𝛿𝜑r𝛿

𝑐𝑣(𝛿, 𝜏)

𝑅
= −𝜏2 (𝜑o𝜏𝜏 + 𝜑r𝜏𝜏)

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)139

chemicals Documentation, Release 1.1.4

𝑐𝑝(𝛿, 𝜏)

𝑅
= −𝜏2 (𝜑o𝜏𝜏 + 𝜑r𝜏𝜏) +

(1 + 𝛿𝜑r𝛿 − 𝛿𝜏𝜑r𝛿𝜏)
2

1 + 2𝛿𝜑r𝛿 + 𝛿2𝜑r𝛿𝛿

𝑤2(𝛿, 𝜏)

𝑅𝑇
= 1 + 2𝛿𝜑r𝛿 + 𝛿2𝜑r𝛿𝛿 −

(1 + 𝛿𝜑r𝛿 − 𝛿𝜏𝜑r𝛿𝜏)
2

𝜏2 (𝜑o𝜏𝜏 + 𝜑r𝜏𝜏)

𝜇𝑅𝜌 =
−
(︀
𝛿𝜑r𝛿 + 𝛿2𝜑r𝛿𝛿 + 𝛿𝜏𝜑r𝛿𝜏

)︀
(1 + 𝛿𝜑r𝛿 − 𝛿𝜏𝜑r𝛿𝜏)

2 − 𝜏2 (𝜑o𝜏𝜏 + 𝜑r𝜏𝜏) (1 + 2𝛿𝜑r𝛿 + 𝛿2𝜑r𝛿𝛿)

𝛿𝑇 𝜌 = 1 − 1 + 𝛿𝜑r𝛿 − 𝛿𝜏𝜑r𝛿𝜏
1 + 2𝛿𝜑r𝛿 + 𝛿2𝜑r𝛿𝛿

𝛽𝑆𝜌𝑅 =
1 + 𝛿𝜑r𝛿 − 𝛿𝜏𝜑r𝛿𝜏

(1 + 𝛿𝜑r𝛿 − 𝛿𝜏𝜑r𝛿𝜏)
2 − 𝜏2 (𝜑o𝜏𝜏 + 𝜑r𝜏𝜏) (1 + 2𝛿𝜑r𝛿 + 𝛿2𝜑r𝛿𝛿)

This derivative isn’t part of the same table of properties, but it is needed by the transport calculation routines:(︂
𝜕𝜌

𝜕𝑃

)︂
𝑇

=
1

𝑅𝑇 (1 + 2𝛿𝛼r
𝛿 + 𝛿2𝛼r

𝛿𝛿)

References

[1]

Examples

>>> iapws95_properties(T=300.0, P=1e6)
(996.96002269, 112478.998245, 392.813902893, 113482.047492, 4127.21730497, 4178.
→˓103605593, 1503.035983829, -2.202166728257e-07, 0.000920088074745, 1.
→˓985617879134e-08, 4.48108429028e-07)

>>> rho, U, S, H, Cv, Cp, w, JT, delta_T, beta_s, drho_dP = iapws95_
→˓properties(T=500.0, P=1e5)
>>> w
548.3138393244

1.13.4 IAPWS Saturation Pressure/Temperature

chemicals.iapws.iapws95_Psat(T)
Compute the saturation pressure of the IAPWS-95 equation using high- fidelity polynomial fits. These have a
relative accuracy of under 1e-12, and are generated by solving the saturation equations under the high-precision
environment of mpmath. The range of the fit is 235 K to 647.096 K, the critical point.

𝑃𝑠𝑎𝑡 = 𝑃𝑐 exp(polynomial(𝑎(𝑇 − 𝑏)))

Parameters
T [float] Temperature at which to calculate the saturation condition, [K]

Returns
Psat [float] Saturation vapor pressure, [Pa]

See also:

iapws95_saturation

140 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This method should be used in preference to iapws95_saturation. Although using mpmath generates slightly
different results than using plain floating point numbers, the requirement for the saturation curve is to be smooth,
and continuous; mpmath makes this easy and the saturation equations were solved extremely high precision, well
under a floating point’s error.

The polynomial coefficients have been carefully chosen to be able to be evaluated accurately with horner’s
method, although they are derived as a Chebyshev approximation originally.

Examples

>>> iapws95_Psat(400.0)
245769.3455

chemicals.iapws.iapws95_dPsat_dT(T)
Compute the temperature derivative of saturation pressure of the IAPWS-95 equation using high- fidelity poly-
nomial fits. The range of the fit is 235 K to 647.096 K, the critical point.

𝑃𝑠𝑎𝑡 = 𝑃𝑐 exp(polynomial(𝑎(𝑇 − 𝑏)))

𝜕𝑃𝑠𝑎𝑡

𝜕𝑇
= 𝑎𝑃𝑐 exp(polynomial(𝑎(𝑇 − 𝑏))) exp

(︂
𝜕polynomial(𝑎(𝑇 − 𝑏))

𝜕𝑇

)︂
Parameters

T [float] Temperature at which to calculate the saturation condition and its temperature deriva-
tive, [K]

Returns
dPsat_dT [float] First temperature derivative of Saturation vapor pressure, [Pa/K]

Psat [float] Saturation vapor pressure, [Pa]

Notes

Psat must be calculated in the calculation of the derivative, so it is returned as well which may be useful in some
applications.

Examples

>>> iapws95_dPsat_dT(400.0)
(7483.62075827, 245769.3455657)

chemicals.iapws.iapws92_Psat(T)
Compute the saturation pressure of the IAPWS-92 equation.

𝑃𝑠𝑎𝑡 = 𝑃𝑐 exp

(︂
𝑇𝑐
𝑇

[𝑎1𝜏 + 𝑎2𝜏
1.5 + 𝑎3𝜏

3 + 𝑎4𝜏
3.5𝑎5𝜏

4 + 𝑎6𝜏
7.5]

)︂
Parameters

T [float] Temperature at which to calculate the saturation condition and its temperature deriva-
tive, [K]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)141

chemicals Documentation, Release 1.1.4

Returns
Psat [float] Saturation vapor pressure, [Pa]

Notes

The coefficients are [-7.85951783, 1.84408259, -11.7866497, 22.6807411, -15.9618719, 1.80122502]

Examples

>>> iapws92_Psat(400.0)
245765.2635418

chemicals.iapws.iapws92_dPsat_dT(T)
Compute the temperature derivative of saturation pressure of the IAPWS-92 equation.

𝑃𝑠𝑎𝑡 = 𝑃𝑐 exp

(︂
𝑇𝑐
𝑇

[𝑎1𝜏 + 𝑎2𝜏
1.5 + 𝑎3𝜏

3 + 𝑎4𝜏
3.5𝑎5𝜏

4 + 𝑎6𝜏
7.5]

)︂
Parameters

T [float] Temperature at which to calculate the saturation condition and its temperature deriva-
tive, [K]

Returns
dPsat_dT [float] First temperature derivative of saturation vapor pressure, [Pa/K]

Psat [float] Saturation vapor pressure, [Pa]

Notes

The coefficients are [-7.85951783, 1.84408259, -11.7866497, 22.6807411, -15.9618719, 1.80122502]

Examples

>>> iapws92_dPsat_dT(400.0)
(7483.47094105, 245765.263541)

chemicals.iapws.iapws95_Tsat(P)
Compute the saturation temperature of the IAPWS-95 equation. The range of the fit is 235 K to 647.096 K, the
critical point.

Parameters
Psat [float] Saturation vapor pressure specified, [Pa]

Returns
T [float] Temperature at which the saturation pressure occurs, [K]

See also:

iapws95_Psat

Tsat_IAPWS

142 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This method is quite fast and precise because it starts with great initial guesses and the equation is well-bounded.
The precision of this calculation should be the same as iapws95_Psat.

Examples

>>> iapws95_Tsat(iapws95_Psat(400.0))
400.0

chemicals.iapws.iapws95_saturation(T, xtol=1e-05, rhol_guess=None, rhog_guess=None)
Solve the vapor-liquid saturation equations of IAPWS-95 given a specified temperature. With floating point
numbers, the achievable tolerance is somewhat low so xtol is exposed as a setting - it can be adjusted somewhat.
Density guesses may be provided, otherwise they will be estimated.

𝐺𝑙𝑖𝑞(𝑇, 𝜌𝑙) = 𝐺𝑣𝑎𝑝(𝑇, 𝜌𝑔)

𝑃𝑙𝑖𝑞(𝑇, 𝜌𝑙) = 𝑃𝑣𝑎𝑝(𝑇, 𝜌𝑔)

Parameters
T [float] Temperature at which to solve for saturation condition, [K]

xtol [float] Tolerance for solver, [-]

rhol_guess [float, optional] Liquid density of water at saturation (guess), [kg/m^3]

rhog_guess [float, optional] Vapor density of water at saturation (guess), [kg/m^3]

Returns
Psat [float] Saturation vapor pressure, 3[Pa]

rhol [float] Saturation liquid water density, [kg/m^3]

rhog [float] Saturation vapor water density, [kg/m^3]

Notes

This is not a perfect function.

With mpmath multiple precision, the equation can be solved down to 233.6 K and up to 647.095999995 K -
within 10 parts in a billion of the critical point exactly.

Reasons for non-convergence include floating point issues as delta becomes 1, and zero division errors in the
matrix inverse.

Examples

>>> iapws95_saturation(400.0, xtol=1e-6)
(245769.345, 937.4860, 1.3694075)
>>> iapws95_saturation(647.0955, xtol=1e-7)
(22063866.35, 325.70, 318.277)

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)143

chemicals Documentation, Release 1.1.4

chemicals.iapws.iapws11_Psub(T)
Compute the sublimation pressure of the frozen water using the IAPWS-11 equation from the Revised Release
on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.

𝑃𝑠𝑢𝑏 = 𝑃𝑡 exp

(︃
𝜃−1

3∑︁
𝑖=1

𝑎𝑖𝜃
𝑏𝑖

)︃

𝜃 =
𝑇

𝑇𝑡

Parameters
T [float] Temperature at which to calculate the sublimation condition [K]

Returns
Psub [float] Sublimation vapor pressure, [Pa]

Notes

The triple temperature is 273.16 K, and triple pressure 611.657 Pa.

The coefficients are as follows:

ais = [-0.212144006E2, 0.273203819E2, -0.610598130E1]

bis = [0.333333333E-2, 0.120666667E1, 0.170333333E1]

The equation is valid from 50 K to the triple temperature.

Examples

>>> iapws11_Psub(230.0)
8.947352740189151

1.13.5 IAPWS Saturation Density

chemicals.iapws.iapws95_rhol_sat(T)
Compute the saturation liquid density of the IAPWS-95 equation using high- fidelity polynomial fits. These have
a relative accuracy of under 1e-13, except near the critical point where it rises to 1e-10, and are generated by
solving the saturation equations under the high-precision environment of mpmath. The range of the fit is 235 K
to 647.096 K, the critical point.

Parameters
T [float] Temperature at which to calculate the saturation condition, [K]

Returns
rhol [float] Saturation liquid density, [kg/m^3]

See also:

iapws92_rhol_sat

144 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This method should be used in preference to iapws92_rhol_sat.

Examples

>>> iapws95_rhol_sat(400.0)
937.48603939

chemicals.iapws.iapws95_rhog_sat(T)
Compute the saturation vapor density of the IAPWS-95 equation using high- fidelity polynomial fits. These have
a relative accuracy of under 1e-13, except near the critical point where it rises to 1e-10, and are generated by
solving the saturation equations under the high-precision environment of mpmath. The range of the fit is 235 K
to 647.096 K, the critical point.

Parameters
T [float] Temperature at which to calculate the saturation condition, [K]

Returns
rhol [float] Saturation vapor density, [kg/m^3]

See also:

iapws92_rhog_sat

Notes

This method should be used in preference to iapws92_rhog_sat.

Examples

>>> iapws95_rhog_sat(400.0)
1.3694075410

chemicals.iapws.iapws95_drhol_sat_dT(T)
Compute the first temperature derivative of saturation liquid density of the IAPWS-95 equation using high-
fidelity polynomial fits. The actual saturated liquid density is returned as well.

The range of the fit is 235 K to 647.096 K, the critical point.

Parameters
T [float] Temperature at which to calculate the saturation condition and its derivative, [K]

Returns
drhol_dT [float] First temperature derivative of saturation liquid density, [kg/(m^3*K)]

rhol [float] Saturation liquid density, [kg/m^3]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)145

chemicals Documentation, Release 1.1.4

Examples

>>> iapws95_drhol_sat_dT(400.0)
(-0.835194603380, 937.486039392)

chemicals.iapws.iapws92_rhol_sat(T)
Calculates saturation liquid mass density of water using the IAPWS SR1-86(1992) [1] [2] explicit equation.

𝜌𝑠𝑎𝑡𝑙

𝜌𝑐
= 1 + 𝑏1𝜏

1/3 + 𝑏2𝜏
2/3 + 𝑏3𝜏

5/3 + 𝑏4𝜏
16/3 + 𝑏5𝜏

43/3 + 𝑏6𝜏
110/3

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of water, [K]

Returns
rhol_sat [float] Saturation liquid mass density of water [kg/m^3]

See also:

iapws95_rhol_sat

Notes

This equation is fit to experimental data to within its accuracy. It does not satisfy the equilibrium conditions for
the IAPWS-95 or IAPWS-97 formulations.

The values of the constants are as follows:

b1 = 1.99274064; b2 = 1.09965342; b3 = -0.510839303; b4 = -1.75493479; b5 = -45.5170352; b6 = -
6.74694450e5

References

[1], [2]

Examples

>>> iapws92_rhol_sat(300.)
996.5089712803

chemicals.iapws.iapws92_rhog_sat(T)
Calculates saturation vapor mass density of water using the IAPWS SR1-86(1992) [1] [2] explicit equation.

ln

(︂
𝜌𝑠𝑎𝑡𝑔

𝜌𝑐

)︂
= 1 + 𝑐1𝜏

2/6 + 𝑐2𝜏
4/6 + 𝑐3𝜏

8/6 + 𝑐4𝜏
18/6 + 𝑐5𝜏

37/6 + 𝑐6𝜏
71/6

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of water, [K]

146 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Returns
rhog_sat [float] Saturation vapor mass density of water [kg/m^3]

See also:

iapws95_rhog_sat

Notes

This equation is fit to experimental data to within its accuracy. It does not satisfy the equilibrium conditions for
the IAPWS-95 or IAPWS-97 formulations.

The values of the constants are as follows:

c1 = -2.03150240; c2 = -2.68302940; c3 = -5.38626492; c4 = -17.2991605; c5 = -44.7586581; c6 = -63.9201063

References

[1], [2]

Examples

>>> iapws92_rhog_sat(300.)
0.0255887212886

1.13.6 IAPWS Constants

chemicals.iapws.iapws95_Tc = 647.096
Critical temperature of water in K according to IAPWS-95, also used in IAPWS-97

chemicals.iapws.iapws95_Pc = 22064000.0
Critical pressure of water in Pa according to IAPWS-95, also used in IAPWS-97

chemicals.iapws.iapws95_rhoc = 322.0
Critical density of water in kg/m^3 according to IAPWS-95, also used in IAPWS-97

chemicals.iapws.iapws95_MW = 18.015268
Molecular weight of water in g/mol according to IAPWS-95, also used in IAPWS-97

chemicals.iapws.iapws95_R = 461.51805
Specific gas constant in J/(kg*K) according to IAPWS-95

chemicals.iapws.iapws97_R = 461.526
Specific gas constant in J/(kg*K) according to IAPWS-97

chemicals.iapws.iapws95_Tt = 273.16
Triple temperature of water in K according to IAPWS

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)147

chemicals Documentation, Release 1.1.4

1.13.7 IAPWS-97 Region 1

chemicals.iapws.iapws97_G_region1(tau, pi)
Calculates the dimensionless Gibbs free energy for water according to the IAPWS-97 standard (for region 1).

𝛾 =

34∑︁
𝑖=1

𝐼𝑖(7.1 − 𝜋)𝐼𝑖(𝜏 − 1.222)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (1386 K)/T [-]

pi [float] Dimensionless pressure, P/(16.53 MPa), [-]

Returns
G [float] Dimensionless Gibbs energy G/(RT), [-]

Examples

>>> iapws97_G_region1(1386/277.15, 101325/16.53E6)
-0.00016341033954414

chemicals.iapws.iapws97_dG_dpi_region1(tau, pi)
Calculates the derivative of dimensionless Gibbs free energy with respect to pi for water according to the IAPWS-
97 standard (for region 1).

𝜕𝛾

𝜕𝜋
=

34∑︁
𝑖=1

−𝑛𝑖𝐼𝑖(7.1 − 𝜋)𝐼𝑖−1(𝜏 − 1.222)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (1386 K)/T [-]

pi [float] Dimensionless pressure, P/(16.53 MPa), [-]

Returns
dG_dpi [float] Derivative of dimensionless Gibbs energy G/(RT) with respect to pi, [-]

Notes

Used in density solution. This contains a hand-optimized implementation with a single division, no power oper-
ations, 65 multiplications, 16 local variables, and a minimum number of additions.

Examples

>>> iapws97_dG_dpi_region1(1386/277.15, 101325/16.53E6)
0.1292327182544

chemicals.iapws.iapws97_d2G_dpi2_region1(tau, pi)
Calculates the second derivative of dimensionless Gibbs free energy with respect to pi for water according to the
IAPWS-97 standard (for region 1).

𝜕2𝛾

𝜕𝜋2
=

34∑︁
𝑖=1

𝑛𝑖𝐼𝑖(𝐼𝑖 − 1)(7.1 − 𝜋)𝐼𝑖−2(𝜏 − 1.222)𝐽𝑖

148 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
tau [float] Dimensionless temperature, (1386 K)/T [-]

pi [float] Dimensionless pressure, P/(16.53 MPa), [-]

Returns
d2G_dpi2 [float] Second Derivative of dimensionless Gibbs energy G/(RT) with respect to pi,

[-]

Examples

>>> iapws97_d2G_dpi2_region1(1386/277.15, 101325/16.53E6)
-0.0010570100274769

chemicals.iapws.iapws97_dG_dtau_region1(tau, pi)
Calculates the derivative of dimensionless Gibbs free energy with respect to tau for water according to the
IAPWS-97 standard (for region 1).

𝜕𝛾

𝜕𝜏
=

34∑︁
𝑖=1

𝑛𝑖(7.1 − 𝜋)𝐼𝑖𝐽𝑖(𝜏 − 1.222)𝐽𝑖−1

Parameters
tau [float] Dimensionless temperature, (1386 K)/T [-]

pi [float] Dimensionless pressure, P/(16.53 MPa), [-]

Returns
dG_dtau [float] Derivative of dimensionless Gibbs energy G/(RT) with respect to tau, [-]

Examples

>>> iapws97_dG_dtau_region1(1386/277.15, 101325/16.53E6)
0.026440334282967

chemicals.iapws.iapws97_d2G_dtau2_region1(tau, pi)
Calculates the second derivative of dimensionless Gibbs free energy with respect to tau for water according to
the IAPWS-97 standard (for region 1).

𝜕2𝛾

𝜕𝜏2
=

34∑︁
𝑖=1

𝑛𝑖(7.1 − 𝜋)𝐼𝑖𝐽𝑖(𝐽𝑖 − 1)(𝜏 − 1.222)𝐽𝑖−2

Parameters
tau [float] Dimensionless temperature, (1386 K)/T [-]

pi [float] Dimensionless pressure, P/(16.53 MPa), [-]

Returns
d2G_dtau2 [float] Second Derivative of dimensionless Gibbs energy G/(RT) with respect to

tau, [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)149

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_d2G_dtau2_region1(1386/277.15, 101325/16.53E6)
-0.3645169808573

chemicals.iapws.iapws97_d2G_dpidtau_region1(tau, pi)
Calculates the second derivative of dimensionless Gibbs free energy with respect to tau and pi for water according
to the IAPWS-97 standard (for region 1).

𝜕2𝛾

𝜕𝜏𝜕𝜋
=

34∑︁
𝑖=1

−𝑛𝑖𝐼𝑖(7.1 − 𝜋)𝐼𝑖𝐽𝑖(𝜏 − 1.222)𝐽𝑖−1

Parameters
tau [float] Dimensionless temperature, (1386 K)/T [-]

pi [float] Dimensionless pressure, P/(16.53 MPa), [-]

Returns
d2G_dpidtau [float] Second Derivative of dimensionless Gibbs energy G/(RT) with respect to

tau and pi, [-]

Examples

>>> iapws97_d2G_dpidtau_region1(1386/277.15, 101325/16.53E6)
0.025837659858819

1.13.8 IAPWS-97 Region 2

chemicals.iapws.iapws97_G0_region2(tau, pi)
Calculates the dimensionless ideal gas Gibbs free energy for water according to the IAPWS-97 standard (for
region 2).

𝛾∘ = ln𝜋 +

9∑︁
𝑖=1

𝑛∘𝑖 𝜏
𝐽∘
𝑖

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
G0 [float] Dimensionless ideal gas Gibbs energy G0/(RT), [-]

150 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_G0_region2(540/300.0, 101325/1e6)
3.3180953922351

chemicals.iapws.iapws97_dG0_dtau_region2(tau, pi)
Calculates the first derivative of dimensionless ideal gas Gibbs free energy with respect to tau for water according
to the IAPWS-97 standard (for region 2).

𝜕𝛾∘

𝜕𝜏
=

9∑︁
𝑖=1

𝑛∘𝑖 𝐽
∘
𝑖 𝜏

𝐽∘
𝑖 −1

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
dG0_dtau [float] First derivative of dimensionless ideal gas Gibbs energy G0/(RT) with respect

to tau, [-]

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_dG0_dtau_region2(540/300.0, 101325/1e6)
10.2374188173906

chemicals.iapws.iapws97_d2G0_dtau2_region2(tau, pi)
Calculates the second derivative of dimensionless ideal gas Gibbs free energy with respect to tau for water
according to the IAPWS-97 standard (for region 2).

𝜕2𝛾∘

𝜕𝜏2
=

9∑︁
𝑖=1

𝑛∘𝑖 𝐽
∘
𝑖 (𝐽∘

𝑖 − 1)𝜏𝐽
∘
𝑖 −2

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2G0_dtau2 [float] Second derivative of dimensionless ideal gas Gibbs energy G0/(RT) with

respect to tau, [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)151

chemicals Documentation, Release 1.1.4

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_d2G0_dtau2_region2(540/300.0, 101325/1e6)
-1.2472096479372

chemicals.iapws.iapws97_Gr_region2(tau, pi)
Calculates the dimensionless residual Gibbs free energy for water according to the IAPWS-97 standard (for
region 2).

𝛾𝑟 =

43∑︁
𝑖=1

𝑛𝑖𝜋
𝐼𝑖(𝜏 − 0.5)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
Gr [float] Dimensionless residual Gibbs energy Gr/(RT), [-]

Examples

>>> iapws97_Gr_region2(540/300.0, 101325/1e6)
-0.71851548053980

chemicals.iapws.iapws97_dGr_dpi_region2(tau, pi)
Calculates the first derivative of dimensionless residual Gibbs free energy with respect to pi for water according
to the IAPWS-97 standard (for region 2).

𝜕𝛾𝑟

𝜕𝜋
=

43∑︁
𝑖=1

𝑛𝑖𝐼𝑖𝜋
𝐼𝑖−1(𝜏 − 0.5)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
dGr_dpi [float] Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect to pi,

[-]

152 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Used in density solution.

Examples

>>> iapws97_dGr_dpi_region2(540/300.0, 101325/1e6)
-27.7714056629532

chemicals.iapws.iapws97_d2Gr_dpi2_region2(tau, pi)
Calculates the second derivative of dimensionless residual Gibbs free energy with respect to pi for water accord-
ing to the IAPWS-97 standard (for region 2).

𝜕2𝛾𝑟

𝜕𝜋2
=

43∑︁
𝑖=1

𝑛𝑖𝐼𝑖(𝐼𝑖 − 1)𝜋𝐼𝑖−2(𝜏 − 0.5)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2Gr_dpi2 [float] Second Derivative of dimensionless residual Gibbs energy Gr/(RT) with re-

spect to pi, [-]

Examples

>>> iapws97_d2Gr_dpi2_region2(540/300.0, 101325/1e6)
-983.15187604898

chemicals.iapws.iapws97_dGr_dtau_region2(tau, pi)
Calculates the first derivative of dimensionless residual Gibbs free energy with respect to tau for water according
to the IAPWS-97 standard (for region 2).

𝜕𝛾𝑟

𝜕𝜏
=

43∑︁
𝑖=1

𝑛𝑖𝜋
𝐼𝑖𝐽𝑖(𝜏 − 0.5)𝐽𝑖−1

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
dGr_dtau [float] Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect to

tau, [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)153

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_dGr_dtau_region2(540/300.0, 101325/1e6)
-18.1535856049444

chemicals.iapws.iapws97_d2Gr_dtau2_region2(tau, pi)
Calculates the second derivative of dimensionless residual Gibbs free energy with respect to tau for water ac-
cording to the IAPWS-97 standard (for region 2).

𝜕2𝛾𝑟

𝜕𝜏2
=

43∑︁
𝑖=1

𝑛𝑖𝜋
𝐼𝑖𝐽𝑖(𝐽𝑖 − 1)(𝜏 − 0.5)𝐽𝑖−2

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2Gr_dtau2 [float] Second derivative of dimensionless residual Gibbs energy Gr/(RT) with

respect to tau, [-]

Examples

>>> iapws97_d2Gr_dtau2_region2(540/300.0, 101325/1e6)
-470.9302933324787

chemicals.iapws.iapws97_d2Gr_dpidtau_region2(tau, pi)
Calculates the second derivative of dimensionless residual Gibbs free energy with respect to tau and pi for water
according to the IAPWS-97 standard (for region 2).

𝜕2𝛾𝑟

𝜕𝜏𝜕𝜋
=

43∑︁
𝑖=1

𝑛𝑖𝐼𝑖𝜋
𝐼𝑖−1𝐽𝑖(𝜏 − 0.5)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2Gr_dpidtau_ [float] Second derivative of dimensionless residual Gibbs energy Gr/(RT) with

respect to tau and pi, [-]

Examples

>>> iapws97_d2Gr_dpidtau_region2(540/300.0, 101325/1e6)
-735.391845360247

154 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.13.9 IAPWS-97 Region 3

chemicals.iapws.iapws97_A_region3(tau, delta)
Calculates the dimensionless Helmholtz free energy for water according to the IAPWS-97 standard (for region
3).

𝑓(𝜌, 𝑇)

𝑅𝑇
= 𝜑(𝛿, 𝜏) = 𝑛1 ln 𝛿 +

40∑︁
𝑖=2

𝑛𝑖𝛿
𝐼𝑖𝜏𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
A [float] Helmholtz free energy A/(RT), [-]

Examples

>>> iapws97_A_region3(647.096/500.0, 400.0/322.0)
-3.0336402168865

chemicals.iapws.iapws97_dA_ddelta_region3(tau, delta)
Calculates the derivative of dimensionless Helmholtz free energy with respect to delta for water according to the
IAPWS-97 standard (for region 3).

𝜕𝜑(𝛿, 𝜏)

𝜕𝛿
=
𝑛1
𝛿

+

40∑︁
𝑖=2

𝑛𝑖𝐼𝑖𝛿
𝐼𝑖−1𝜏𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
dA_ddelta [float] Derivative of dimensionless Helmholtz free energy with respect to delta, [-]

Examples

>>> iapws97_dA_ddelta_region3(647.096/500.0, 400.0/322.0)
7.35562435092

chemicals.iapws.iapws97_d2A_ddelta2_region3(tau, delta)
Calculates the second derivative of dimensionless Helmholtz free energy with respect to delta for water according
to the IAPWS-97 standard (for region 3).

𝜕2𝜑(𝛿, 𝜏)

𝜕𝛿2
=

−𝑛1
𝛿2

+

40∑︁
𝑖=2

𝑛𝑖𝐼𝑖(𝐼𝑖 − 1)𝛿𝐼𝑖−2𝜏𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)155

chemicals Documentation, Release 1.1.4

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2A_ddelta2 [float] Second derivative of dimensionless Helmholtz free energy with respect to

delta, [-]

Examples

>>> iapws97_d2A_ddelta2_region3(647.096/500.0, 400.0/322.0)
-2.2858869882497

chemicals.iapws.iapws97_dA_dtau_region3(tau, delta)
Calculates the derivative of dimensionless Helmholtz free energy with respect to tau for water according to the
IAPWS-97 standard (for region 3).

𝜕𝜑(𝛿, 𝜏)

𝜕𝜏
= +

40∑︁
𝑖=2

𝑛𝑖𝐽𝑖𝛿
𝐼𝑖𝜏𝐽𝑖−1

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
dA_dtau [float] Derivative of dimensionless Helmholtz free energy with respect to tau, [-]

Examples

>>> iapws97_dA_dtau_region3(647.096/500.0, 400.0/322.0)
-24.9687028688

chemicals.iapws.iapws97_d2A_dtau2_region3(tau, delta)
Calculates the second derivative of dimensionless Helmholtz free energy with respect to tau for water according
to the IAPWS-97 standard (for region 3).

𝜕2𝜑(𝛿, 𝜏)

𝜕𝜏2
= +

40∑︁
𝑖=2

𝑛𝑖𝐽𝑖(𝐽𝑖 − 1)𝛿𝐼𝑖𝜏𝐽𝑖−2

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2A_dtau2 [float] Second derivative of dimensionless Helmholtz free energy with respect to

tau, [-]

156 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_d2A_dtau2_region3(647.096/500.0, 400.0/322.0)
-373.6565823701

chemicals.iapws.iapws97_d2A_ddeltadtau_region3(tau, delta)
Calculates the second derivative of dimensionless Helmholtz free energy with respect to tau and delta for water
according to the IAPWS-97 standard (for region 3).

𝜕2𝜑(𝛿, 𝜏)

𝜕𝜏𝜕𝛿
= +

40∑︁
𝑖=2

𝑛𝑖𝐽𝑖𝛿
𝐼𝑖−1𝜏𝐽𝑖−1

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2A_ddeltadtau [float] Second derivative of dimensionless Helmholtz free energy with respect

to tau and delta, [-]

Examples

>>> iapws97_d2A_ddeltadtau_region3(647.096/500.0, 400.0/322.0)
145.85190014717

1.13.10 IAPWS-97 Region 3 PT Backwards Equation Boundaries

chemicals.iapws.iapws97_boundary_3uv(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3uv(22.3E6)
647.7996121480069

chemicals.iapws.iapws97_boundary_3ef(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)157

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_boundary_3ef(40E6)
713.959399239744

chemicals.iapws.iapws97_boundary_3cd(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3cd(25E6)
649.3659208321279

chemicals.iapws.iapws97_boundary_3gh(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3gh(25E6)
656.69805722612

chemicals.iapws.iapws97_boundary_3ij(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

158 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_boundary_3ij(25E6)
660.7865756716819

chemicals.iapws.iapws97_boundary_3jk(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3jk(25E6)
668.1915358826951

chemicals.iapws.iapws97_boundary_3mn(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3mn(22.8E6)
649.6054132953997

chemicals.iapws.iapws97_boundary_3qu(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)159

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_boundary_3qu(22E6)
645.6355027340121

chemicals.iapws.iapws97_boundary_3rx(P)
Calculates the transition temperature for a region 3 PT backwards equation transition.

Parameters
P [float] Pressure [Pa]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3rx(22E6)
648.26227536701

chemicals.iapws.iapws97_boundary_3wx(logP_MPa, logP_MPa_inv)
Calculates the transition temperature for a region 3 PT backwards equation transition (for one of “wx”, “ab”, or
“op”; the others do not use a log fit). The parameters are provided in the specific units for speed savings only.

Parameters
logP_MPa [float] Natural logarithm of pressure in units of MPa [log(MPa)]

logP_MPa_inv [float] Inverse of Natural logarithm of pressure in units of MPa [1/log(MPa)]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3wx(log(22.3), 1/log(22.3))
648.204947950734

chemicals.iapws.iapws97_boundary_3ab(logP_MPa, logP_MPa_inv)
Calculates the transition temperature for a region 3 PT backwards equation transition (for one of “wx”, “ab”, or
“op”; the others do not use a log fit). The parameters are provided in the specific units for speed savings only.

Parameters
logP_MPa [float] Natural logarithm of pressure in units of MPa [log(MPa)]

logP_MPa_inv [float] Inverse of Natural logarithm of pressure in units of MPa [1/log(MPa)]

Returns
T_trans [float] Transition temperature [K]

160 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_boundary_3ab(log(40), 1/log(40))
693.0341408296053

chemicals.iapws.iapws97_boundary_3op(logP_MPa, logP_MPa_inv)
Calculates the transition temperature for a region 3 PT backwards equation transition (for one of “wx”, “ab”, or
“op”; the others do not use a log fit). The parameters are provided in the specific units for speed savings only.

Parameters
logP_MPa [float] Natural logarithm of pressure in units of MPa [log(MPa)]

logP_MPa_inv [float] Inverse of Natural logarithm of pressure in units of MPa [1/log(MPa)]

Returns
T_trans [float] Transition temperature [K]

Examples

>>> iapws97_boundary_3op(log(22.8), 1/log(22.8))
650.010694314133

1.13.11 IAPWS-97 Region 3 PT Backwards Equations

chemicals.iapws.iapws97_region3_a(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_b(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)161

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_c(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_d(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_e(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

162 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_f(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_g(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_h(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)163

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_i(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_j(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_k(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

164 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_l(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_m(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_n(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)165

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_o(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_p(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_q(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

166 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_r(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_s(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_t(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)167

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_u(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_v(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_w(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

168 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_x(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_y(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

chemicals.iapws.iapws97_region3_z(T, P)
Calculate the mass density water in one of the 26 region 3 backwards regions of the IAPWS-97 standard.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
rho [float] Mass density of water in region 3, [kg/m^3]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)169

chemicals Documentation, Release 1.1.4

Notes

Significant discontinuities exist between each region. These functions are automatically generated and are not to
be edited directly.

1.13.12 IAPWS-97 Region 5

chemicals.iapws.iapws97_G0_region5(tau, pi)
Calculates the dimensionless ideal gas Gibbs free energy for water according to the IAPWS-97 standard (for
region 5).

𝛾∘ = ln𝜋 +

6∑︁
𝑖=1

𝑛∘𝑖 𝜏
𝐽∘
𝑖

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
G0 [float] Dimensionless ideal gas Gibbs energy G/(RT), [-]

Examples

>>> iapws97_G0_region5(1000.0/1500, 101325/1e6)
-14.9741430290056

chemicals.iapws.iapws97_dG0_dtau_region5(tau, pi)
Calculates the first derivative of dimensionless ideal gas Gibbs free energy with respect to tau for water according
to the IAPWS-97 standard (for region 5).

𝜕𝛾∘

𝜕𝜏
=

6∑︁
𝑖=1

𝑛∘𝑖 𝐽
∘
𝑖 𝜏

𝐽∘
𝑖 −1

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
dG0_dtau [float] First derivative of dimensionless ideal gas Gibbs energy G/(RT) with respect

to tau, [-]

170 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_dG0_dtau_region5(1000.0/1500, 101325/1e6)
11.311766995978

chemicals.iapws.iapws97_d2G0_dtau2_region5(tau, pi)
Calculates the second derivative of dimensionless ideal gas Gibbs free energy with respect to tau for water
according to the IAPWS-97 standard (for region 5).

𝜕2𝛾∘

𝜕𝜏2
=

6∑︁
𝑖=1

𝑛∘𝑖 𝐽
∘
𝑖 (𝐽∘

𝑖 − 1)𝜏𝐽
∘
𝑖 −2

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2G0_dtau2 [float] Second derivative of dimensionless ideal gas Gibbs energy G/(RT) with

respect to tau, [-]

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_d2G0_dtau2_region5(1000.0/1500, 101325/1e6)
-12.744650271463655

chemicals.iapws.iapws97_Gr_region5(tau, pi)
Calculates the dimensionless residual Gibbs free energy for water according to the IAPWS-97 standard (for
region 5).

𝛾𝑟 =

6∑︁
𝑖=1

𝑛𝑖𝜋
𝐼𝑖(𝜏)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
Gr [float] Dimensionless residual Gibbs energy Gr/(RT), [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)171

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_Gr_region5(1000/300.0, 101325/1e6)
-0.0194648291645718

chemicals.iapws.iapws97_dGr_dpi_region5(tau, pi)
Calculates the first derivative of dimensionless residual Gibbs free energy with respect to pi for water according
to the IAPWS-97 standard (for region 5).

𝜕𝛾𝑟

𝜕𝜋
=

6∑︁
𝑖=1

𝑛𝑖𝐼𝑖𝜋
𝐼𝑖−1(𝜏)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
dGr_dpi [float] Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect to pi,

[-]

Notes

Used in density solution.

Examples

>>> iapws97_dGr_dpi_region5(1000/300.0, 101325/1e6)
-0.213281155629998

chemicals.iapws.iapws97_d2Gr_dpi2_region5(tau, pi)
Calculates the second derivative of dimensionless residual Gibbs free energy with respect to pi for water accord-
ing to the IAPWS-97 standard (for region 5).

𝜕2𝛾𝑟

𝜕𝜋2
=

6∑︁
𝑖=1

𝑛𝑖𝐼𝑖(𝐼𝑖 − 1)𝜋𝐼𝑖−2(𝜏)𝐽𝑖

Parameters
tau [float] Dimensionless temperature, (540 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2Gr_dpi2 [float] Second derivative of dimensionless residual Gibbs energy Gr/(RT) with re-

spect to pi, [-]

172 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> iapws97_d2Gr_dpi2_region5(1000/300.0, 101325/1e6)
-0.4179905782304291

chemicals.iapws.iapws97_dGr_dtau_region5(tau, pi)
Calculates the first derivative of dimensionless residual Gibbs free energy with respect to tau for water according
to the IAPWS-97 standard (for region 5).

𝜕𝛾𝑟

𝜕𝜏
=

6∑︁
𝑖=1

𝑛𝑖𝜋
𝐼𝑖𝐽𝑖(𝜏)𝐽𝑖−1

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
dGr_dtau [float] Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect to

tau, [-]

Examples

>>> iapws97_dGr_dtau_region5(1000/300.0, 101325/1e6)
-0.02200629869194

chemicals.iapws.iapws97_d2Gr_dtau2_region5(tau, pi)
Calculates the second derivative of dimensionless residual Gibbs free energy with respect to tau for water ac-
cording to the IAPWS-97 standard (for region 5).

𝜕2𝛾𝑟

𝜕𝜏2
=

6∑︁
𝑖=1

𝑛𝑖𝜋
𝐼𝑖𝐽𝑖(𝐽𝑖 − 1)(𝜏)𝐽𝑖−2

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2Gr_dtau2 [float] Second derivative of dimensionless residual Gibbs energy Gr/(RT) with

respect to tau, [-]

Examples

>>> iapws97_d2Gr_dtau2_region5(1000/300.0, 101325/1e6)
-0.0239165867999155

chemicals.iapws.iapws97_d2Gr_dpidtau_region5(tau, pi)
Calculates the second derivative of dimensionless residual Gibbs free energy with respect to tau and pi for water
according to the IAPWS-97 standard (for region 5).

𝜕2𝛾𝑟

𝜕𝜏𝜕𝜋
=

6∑︁
𝑖=1

𝑛𝑖𝐼𝑖𝜋
𝐼𝑖−1𝐽𝑖(𝜏)𝐽𝑖−1

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)173

chemicals Documentation, Release 1.1.4

Parameters
tau [float] Dimensionless temperature, (1000 K)/T [-]

pi [float] Dimensionless pressure, P/(1 MPa), [-]

Returns
d2Gr_dpidtau [float] Second derivative of dimensionless residual Gibbs energy Gr/(RT) with

respect to tau and pi, [-]

Examples

>>> iapws97_d2Gr_dpidtau_region5(1000/300.0, 101325/1e6)
-0.27438379131103097

1.13.13 IAPWS-95 Ideal Gas Terms

chemicals.iapws.iapws95_A0(tau, delta)
Calculates the ideal gas Helmholtz energy of water according to the IAPWS-95 standard.

𝜑∘ = ln 𝛿 + 𝑛1 + 𝑛2𝜏 + 𝑛3 ln 𝜏 +

8∑︁
𝑖=4

𝑛𝑖 ln [1 − exp(−𝛾𝑖𝜏)]

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
A0 [float] Ideal gas dimensionless Helmholtz energy A/(RT) [-]

Notes

This implementation is checked to have a relative error always under 1e-15.

Examples

>>> iapws95_A0(647.096/300.0, 999.0/322)
9.537075529761053

chemicals.iapws.iapws95_dA0_dtau(tau, delta)
Calculates the first derivative of ideal gas Helmholtz energy of water with respect to tau according to the IAPWS-
95 standard.

𝜕𝜑∘

𝜕𝜏
= 𝑛2 +

𝑛3
𝜏

+

8∑︁
𝑖=4

𝑛𝑖𝛾𝑖

[︁
(1 − exp(−𝛾𝑖𝜏))

−1 − 1
]︁

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

174 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Returns
dA0_dtau [float] First derivative of ideal gas dimensionless Helmholtz energy A/(RT) with re-

spect to tau [-]

Notes

This implementation is checked to have a relative error always under 1e-15.

Examples

>>> iapws95_dA0_dtau(647.096/300.0, 999.0/322)
8.079705548882

chemicals.iapws.iapws95_d2A0_dtau2(tau, delta)
Calculates the second derivative of ideal gas Helmholtz energy of water with respect to tau according to the
IAPWS-95 standard.

𝜕2𝜑∘

𝜕𝜏2
=
𝑛3
𝜏2

+

8∑︁
𝑖=4

𝑛𝑖𝛾
2
𝑖 exp(−𝛾𝑖𝜏)

[︁
(1 − exp(−𝛾𝑖𝜏))

−2
]︁

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2A0_dtau2 [float] Second derivative of ideal gas dimensionless Helmholtz energy A/(RT) with

respect to tau [-]

Notes

This implementation is checked to have a relative error always under 1e-15.

Examples

>>> iapws95_d2A0_dtau2(647.096/300.0, 999.0/322)
-0.653543047751809

chemicals.iapws.iapws95_d3A0_dtau3(tau, delta)
Calculates the third derivative of ideal gas Helmholtz energy of water with respect to tau according to the IAPWS-
95 standard.

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d3A0_dtau3 [float] Third derivative of ideal gas dimensionless Helmholtz energy A/(RT) with

respect to tau [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)175

chemicals Documentation, Release 1.1.4

Notes

This implementation is checked to have a relative error always under 1e-15. This equation is not explicitly in
IAPWS-95, but is needed to compute some second derivatives.

Examples

>>> iapws95_d3A0_dtau3(647.096/300.0, 999.0/322)
0.6222542507278

chemicals.iapws.iapws95_A0_tau_derivatives(tau, delta)
Calculates the ideal gas Helmholtz energy of water and its first three derivatives with respect to tau according to
the IAPWS-95 standard. As each of those calls spends most of their time computing exponentials which are the
same for each function, function offers a time saving.

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
A0 [float] Ideal gas dimensionless Helmholtz energy A/(RT) [-]

dA0_dtau [float] First derivative of ideal gas dimensionless Helmholtz energy A/(RT) with re-
spect to tau [-]

d2A0_dtau2 [float] Second derivative of ideal gas dimensionless Helmholtz energy A/(RT) with
respect to tau [-]

d3A0_dtau3 [float] Third derivative of ideal gas dimensionless Helmholtz energy A/(RT) with
respect to tau [-]

Notes

The extra cost of calling this function vs iapws95_A0 alone is ~15% with numba, ~40% with PyPy, and 120%
with CPython.

Examples

>>> iapws95_A0_tau_derivatives(647.096/300.0, 999.0/322)
(9.53707552976, 8.0797055488, -0.65354304775, 0.62225425072)

1.13.14 IAPWS-95 Residual Terms

chemicals.iapws.iapws95_Ar(tau, delta)
Calculates the residual Helmholtz energy of water according to the IAPWS-95 standard.

𝜑r =

7∑︁
𝑖=1

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖 +

51∑︁
𝑖=8

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖e−𝛿𝑐𝑖 +

54∑︁
𝑖=52

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖e−𝛼𝑖(𝛿−𝜀𝑖)

2−𝛽𝑖(𝜏−𝛾𝑖)
2

+

56∑︁
𝑖=55

𝑛𝑖∆
𝑏𝑖𝛿𝜓

∆ = 𝜃2 +𝐵𝑖

[︀
(𝛿 − 1)2

]︀𝑎𝑖

176 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝜃 = (1 − 𝜏) +𝐴𝑖

[︀
(𝛿 − 1)2

]︀ 1
2𝛽𝑖

𝜓 = 𝑒−𝐶𝑖(𝛿−1)2−𝐷𝑖(𝜏−1)2

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
Ar [float] Residual Helmholtz energy A/(RT) [-]

Notes

This is an optimized implementatation taking 9 exp calls, 4 sqrts, and 3 powers. It was generated using SymPy’s
CSE functionality, with select polynomial optimizations by hand as well. It is over 10x faster than a naive
implementation.

This implementation has been tested against a straightforward implementation with the equations given in
IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 4E6 points were evaluated. The mean relative error was 5.0416E-15, with a maximum relative error of
1.118E-9 and a standard deviation of 5.773e-13.

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 90000
points, the mean relative error was 3.14E-15, with a maximum relative error of 3.54e-12 and a standard deviation
of 3.017E-14.

This comparison indicates that this implementation is more accurate than the straightforward implementation.

Examples

>>> iapws95_Ar(647.096/300.0, 999.0/322)
-9.57577716026768

chemicals.iapws.iapws95_dAr_ddelta(tau, delta)
Calculates the first derivative of residual Helmholtz energy of water with respect to delta according to the IAPWS-
95 standard.

𝜑r𝛿 =

7∑︁
𝑖=1

𝑛𝑖𝑑𝑖𝛿
𝑑𝑖−1𝜏 𝑡𝑖 +

51∑︁
𝑖=8

𝑛𝑖e
−𝛿𝑐𝑖

[︀
𝛿𝑑𝑖−1𝜏 𝑡𝑖 (𝑑𝑖 − 𝑐𝑖𝛿

𝑐𝑖)
]︀

+

54∑︁
𝑖=52

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖e−𝛼𝑖(𝛿−𝜀𝑖)

2−𝛽𝑖(𝜏−𝛾𝑖)
2

[︂
𝑑𝑖
𝛿

− 2𝛼𝑖 (𝛿 − 𝜀𝑖)

]︂
+

56∑︁
𝑖=55

𝑛𝑖

[︂
∆𝑏𝑖

(︂
𝜓 + 𝛿

𝜕𝜓

𝜕𝛿

)︂
+
𝜕∆𝑏𝑖

𝜕𝛿
𝛿𝜓

]︂
Parameters

tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
dAr_ddelta [float] First derivative of residual Helmholtz energy A/(RT) with respect to delta,

[-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)177

chemicals Documentation, Release 1.1.4

Notes

This is an optimized implementatation taking 8 exp calls, 4 sqrts, and 2 powers. It was generated using SymPy’s
CSE functionality, with select polynomial optimizations by hand as well. It is over 10x faster than a naive
implementation.

This implementation has been tested against a straightforward implementation with the equations given in
IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 4E6 points were evaluated. The mean relative error was 4.033E-15, with a maximum relative error of
3.8765e-10 and a standard deviation of 3.189e-13.

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 90000
points, the mean relative error was 6.046E-15, with a maximum relative error of 3.39E-10 and a standard devia-
tion of 7.056E-13.

There was a singularity at tau = delta = 1, but the limit is correctly returned.

Examples

>>> iapws95_dAr_ddelta(647.096/300.0, 999.0/322)
-0.3093321202374

chemicals.iapws.iapws95_d2Ar_ddelta2(tau, delta)
Calculates the second derivative of residual Helmholtz energy of water with respect to delta according to the
IAPWS-95 standard.

𝜑r𝛿𝛿 =

7∑︁
𝑖=1

𝑛𝑖𝑑𝑖 (𝑑𝑖 − 1) 𝛿𝑑𝑖−2𝜏 𝑡𝑖 +

51∑︁
𝑖=8

𝑛𝑖e
−𝛿6

[︀
𝛿𝑑𝑖−2𝜏 𝑡𝑖

(︀
(𝑑𝑖 − 𝑐𝑖𝛿

𝑐𝑖) (𝑑𝑖 − 1 − 𝑐𝑖𝛿
𝑐𝑖) − 𝑐2𝑖 𝛿

𝑐𝑖
)︀]︀

+

54∑︁
𝑖=52

𝑛𝑖𝜏
𝑡𝑖e−𝛼𝑖(𝛿−𝜀𝑖)

2−𝛽𝑖(𝜏−𝛾𝑖)
2

·
[︁
−2𝛼𝑖𝛿

𝑑𝑖 + 4𝛼2
𝑖 𝛿

𝑑𝑖 (𝛿 − 𝜀𝑖)
2 − 4𝑑𝑖𝛼𝑖𝛿

𝑑𝑖−1 (𝛿 − 𝜀𝑖) + 𝑑𝑖 (𝑑𝑖 − 1) 𝛿𝑑𝑖−2
]︁

+

56∑︁
𝑖=55

𝑛𝑖

[︂
∆𝑏𝑖

(︂
2
𝜕𝜓

𝜕𝛿
+ 𝛿

𝜕2𝜓

𝜕𝛿2

)︂
+ 2

𝜕∆𝑏𝑖

𝜕𝛿

(︂
𝜓 + 𝛿

𝜕𝜓

𝜕𝛿

)︂
+
𝜕2∆𝑏𝑖

𝜕𝛿2
𝛿𝜓

]︂
Parameters

tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2Ar_ddelta2 [float] Second derivative of residual Helmholtz energy A/(RT) with respect to

delta, [-]

Notes

This is an optimized implementatation taking 4 exp calls, 4 sqrts, and 2 powers. It was generated using SymPy’s
CSE functionality, with select polynomial optimizations by hand as well. It is over 10x faster than a naive
implementation.

This implementation has been tested against a straightforward implementation with the equations given in
IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 4E6 points were evaluated. The mean relative error was 9.566e-16, with a maximum relative error of
1.0518E-10 and a standard deviation of 6.20265E-14.

178 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 250000
points, the mean relative error was 1.039E-15, with a maximum relative error of 2.431E-11 and a standard
deviation of 5.31708E-14.

Examples

>>> iapws95_d2Ar_ddelta2(647.096/300.0, 999.0/322)
1.7862535141735987

chemicals.iapws.iapws95_d3Ar_ddelta3(tau, delta)
Calculates the third derivative of residual Helmholtz energy of water with respect to delta according to the
IAPWS-95 standard.

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d3Ar_ddelta3 [float] Third derivative of residual Helmholtz energy A/(RT) with respect to

delta, [-]

Notes

No equation is given for this in IAPWS-95, and the derivative was symbolically computed with SymPy.

This is an optimized implementatation. It was generated using SymPy’s CSE functionality.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-4 kg/m^3 to 5000
kg/m^3, 90000 points were evaluated. The mean relative error was 5.41E-13, with a maximum relative error of
6.3957e-11 and a standard deviation of 3.346e-12.

90000 points were also evaluated with mpmath. The mean relative error was 1.41959E-14, with a maximum
relative error of 5.8878E-10 and a standard deviation of 1.978E-12.

Evaluating 10000 points in the 1e-10 to 1e-4 range, the mean relative error was 1.2E-16, maximum relative error
1.2e-16, and standard deviation 6.66e-16.

Examples

>>> iapws95_d3Ar_ddelta3(647.096/300.0, 999.0/322)
0.33621190578

chemicals.iapws.iapws95_dAr_dtau(tau, delta)
Calculates the first derivative of residual Helmholtz energy of water with respect to tau according to the IAPWS-
95 standard.

𝜑r𝜏 =

7∑︁
𝑖=1

𝑛𝑖𝑡𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖−1 +

51∑︁
𝑖=8

𝑛𝑖𝑡𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖−1e−𝛿𝑐𝑖 +

54∑︁
𝑖=52

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖e−𝛼𝑖(𝛿−𝜀𝑖)

2−𝛽𝑖(𝜏−𝛾𝑖)
2

[︂
𝑡𝑖
𝜏
− 2𝛽𝑖 (𝜏 − 𝛾𝑖)

]︂
+

56∑︁
𝑖=55

𝑛𝑖𝛿

[︂
𝜕∆𝑏𝑖

𝜕𝜏
𝜓 + ∆𝑏𝑖

𝜕𝜓

𝜕𝜏

]︂
Parameters

tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)179

chemicals Documentation, Release 1.1.4

Returns
dAr_dtau [float] Derivative of residual Helmholtz energy A/(RT) with respect to tau, [-]

Notes

This is an optimized implementatation taking 9 exp calls, 4 sqrts, and 2 powers. It was generated using SymPy’s
CSE functionality, with a limited amount of horner polynomial optimizations as well. It is over 10x faster than
a naive implementation.

This implementation has been tested against a straightforward implementation with the equations given in
IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 250000 points were evaluated. The mean relative error was 5.68E-14, with a maximum relative error
of 6.73E-9 and a standard deviation of 1.35E-11.

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 90000
points, the mean relative error was 4.66E-14, with a maximum relative error of 4.25E-10 and a standard deviation
of 1.77E-12.

The maximum error ocurs in the extremely low density regime, 𝜌 < 1𝑒− 6.

Examples

>>> iapws95_dAr_dtau(647.096/300.0, 999.0/322)
-7.7043336309570

chemicals.iapws.iapws95_d2Ar_dtau2(tau, delta)
Calculates the second derivative of residual Helmholtz energy of water with respect to tau according to the
IAPWS-95 standard.

𝜑r𝜏𝜏 =

7∑︁
𝑖=1

𝑛𝑖𝑡𝑖 (𝑡𝑖 − 1) 𝛿𝑑𝑖𝜏 𝑡𝑖−2 +

51∑︁
𝑖=8

𝑛𝑖𝑡𝑖 (𝑡𝑖 − 1) 𝛿𝑑𝑖𝜏 𝑡𝑖−2e−𝛿𝑐𝑖 +

54∑︁
𝑖=52

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖e−𝛼𝑖(𝛿−𝜀𝑖)

2−𝛽𝑖(𝜏−𝛾𝑖)
2

[︃(︂
𝑡𝑖
𝜏
− 2𝛽𝑖 (𝜏 − 𝛾𝑖)

)︂2

− 𝑡𝑖
𝜏2

− 2𝛽𝑖

]︃
+

56∑︁
𝑖=55

𝑛𝑖𝛿

[︂
𝜕2∆𝑏𝑖

𝜕𝜏2
𝜓 + 2

𝜕∆𝑏𝑖

𝜕𝜏

𝜕𝜓

𝜕𝜏
+ ∆𝑏𝑖

𝜕2𝜓

𝜕𝜏2

]︂
Parameters

tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2Ar_dtau2 [float] Second derivative of residual Helmholtz energy A/(RT) with respect to tau,

[-]

Notes

This is an optimized implementatation taking 9 exp calls, 4 sqrts, and 2 powers. It was generated using SymPy’s
CSE functionality, with a limited amount of horner polynomial optimizations as well. It is over 10x faster than
a naive implementation.

This implementation has been tested against a straightforward implementation with the equations given in
IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 4E6 points were evaluated. The mean relative error was 4.595E-16, with a maximum relative error of
1.835e-10 and a standard deviation of 1.209E-13.

180 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 250000
points, the mean relative error was 2.6026E-16, with a maximum relative error of 2.36E-12 and a standard
deviation of 8.055E-15.

This comparison indicates this implementation is more accurate than the straightforward implementation.

Examples

>>> iapws95_d2Ar_dtau2(647.096/300.0, 999.0/322)
-1.2616419775539

chemicals.iapws.iapws95_d2Ar_ddeltadtau(tau, delta)
Calculates the second derivative of residual Helmholtz energy of water with respect to tau and also delta accord-
ing to the IAPWS-95 standard.

𝜑r𝛿𝜏 =

7∑︁
𝑖=1

𝑛𝑖𝑑𝑖𝑡𝑖𝛿
𝑑𝑖−1𝜏 𝑡𝑖−1 +

51∑︁
𝑖=8

𝑛𝑖𝑡𝑖𝛿
𝑑𝑖−1𝜏 𝑡𝑖−1 (𝑑𝑖 − 𝑐𝑖𝛿

𝑐𝑖) e−𝛿𝑐𝑖 +

54∑︁
𝑖=52

𝑛𝑖𝛿
𝑑𝑖𝜏 𝑡𝑖e−𝛼𝑖(𝛿−𝜀𝑖)

2−𝛽𝑖(𝜏−𝛾𝑖)
2

[︂
𝑑𝑖
𝛿

− 2𝛼𝑖 (𝛿 − 𝜀𝑖)

]︂ [︂
𝑡𝑖
𝜏
− 2𝛽𝑖 (𝜏 − 𝛾𝑖)

]︂ 56∑︁
𝑖=55

𝑛𝑖

[︂
∆𝑏𝑖

(︂
𝜕𝜓

𝜕𝜏
+ 𝛿

𝜕2𝜓

𝜕𝛿𝜕𝜏

)︂
+ 𝛿

𝜕∆𝑏𝑖

𝜕𝛿

𝜕𝜓

𝜕𝜏
+
𝜕∆𝑏𝑖

𝜕𝜏

(︂
𝜓 + 𝛿

𝜕𝜓

𝜕𝛿

)︂
+
𝜕2∆𝑏𝑖

𝜕𝛿𝜕𝜏
𝛿𝜓

]︂
Parameters

tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d2Ar_ddeltadtau [float] Second derivative of residual Helmholtz energy A/(RT) with respect

to tau and delta, [-]

Notes

This is an optimized implementatation taking 11 exp calls, 4 sqrts, and 3 powers. It was generated using SymPy’s
CSE functionality, with select polynomial optimizations by hand as well. It is over 10x faster than a naive
implementation.

This implementation has been tested against a straightforward implementation with the equations given in
IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 4E6 points were evaluated. The mean relative error was 2.82E-14, with a maximum relative error of
8.404E-9 and a standard deviation of 5.166e-12.

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 90000
points, the mean relative error was 6.974E-14, with a maximum relative error of 4.286E-9 and a standard devia-
tion of 4.286E-12.

Examples

>>> iapws95_d2Ar_ddeltadtau(647.096/300.0, 999.0/322)
-0.198403562385

chemicals.iapws.iapws95_d3Ar_ddeltadtau2(tau, delta)
Calculates the third derivative of residual Helmholtz energy of water with respect to delta once and tau twice
according to the IAPWS-95 standard.

Parameters

1.13. IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)181

chemicals Documentation, Release 1.1.4

tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d3Ar_ddeltadtau2 [float] Third derivative of residual Helmholtz energy A/(RT) with respect

to delta once and tau twice, [-]

Notes

This is an optimized implementatation. It was generated using SymPy’s CSE functionality.

No equation is given for this in IAPWS-95, and the derivative was symbolically computed with SymPy.

Like many higher-order derivatives of functions with exponentials, this one balloons to use many, many terms.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 250000 points were evaluated. The mean relative error was 7.936e-16, with a maximum relative error
of 1.965E-11 and a standard deviation of 4.7938E-14.

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 90000
points, the mean relative error was 6.08E-16, with a maximum relative error of 3.537E-12 and a standard devia-
tion of 1.85197E-14.

Examples

>>> iapws95_d3Ar_ddeltadtau2(647.096/300.0, 999.0/322)
1.081479970332

chemicals.iapws.iapws95_d3Ar_ddelta2dtau(tau, delta)
Calculates the third derivative of residual Helmholtz energy of water with respect to delta twice and tau one
according to the IAPWS-95 standard.

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d3Ar_ddeltadtau2 [float] Third derivative of residual Helmholtz energy A/(RT) with respect

to delta twice and tau once, [-]

Notes

This is an optimized implementatation. It was generated using SymPy’s CSE functionality.

No equation is given for this in IAPWS-95, and the derivative was symbolically computed with SymPy.

Like many higher-order derivatives of functions with exponentials, this one balloons to use many, many terms.

Over a linear temperature range of 200 K to 5000 K and a logarithmic density range of 1E-10 kg/m^3 to 5000
kg/m^3, 250000 points were evaluated. The mean relative error was 3.629e-15, with a maximum relative error
of 8.38E-11 and a standard deviation of 2.1214E-13.

Over the same range, the model was evaluated to a precision of 50 decimal places with mpmath, and on 10000
points, the mean relative error was 2.4e-15, with a maximum relative error of 7.62E-12 and a standard deviation
of 7.818E-14.

182 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> iapws95_d3Ar_ddelta2dtau(647.096/300.0, 999.0/322)
0.015646982949077

chemicals.iapws.iapws95_d4Ar_ddelta2dtau2(tau, delta)
Calculates the fourth derivative of residual Helmholtz energy of water with respect to tau twice and delta twice
according to the IAPWS-95 standard.

Parameters
tau [float] Dimensionless temperature, (647.096 K)/T [-]

delta [float] Dimensionless density, rho/(322 kg/m^3), [-]

Returns
d4Ar_ddelta2dtau2 [float] Fourth derivative of residual Helmholtz energy A/(RT) with respect

to tau and delta, [-]

Examples

>>> iapws95_d4Ar_ddelta2dtau2(647.096/300.0, 999.0/322)
-2.656422915480

1.14 Chemical Metadata (chemicals.identifiers)

This module contains a database of metadata on ~70000 chemicals from the PubChem datase. It contains comprehen-
sive feature for searching the metadata. It also includes a small database of common mixture compositions.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Search Functions

• CAS Number Utilities

• Database Objects

• Chemical Groups

1.14.1 Search Functions

chemicals.identifiers.CAS_from_any(ID, autoload=False, cache=True)
Wrapper around search_chemical which returns the CAS number of the found chemical directly.

Parameters
ID [str] One of the name formats described by search_chemical, [-]

autoload [bool, optional] Whether to load new chemical databanks during the search if a hit is
not immediately found, [-]

cache [bool, optional] Whether or not to cache the search for faster lookup in subsequent queries,
[-]

1.14. Chemical Metadata (chemicals.identifiers) 183

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Returns
CASRN [str] A three-piece, dash-separated set of numbers

Notes

An exception is raised if the name cannot be identified. The PubChem database includes a wide variety of other
synonyms, but these may not be present for all chemcials. See search_chemical for more details.

Examples

>>> CAS_from_any('water')
'7732-18-5'
>>> CAS_from_any('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
'64-17-5'
>>> CAS_from_any('CCCCCCCCCC')
'124-18-5'
>>> CAS_from_any('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
'64-17-5'
>>> CAS_from_any('pubchem=702')
'64-17-5'
>>> CAS_from_any('O') # only elements can be specified by symbol
'17778-80-2'

chemicals.identifiers.MW(ID, autoload=False, cache=True)
Wrapper around search_chemical which returns the molecular weight of the found chemical directly.

Parameters
ID [str] One of the name formats described by search_chemical

Returns
MW [float] Molecular weight of chemical, [g/mol]

Notes

An exception is raised if the name cannot be identified. The PubChem database includes a wide variety of other
synonyms, but these may not be present for all chemcials. See search_chemical for more details.

Examples

>>> MW('water')
18.01528
>>> MW('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
46.06844
>>> MW('CCCCCCCCCC')
142.286
>>> MW('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
46.06844
>>> MW('pubchem=702')
46.06844

(continues on next page)

184 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

>>> MW('O') # only elements can be specified by symbol
15.9994

chemicals.identifiers.search_chemical(ID, autoload=False, cache=True)
Looks up metadata about a chemical by searching and testing for the input string being any of the following types
of chemical identifiers:

• Name, in IUPAC form or common form or a synonym registered in PubChem

• InChI name, prefixed by ‘InChI=1S/’ or ‘InChI=1/’

• InChI key, prefixed by ‘InChIKey=’

• PubChem CID, prefixed by ‘PubChem=’

• SMILES (prefix with ‘SMILES=’ to ensure smiles parsing; ex. ‘C’ will return Carbon as it is an element
whereas the SMILES interpretation for ‘C’ is methane)

• CAS number (obsolete numbers may point to the current number)

If the input is an ID representing an element, the following additional inputs may be specified as

• Atomic symbol (ex ‘Na’)

• Atomic number (as a string)

Parameters
ID [str] One of the name formats described above

autoload [bool, optional] Whether to load new chemical databanks during the search if a hit is
not immediately found, [-]

cache [bool, optional] Whether or not to cache the search for faster lookup in subsequent queries,
[-]

Returns
chemical_metadata [ChemicalMetadata] A class containing attributes which describe the

chemical’s metadata, [-]

Notes

An exception is raised if the name cannot be identified. The PubChem database includes a wide variety of other
synonyms, but these may not be present for all chemcials.

Examples

>>> search_chemical('water')
<ChemicalMetadata, name=water, formula=H2O, smiles=O, MW=18.0153>
>>> search_chemical('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('CCCCCCCCCC')
<ChemicalMetadata, name=DECANE, formula=C10H22, smiles=CCCCCCCCCC, MW=142.286>
>>> search_chemical('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('pubchem=702')

(continues on next page)

1.14. Chemical Metadata (chemicals.identifiers) 185

chemicals Documentation, Release 1.1.4

(continued from previous page)

<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('O') # only elements can be specified by symbol
<ChemicalMetadata, name=oxygen, formula=O, smiles=[O], MW=15.9994>

chemicals.identifiers.IDs_to_CASs(IDs)
Find the CAS numbers for multiple chemicals names at once. Also supports having a string input which is a
common mixture name in the database. An error will be raised if any of the chemicals cannot be found.

Parameters
IDs [list[str] or str] A string or 1-element list containing the name which may represent a mixture.

Returns
CASs [list[str]] CAS numbers of found chemicals, [-]

Notes

White space, ‘-’, and upper case letters are removed in the search.

Examples

>>> IDs_to_CASs('R512A')
['811-97-2', '75-37-6']
>>> IDs_to_CASs(['norflurane', '1,1-difluoroethane'])
['811-97-2', '75-37-6']

1.14.2 CAS Number Utilities

chemicals.identifiers.check_CAS(CASRN)
Checks if a CAS number is valid. Returns False if the parser cannot parse the given string.

Parameters
CASRN [str] A three-piece, dash-separated set of numbers

Returns
result [bool] Boolean value if CASRN was valid. If parsing fails, return False also.

Notes

Check method is according to Chemical Abstract Society. However, no lookup to their service is performed;
therefore, this function cannot detect false positives.

Function also does not support additional separators, apart from ‘-‘.

CAS numbers up to the series 1 XXX XXX-XX-X are now being issued.

A long can hold CAS numbers up to 2 147 483-64-7

186 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> check_CAS('7732-18-5')
True
>>> check_CAS('77332-18-5')
False

chemicals.identifiers.CAS_to_int(i)
Converts CAS number of a compounds from a string to an int. This is helpful when storing large amounts of
CAS numbers, as their strings take up more memory than their numerical representational. All CAS numbers fit
into 64 bit ints.

Parameters
CASRN [str] CASRN [-]

Returns
CASRN [int] CASRN [-]

Notes

Accomplishes conversion by removing dashes only, and then converting to an int. An incorrect CAS number
will change without exception.

Examples

>>> CAS_to_int('7704-34-9')
7704349

chemicals.identifiers.int_to_CAS(i)
Converts CAS number of a compounds from an int to an string. This is helpful when dealing with int CAS
numbers.

Parameters
CASRN [int] CASRN [-]

Returns
CASRN [str] CASRN [-]

Notes

Handles CAS numbers with an unspecified number of digits. Does not work on floats.

1.14. Chemical Metadata (chemicals.identifiers) 187

chemicals Documentation, Release 1.1.4

Examples

>>> int_to_CAS(7704349)
'7704-34-9'

chemicals.identifiers.sorted_CAS_key(CASs)
Takes a list of CAS numbers as strings, and returns a tuple of the same CAS numbers, sorted from smallest to
largest. This is very convenient for obtaining a unique hash of a set of compounds, so as to see if two groups of
compounds are the same.

Parameters
CASs [list[str]] CAS numbers as strings [-]

Returns
CASs_sorted [tuple[str]] Sorted CAS numbers from lowest (first) to highest (last) [-]

Notes

Does not check CAS numbers for validity.

Examples

>>> sorted_CAS_key(['7732-18-5', '64-17-5', '108-88-3', '98-00-0'])
('64-17-5', '98-00-0', '108-88-3', '7732-18-5')

1.14.3 Database Objects

There is an object used to represent a chemical’s metadata, an object used to represent a common mixture’s composition,
and an object used to hold the mixture metadata.

class chemicals.identifiers.ChemicalMetadata(pubchemid, CAS, formula, MW, smiles, InChI, InChI_key,
iupac_name, common_name, synonyms)

Class for storing metadata on chemicals.

Attributes
pubchemid [int] Identification number on pubchem database; access their information online at

https://pubchem.ncbi.nlm.nih.gov/compound/<pubchemid> [-]

formula [str] Formula of the compound; in the same format as chemicals.elements.
serialize_formula generates, [-]

MW [float] Molecular weight of the compound as calculated with the standard atomic abun-
dances; consistent with the element weights in chemicals.elements.periodic_table,
[g/mol]

smiles [str] SMILES identification string, [-]

InChI [str] InChI identification string as given in pubchem (there can be multiple valid InChI
strings for a compound), [-]

InChI_key [str] InChI key identification string (meant to be unique to a compound), [-]

iupac_name [str] IUPAC name as given in pubchem, [-]

common_name [str] Common name as given in pubchem, [-]

188 Chapter 1. Key Features & Capabilities

https://pubchem.ncbi.nlm.nih.gov/compound

chemicals Documentation, Release 1.1.4

synonyms [list[str]] List of synonyms of the compound, [-]

CAS [int] CAS number of the compound; stored as an int for memory efficiency, [-]

class chemicals.identifiers.CommonMixtureMetadata(name, CASs, N, source, names, ws, zs, synonyms)
Class for storing metadata on predefined chemical mixtures.

Attributes
name [str] Name of the mixture, [-]

source [str] Source of the mixture composition, [-]

N [int] Number of chemicals in the mixture, [-]

CASs [list[str]] CAS numbers of the mixture, [-]

ws [list[float]] Mass fractions of chemicals in the mixture, [-]

zs [list[float]] Mole fractions of chemicals in the mixture, [-]

names [list[str]] List of names of the chemicals in the mixture, [-]

synonyms [list[str]] List of synonyms of the mixture which can also be used to look it up, [-]

class chemicals.identifiers.ChemicalMetadataDB(elements=True,
main_db='/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-
packages/chemicals-1.1.4-
py3.7.egg/chemicals/Identifiers/chemical identifiers
pubchem large.tsv',
user_dbs=['/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-
packages/chemicals-1.1.4-
py3.7.egg/chemicals/Identifiers/chemical identifiers
pubchem small.tsv',
'/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-
packages/chemicals-1.1.4-
py3.7.egg/chemicals/Identifiers/chemical identifiers
example user db.tsv',
'/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-
packages/chemicals-1.1.4-
py3.7.egg/chemicals/Identifiers/Cation db.tsv',
'/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-
packages/chemicals-1.1.4-
py3.7.egg/chemicals/Identifiers/Anion db.tsv',
'/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-
packages/chemicals-1.1.4-
py3.7.egg/chemicals/Identifiers/Inorganic
db.tsv'])

Object which holds the main database of chemical metadata.

Warning: To allow the chemicals to grow and improve, the details of this class may change in the future
without notice!

Attributes
finished_loading Whether or not the database has loaded the main database.

1.14. Chemical Metadata (chemicals.identifiers) 189

chemicals Documentation, Release 1.1.4

Methods

autoload_main_db() Load the main database when needed.
finish_loading() Complete loading the main database, if it has not

been fully loaded.
load(file_name) Load a particular file into the indexes.
load_elements() Load elements into the indexes.
search_CAS(CAS[, autoload]) Search for a chemical by its CAS number.
search_InChI(InChI[, autoload]) Search for a chemical by its InChI string.
search_InChI_key(InChI_key[, autoload]) Search for a chemical by its InChI key.
search_formula(formula[, autoload]) Search for a chemical by its serialized formula.
search_name(name[, autoload]) Search for a chemical by its name.
search_pubchem(pubchem[, autoload]) Search for a chemical by its pubchem number.
search_smiles(smiles[, autoload]) Search for a chemical by its smiles string.

chemicals.identifiers.get_pubchem_db()
Helper function to delay the creation of the pubchem_db object.

This avoids loading the database when it is not needed.

1.14.4 Chemical Groups

It is convenient to tag some chemicals with labels like “refrigerant”, or in a certain database or not. The following
chemical groups are available.

chemicals.identifiers.cryogenics = {'132259-10-0': 'Air', '1333-74-0': 'hydrogen',
'630-08-0': 'carbon monoxide', '74-82-8': 'methane', '7439-90-9': 'krypton', '7440-01-9':
'neon', '7440-37-1': 'Argon', '7440-59-7': 'helium', '7440-63-3': 'xenon', '7727-37-9':
'nitrogen', '7782-39-0': 'deuterium', '7782-41-4': 'fluorine', '7782-44-7': 'oxygen'}

chemicals.identifiers.inerts = {'10043-92-2': 'radon', '10102-43-9': 'Nitric Oxide',
'10102-44-0': 'Nitrogen Dioxide', '124-38-9': 'Carbon Dioxide', '132259-10-0': 'Air',
'7439-90-9': 'krypton', '7440-01-9': 'Neon', '7440-37-1': 'Argon', '7440-59-7': 'Helium',
'7440-63-3': 'Xenon', '7727-37-9': 'Nitrogen', '7732-18-5': 'water', '7782-41-4':
'fluorine', '7782-44-7': 'Oxygen', '7782-50-5': 'chlorine'}

chemicals.identifiers.dippr_compounds()
Loads and returns a set of compounds known in the DIPPR database. This can be useful for knowing if a chemical
is of industrial relevance.

Returns
dippr_compounds [set([str])] A set of CAS numbers from the 2014 edition of the DIPPR

database.

190 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.15 Surface Tension (chemicals.interface)

This module contains various surface tension estimation routines, dataframes of fit coefficients, fitting model equations,
mixing rules, and water-hydrocarbon interfacial tension estimation routines.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Component Correlations

• Mixing Rules

• Correlations for Specific Substances

• Petroleum Correlations

• Oil-Water Interfacial Tension Correlations

• Fit Correlations

• Fit Coefficients

1.15.1 Pure Component Correlations

chemicals.interface.Brock_Bird(T, Tb, Tc, Pc)
Calculates air-liquid surface tension using the [1] emperical method. Old and tested.

𝜎 = 𝑃 2/3
𝑐 𝑇 1/3

𝑐 𝑄(1 − 𝑇𝑟)11/9

𝑄 = 0.1196

[︂
1 +

𝑇𝑏𝑟 ln(𝑃𝑐/1.01325)

1 − 𝑇𝑏𝑟

]︂
− 0.279

Parameters
T [float] Temperature of fluid [K]

Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
sigma [float] Liquid surface tension, N/m

Notes

Numerous arrangements of this equation are available. This is DIPPR Procedure 7A: Method for the Surface
Tension of Pure, Nonpolar, Nonhydrocarbon Liquids The exact equation is not in the original paper. If Tc is
larger than T, 0 is returned as the model would return complex numbers.

1.15. Surface Tension (chemicals.interface) 191

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

References

[1]

Examples

p-dichloribenzene at 412.15 K, from DIPPR; value differs due to a slight difference in method.

>>> Brock_Bird(412.15, 447.3, 685, 3.952E6)
0.02208448325192495

Chlorobenzene from Poling, as compared with a % error value at 293 K.

>>> Brock_Bird(293.15, 404.75, 633.0, 4530000.0)
0.032985686413713036

chemicals.interface.Pitzer_sigma(T, Tc, Pc, omega)
Calculates air-liquid surface tension using the correlation derived by [1] from the works of [2] and [3]. Based on
critical property CSP methods.

𝜎 = 𝑃 2/3
𝑐 𝑇 1/3

𝑐

1.86 + 1.18𝜔

19.05

[︂
3.75 + 0.91𝜔

0.291 − 0.08𝜔

]︂2/3
(1 − 𝑇𝑟)11/9

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
sigma [float] Liquid surface tension, N/m

Notes

The source of this equation has not been reviewed. Internal units of presure are bar, surface tension of mN/m. If
Tc is larger than T, 0 is returned as the model would return complex numbers.

References

[1], [2], [3]

192 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Chlorobenzene from Poling, as compared with a % error value at 293 K.

>>> Pitzer_sigma(293., 633.0, 4530000.0, 0.249)
0.03458453513446388

chemicals.interface.Sastri_Rao(T, Tb, Tc, Pc, chemicaltype=None)
Calculates air-liquid surface tension using the correlation derived by [1] based on critical property CSP methods
and chemical classes.

𝜎 = 𝐾𝑃 𝑥
𝑐 𝑇

𝑦
𝑏 𝑇

𝑧
𝑐

[︂
1 − 𝑇𝑟
1 − 𝑇𝑏𝑟

]︂𝑚
Parameters

T [float] Temperature of fluid [K]

Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
sigma [float] Liquid surface tension, N/m

Notes

The source of this equation has not been reviewed. Internal units of presure are bar, surface tension of mN/m. If
Tc is larger than T, 0 is returned as the model would return complex numbers.

References

[1]

Examples

Chlorobenzene from Poling, as compared with a % error value at 293 K.

>>> Sastri_Rao(293.15, 404.75, 633.0, 4530000.0)
0.03234567739694441

chemicals.interface.Zuo_Stenby(T, Tc, Pc, omega)
Calculates air-liquid surface tension using the reference fluids methods of [1].

𝜎(1) = 40.520(1 − 𝑇𝑟)1.287

𝜎(2) = 52.095(1 − 𝑇𝑟)1.21548

𝜎𝑟 = 𝜎(1)
𝑟 +

𝜔 − 𝜔(1)

𝜔(2) − 𝜔(1)
(𝜎(2)

𝑟 − 𝜎(1)
𝑟)

𝜎 = 𝑇 1/3
𝑐 𝑃 2/3

𝑐 [exp (𝜎𝑟) − 1]

Parameters

1.15. Surface Tension (chemicals.interface) 193

chemicals Documentation, Release 1.1.4

T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
sigma [float] Liquid surface tension, N/m

Notes

Presently untested. Have not personally checked the sources. The reference values for methane and n-octane are
from the DIPPR database. If Tc is larger than T, 0 is returned as the model would return complex numbers.

References

[1]

Examples

Chlorobenzene

>>> Zuo_Stenby(293., 633.0, 4530000.0, 0.249)
0.03345569011871088

chemicals.interface.Hakim_Steinberg_Stiel(T, Tc, Pc, omega, StielPolar=0.0)
Calculates air-liquid surface tension using the reference fluids methods of [1].

𝜎 = 4.60104 × 10−7𝑃 2/3
𝑐 𝑇 1/3

𝑐 𝑄𝑝

(︂
1 − 𝑇𝑟

0.4

)︂𝑚

𝑄𝑝 = 0.1574 + 0.359𝜔 − 1.769𝜒− 13.69𝜒2 − 0.51𝜔2 + 1.298𝜔𝜒

𝑚 = 1.21 + 0.5385𝜔 − 14.61𝜒− 32.07𝜒2 − 1.65𝜔2 + 22.03𝜔𝜒

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

StielPolar [float, optional] Stiel Polar Factor, [-]

Returns
sigma [float] Liquid surface tension, N/m

194 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Original equation for m and Q are used. Internal units are atm and mN/m. If Tc is larger than T, 0 is returned as
the model would return complex numbers.

References

[1]

Examples

1-butanol, as compared to value in CRC Handbook of 0.02493.

>>> Hakim_Steinberg_Stiel(298.15, 563.0, 4414000.0, 0.59, StielPolar=-0.07872)
0.02190790257519

chemicals.interface.Miqueu(T, Tc, Vc, omega)
Calculates air-liquid surface tension using the methods of [1].

𝜎 = 𝑘𝑇𝑐

(︂
𝑁𝑎

𝑉𝑐

)︂2/3

(4.35 + 4.14𝜔)𝑡1.26(1 + 0.19𝑡0.5 − 0.487𝑡)

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Vc [float] Critical volume of fluid [m^3/mol]

omega [float] Acentric factor for fluid, [-]

Returns
sigma [float] Liquid surface tension, N/m

Notes

Uses Avogadro’s constant and the Boltsman constant. Internal units of volume are mL/mol and mN/m. However,
either a typo is in the article or author’s work, or my value of k is off by 10; this is corrected nonetheless. Created
with 31 normal fluids, none polar or hydrogen bonded. Has an AARD of 3.5%. If Tc is larger than T, 0 is returned
as the model would return complex numbers.

References

[1]

1.15. Surface Tension (chemicals.interface) 195

chemicals Documentation, Release 1.1.4

Examples

Bromotrifluoromethane, 2.45 mN/m

>>> Miqueu(300., 340.1, 0.000199, 0.1687)
0.003474100774091376

chemicals.interface.Aleem(T, MW, Tb, rhol, Hvap_Tb, Cpl)
Calculates vapor-liquid surface tension using the correlation derived by [1] based on critical property CSP meth-
ods.

𝜎 = 𝜑
𝑀𝑊 1/3

6𝑁
1/3
𝐴

𝜌
2/3
𝑙 [𝐻𝑣𝑎𝑝 + 𝐶𝑝,𝑙(𝑇𝑏 − 𝑇)]

𝜑 = 1 − 0.0047𝑀𝑊 + 6.8 × 10−6𝑀𝑊 2

Parameters
T [float] Temperature of fluid [K]

MW [float] Molecular weight [g/mol]

Tb [float] Boiling temperature of the fluid [K]

rhol [float] Liquid density at T and P [kg/m^3]

Hvap_Tb [float] Mass enthalpy of vaporization at the normal boiling point [kg/m^3]

Cpl [float] Liquid heat capacity of the chemical at T [J/kg/K]

Returns
sigma [float] Liquid-vapor surface tension [N/m]

Notes

Internal units of molecuar weight are kg/mol. This model is dimensionally consistent.

This model does not use the critical temperature. After it predicts a surface tension of 0 at a sufficiently high tem-
perature, it returns negative results. The temperature at which this occurs (the “predicted” critical temperature)
can be calculated as follows:

𝜎 = 0 → 𝑇𝑐,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 at 𝑇𝑏 +
𝐻𝑣𝑎𝑝

𝐶𝑝𝑙

To handle this case, if Tc is larger than T, 0 is returned as the model would return complex numbers.

Because of its dependence on density, it has the potential to model the effect of pressure on surface tension.

Claims AAD of 4.3%. Developed for normal alkanes. Total of 472 data points. Behaves worse for higher alkanes.
Behaves very poorly overall.

196 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Methane at 90 K

>>> Aleem(T=90, MW=16.04246, Tb=111.6, rhol=458.7, Hvap_Tb=510870.,
... Cpl=2465.)
0.01669970230131523

chemicals.interface.Mersmann_Kind_sigma(T, Tm, Tb, Tc, Pc, n_associated=1)
Estimates the surface tension of organic liquid substances according to the method of [1].

𝜎* =
𝜎𝑛

1/3
𝑎𝑠𝑠

(𝑘𝑇𝑐)1/3𝑇𝑟𝑚𝑃
2/3
𝑐

𝜎* =

(︂
𝑇𝑏 − 𝑇𝑚
𝑇𝑚

)︂1/3 [︁
6.25(1 − 𝑇𝑟) + 31.3(1 − 𝑇𝑟)4/3

]︁
Parameters

T [float] Temperature of the fluid [K]

Tm [float] Melting temperature [K]

Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

n_associated [float] Number of associated molecules in a cluster (2 for alcohols, 1 otherwise),
[-]

Returns
sigma [float] Liquid-vapor surface tension [N/m]

Notes

In the equation, all quantities must be in SI units. k is the boltzman constant. If Tc is larger than T, 0 is returned
as the model would return complex numbers.

References

[1]

1.15. Surface Tension (chemicals.interface) 197

chemicals Documentation, Release 1.1.4

Examples

MTBE at STP (the actual value is 0.0181):

>>> Mersmann_Kind_sigma(298.15, 164.15, 328.25, 497.1, 3430000.0)
0.016744311449290426

chemicals.interface.sigma_Gharagheizi_1(T, Tc, MW, omega)
Calculates air-liquid surface tension using the equation 4 derived in [1] by gene expression programming.

𝜎 = 8.948226 × 10−4

[︃
𝐴2

𝑀𝑊

√︂
𝐴𝜔

𝑀𝑊

]︃0.5

𝐴 = (𝑇𝑐 − 𝑇 − 𝜔)

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

MW [float] Molecular weight [g/mol]

omega [float] Acentric factor for fluid, [-]

Returns
sigma [float] Liquid surface tension, N/m

Notes

This equation may fail before the critical point. In this case it returns 0.0 If Tc is larger than T, 0 is returned as
the model would return complex numbers.

References

[1]

Examples

Methane at 93 K, point from [1]’s supporting material:

>>> sigma_Gharagheizi_1(T=95, Tc=190.564, MW=16.04, omega=0.012)
0.0110389739

chemicals.interface.sigma_Gharagheizi_2(T, Tb, Tc, Pc, Vc)
Calculates air-liquid surface tension using the equation 6 derived in [1] by gene expression programming.

𝜎

N/m
= 10−4

(︂
𝑃𝑐

bar

)︂2/3(︂
𝑇𝑐
K

)︂1/3

(1 − 𝑇𝑟)11/9
[︂
7.728729𝑇𝑏𝑟 + 2.476318

(︂
𝑇 3
𝑏𝑟 +

𝑉𝑐
m3/kmol

)︂]︂
Parameters

T [float] Temperature of fluid [K]

Tb [float] Boiling temperature of the fluid [K]

198 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

MW [float] Molecular weight [g/mol]

Vc [float] Critical volume of fluid [m^3/mol]

Returns
sigma [float] Liquid surface tension, N/m

Notes

This expression gives does converge to 0 at the critical point. If Tc is larger than T, 0 is returned as the model
would return complex numbers.

References

[1]

Examples

Methane at 93 K, point from [1]’s supporting material:

>>> sigma_Gharagheizi_2(T=95, Tb=111.66, Tc=190.564, Pc=45.99e5, Vc=0.0986e-3)
0.01674894057

1.15.2 Mixing Rules

chemicals.interface.Winterfeld_Scriven_Davis(xs, sigmas, rhoms)
Calculates surface tension of a liquid mixture according to mixing rules in [1] and also in [2].

𝜎𝑀 =
∑︁
𝑖

∑︁
𝑗

1

𝑉 𝐿2
𝐿

(𝑥𝑖𝑉𝑖) (𝑥𝑗𝑉𝑗)
√
𝜎𝑖 · 𝜎𝑗

Parameters
xs [array-like] Mole fractions of all components, [-]

sigmas [array-like] Surface tensions of all components, [N/m]

rhoms [array-like] Molar densities of all components, [mol/m^3]

Returns
sigma [float] Air-liquid surface tension of mixture, [N/m]

1.15. Surface Tension (chemicals.interface) 199

chemicals Documentation, Release 1.1.4

Notes

DIPPR Procedure 7C: Method for the Surface Tension of Nonaqueous Liquid Mixtures

Becomes less accurate as liquid-liquid critical solution temperature is approached. DIPPR Evaluation: 3-4%
AARD, from 107 nonaqueous binary systems, 1284 points. Internally, densities are converted to kmol/m^3. The
Amgat function is used to obtain liquid mixture density in this equation.

Raises a ZeroDivisionError if either molar volume are zero, and a ValueError if a surface tensions of a pure
component is negative.

References

[1], [2]

Examples

>>> Winterfeld_Scriven_Davis([0.1606, 0.8394], [0.01547, 0.02877],
... [8610., 15530.])
0.02496738845043982

chemicals.interface.Weinaug_Katz(parachors, Vml, Vmg, xs, ys)
Calculates surface tension of a liquid mixture according to mixing rules in [1] and also in [2]. This is based on
the Parachor concept. This is called the Macleod-Sugden model in some places.

𝜎𝑀 =

[︃∑︁
𝑖

𝑃𝑖

(︂
𝑥𝑖
𝑉𝑚,𝑙

− 𝑦𝑖
𝑉𝑚,𝑔

)︂]︃4
Parameters

parachors [list[float]] Parachors of each component, [N^0.25*m^2.75/mol]

Vml [float] Liquid mixture molar volume, [m^3/mol]

Vmg [float] Gas mixture molar volume; this can be set to zero at low pressures, [m^3/mol]

xs [list[float]] Mole fractions of all components in liquid phase, [-]

xs [list[float]] Mole fractions of all components in gas phase, [-]

Returns
sigma [float] Air-liquid surface tension of mixture, [N/m]

Notes

This expression is efficient and does not require pure component surface tensions. Its accuracy is dubious.

200 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> Weinaug_Katz([5.1e-5, 7.2e-5], Vml=0.000125, Vmg=0.02011, xs=[.4, .6], ys=[.6, .
→˓4])
0.06547479150776776

Neglect the vapor phase density by setting Vmg to a high value:

>>> Weinaug_Katz([5.1e-5, 7.2e-5], Vml=0.000125, Vmg=1e100, xs=[.4, .6], ys=[.6, .
→˓4])
0.06701752894095361

chemicals.interface.Diguilio_Teja(T, xs, sigmas_Tb, Tbs, Tcs)
Calculates surface tension of a liquid mixture according to mixing rules in [1].

𝜎 = 1.002855(𝑇 *)1.118091
𝑇

𝑇𝑏
𝜎𝑟

𝑇 * =
(𝑇𝑐/𝑇) − 1

(𝑇𝑐/𝑇𝑏) − 1

𝜎𝑟 =
∑︁

𝑥𝑖𝜎𝑖

𝑇𝑏 =
∑︁

𝑥𝑖𝑇𝑏,𝑖

𝑇𝑐 =
∑︁

𝑥𝑖𝑇𝑐,𝑖

Parameters
T [float] Temperature of fluid [K]

xs [array-like] Mole fractions of all components

sigmas_Tb [array-like] Surface tensions of all components at the boiling point, [N/m]

Tbs [array-like] Boiling temperatures of all components, [K]

Tcs [array-like] Critical temperatures of all components, [K]

Returns
sigma [float] Air-liquid surface tension of mixture, [N/m]

Notes

Simple model, however it has 0 citations. Gives similar results to the Winterfeld_Scriven_Davis model.

Raises a ValueError if temperature is greater than the mixture’s critical temperature or if the given temperature
is negative, or if the mixture’s boiling temperature is higher than its critical temperature.

[1] claims a 4.63 percent average absolute error on 21 binary and 4 ternary non-aqueous systems. [1] also
considered Van der Waals mixing rules for Tc, but found it provided a higher error of 5.58%

1.15. Surface Tension (chemicals.interface) 201

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Diguilio_Teja(T=298.15, xs=[0.1606, 0.8394],
... sigmas_Tb=[0.01424, 0.02530], Tbs=[309.21, 312.95], Tcs=[469.7, 508.0])
0.025716823875045505

1.15.3 Correlations for Specific Substances

chemicals.interface.sigma_IAPWS(T)
Calculate the surface tension of pure water as a function of . temperature. Assumes the 2011 IAPWS [1] formu-
lation.

𝜎 = 𝐵𝜏𝜇(1 + 𝑏𝜏)

𝜏 = 1 − 𝑇/𝑇𝑐

𝐵 = 0.2358N/m

𝑏 = −0.625

𝜇 = 1.256

Parameters
T [float] Temperature of liquid [K]

Returns
sigma [float] Air-liquid surface tension, [N/m]

Notes

This function is valid from the triple temperature to the critical temperature. No effects for pressure are included
in the formulation. Test values are from IAPWS 2010 book.

The equation is valid from the triple point to the critical point, 647.096 K; but [1] also recommends its use down
to -25°C.

If a value larger than the critical temperature is input, 0.0 is returned.

References

[1]

202 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> sigma_IAPWS(300.)
0.0716859625271
>>> sigma_IAPWS(450.)
0.0428914991565
>>> sigma_IAPWS(600.)
0.0083756108728

1.15.4 Petroleum Correlations

chemicals.interface.API10A32(T, Tc, K_W)
Calculates the interfacial tension between a liquid petroleum fraction and air, using the oil’s pseudocritical tem-
perature and Watson K Characterization factor.

𝜎 =
673.7

[︁
(𝑇𝑐−𝑇)

𝑇𝑐

]︁1.232
𝐾𝑊

Parameters
T [float] Liquid temperature, [K]

Tc [float] Pseudocritical temperature (or critical temperature if using the equation with a pure
component), [K]

K_W [float] Watson characterization factor

Returns
sigma [float] Air-liquid surface tension, [N/m]

Notes

[1] cautions that this should not be applied to coal liquids, and that it will give higher errors at pressures above
500 psi. [1] claims this has an average error of 10.7%.

This function converges to zero at Tc. If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

[1]

Examples

Sample problem in Comments on Procedure 10A3.2.1 of [1];

>>> from fluids.core import F2K, R2K
>>> API10A32(T=F2K(60), Tc=R2K(1334), K_W=12.4)
29.577333312096968

1.15. Surface Tension (chemicals.interface) 203

chemicals Documentation, Release 1.1.4

1.15.5 Oil-Water Interfacial Tension Correlations

chemicals.interface.Meybodi_Daryasafar_Karimi(rho_water, rho_oil, T, Tc)
Calculates the interfacial tension between water and a hydrocabon liquid according to the correlation of [1].

𝛾ℎ𝑤 =

(︃
𝐴1 +𝐴2∆𝜌+𝐴3∆𝜌2 +𝐴4∆𝜌3

𝐴5 +𝐴6
𝑇𝐴7

𝑇𝑐,ℎ
+𝐴8𝑇𝐴9

)︃𝐴10

Parameters
rho_water [float] The density of the aqueous phase, [kg/m^3]

rho_oil [float] The density of the hydrocarbon phase, [kg/m^3]

T [float] Temperature of the fluid, [K]

Tc [float] Critical temperature of the hydrocarbon mixture, [K]

Returns
sigma [float] Hydrocarbon-water surface tension [N/m]

Notes

Internal units of the equation are g/mL and mN/m.

References

[1]

Examples

>>> Meybodi_Daryasafar_Karimi(980, 760, 580, 914)
0.02893598143089256

1.15.6 Fit Correlations

chemicals.interface.REFPROP_sigma(T, Tc, sigma0, n0, sigma1=0.0, n1=0.0, sigma2=0.0, n2=0.0)
Calculates air-liquid surface tension using the REFPROP_sigma [1] regression-based method. Relatively recent,
and most accurate.

𝜎(𝑇) = 𝜎0

(︂
1 − 𝑇

𝑇𝑐

)︂𝑛0

+ 𝜎1

(︂
1 − 𝑇

𝑇𝑐

)︂𝑛1

+ 𝜎2

(︂
1 − 𝑇

𝑇𝑐

)︂𝑛2

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

sigma0 [float] First emperical coefficient of a fluid

n0 [float] First emperical exponent of a fluid

sigma1 [float, optional] Second emperical coefficient of a fluid.

204 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

n1 [float, optional] Second emperical exponent of a fluid.

sigma1 [float, optional] Third emperical coefficient of a fluid.

n2 [float, optional] Third emperical exponent of a fluid.

Returns
sigma [float] Liquid surface tension, [N/m]

Notes

Function as implemented in [1]. No example necessary; results match literature values perfectly. Form of func-
tion returns imaginary results when T > Tc; 0 is returned if this is the case.

When fitting parameters to this function, it is easy to end up with a fit that returns negative surface tension near
but not quite at the critical point.

References

[1]

Examples

Parameters for water at 298.15 K

>>> REFPROP_sigma(298.15, 647.096, -0.1306, 2.471, 0.2151, 1.233)
0.07205503890847453

chemicals.interface.Somayajulu(T, Tc, A, B, C)
Calculates air-liquid surface tension using the [1] emperical (parameter-regressed) method. Well regressed, no
recent data.

𝜎 = 𝑎𝑋5/4 + 𝑏𝑋9/4 + 𝑐𝑋13/4

𝑋 = (𝑇𝑐 − 𝑇)/𝑇𝑐

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

A [float] Regression parameter

B [float] Regression parameter

C [float] Regression parameter

Returns
sigma [float] Liquid surface tension, N/m

1.15. Surface Tension (chemicals.interface) 205

chemicals Documentation, Release 1.1.4

Notes

Presently untested, but matches expected values. Internal units are mN/m. Form of function returns imaginary
results when T > Tc; 0.0 is returned if this is the case. Function is claimed valid from the triple to the critical
point. Results can be evaluated beneath the triple point.

This function can be accidentally fit to return negative values of surface tension.

References

[1]

Examples

Water at 300 K

>>> Somayajulu(300, 647.126, 232.713514, -140.18645, -4.890098)
0.07166386387996758

chemicals.interface.Jasper(T, a, b)
Calculates surface tension of a fluid given two parameters, a linear fit in Celcius from [1] with data reprinted in
[2].

𝜎 = 𝑎− 𝑏𝑇

Parameters
T [float] Temperature of fluid, [K]

a [float] Parameter for equation. Chemical specific.

b [float] Parameter for equation. Chemical specific.

Returns
sigma [float] Surface tension [N/m]

Notes

Internal units are mN/m, and degrees Celcius. This function has been checked against several references.

As this is a linear model, negative values of surface tension will eventually arise. 0 is returned in these cases.

References

[1], [2]

206 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> Jasper(298.15, 24, 0.0773)
0.0220675

chemicals.interface.PPDS14(T, Tc, a0, a1, a2)
Calculates air-liquid surface tension using the [1] emperical (parameter-regressed) method, called the PPDS 14
equation for surface tension.

𝜎 = 𝑎0𝜏
𝑎1(1 + 𝑎2𝜏)

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a0 [float] Regression parameter, [N/m]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

Returns
sigma [float] Liquid surface tension, [N/m]

Notes

If Tc is larger than T, 0 is returned as the model would return complex numbers.

If this model is fit with a0 and a2 as positive values, it is guaranteed to predict only positive values of sigma right
up to the critical point. However, a2 is often fit to be a negative value.

References

[1], [2]

Examples

Benzene at 280 K from [1]

>>> PPDS14(T=280, Tc=562.05, a0=0.0786269, a1=1.28646, a2=-0.112304)
0.030559764256249854

chemicals.interface.Watson_sigma(T, Tc, a1, a2, a3=0.0, a4=0.0, a5=0.0)
Calculates air-liquid surface tension using the Watson [1] emperical (parameter-regressed) method developed by
NIST.

𝜎 = exp
[︀
𝑎1 + ln(1 − 𝑇𝑟)

(︀
𝑎2 + 𝑎3𝑇𝑟 + 𝑎4𝑇

2
𝑟 + 𝑎5𝑇

3
𝑟

)︀]︀
Parameters

T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a1 [float] Regression parameter, [-]

1.15. Surface Tension (chemicals.interface) 207

chemicals Documentation, Release 1.1.4

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

a5 [float] Regression parameter, [-]

Returns
sigma [float] Liquid surface tension, [N/m]

Notes

This expression is also used for enthalpy of vaporization in [1]. The coefficients from NIST TDE for enthalpy of
vaporization are kJ/mol.

This model is coded to return 0 values at Tr >= 1. It is otherwise not possible to evaluate this expression at Tr =
1, as log(0) is undefined (although the limit shows the expression converges to 0).

This equation does not have any term forcing it to become near-zero at the critical point, but it cannot be fit so
as to produce negative values.

References

[1]

Examples

Isooctane at 350 K from [1]:

>>> Watson_sigma(T=350.0, Tc=543.836, a1=-3.02417, a2=1.21792, a3=-5.26877e-9, a4=5.
→˓62659e-9, a5=-2.27553e-9)
0.0138340926605649

chemicals.interface.ISTExpansion(T, Tc, a1, a2, a3=0.0, a4=0.0, a5=0.0)
Calculates air-liquid surface tension using the IST expansion [1] emperical (parameter-regressed) method devel-
oped by NIST.

𝜎 =
∑︁
𝑖

𝑎𝑖

(︂
1 − 𝑇

𝑇𝑐

)︂𝑖

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

a5 [float] Regression parameter, [-]

Returns
sigma [float] Liquid surface tension, [N/m]

208 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This equation hsa a term term forcing it to become zero at the critical point, but it can easily be fit so as to produce
negative values at any reduced temperature.

References

[1]

Examples

Diethyl phthalate at 400 K from [1]:

>>> ISTExpansion(T=400.0, Tc=776.0, a1=0.037545, a2=0.0363288)
0.02672100905515996

1.15.7 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.interface.sigma_data_Mulero_Cachadina
Data from [5] with REFPROP_sigma coefficients.

chemicals.interface.sigma_data_Jasper_Lange
Data as shown in [4] but originally in [3] with Jasper coefficients.

chemicals.interface.sigma_data_Somayajulu
Data from [1] with Somayajulu coefficients.

chemicals.interface.sigma_data_Somayajulu2
Data from [2] with Somayajulu coefficients. These should be preferred over the original coefficients.

chemicals.interface.sigma_data_VDI_PPDS_11
Data from [6] with chemicals.dippr.EQ106 coefficients.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.interface.sigma_data_Mulero_Cachadina
Out[2]:

Fluid ... Tmax
CAS ...
60-29-7 Diethyl ether ... 453.15
64-17-5 Ethanol ... 513.15
67-56-1 Methanol ... 508.15
67-64-1 Acetone ... 353.15
71-43-2 Benzene ... 553.15
...
7783-54-2 Nitrogen trifluoride ... 206.36
7789-20-0 D2O ... 642.02
10024-97-2 Nitrous oxide ... 293.15
22410-44-2 RE245cb2 (Methyl-pentafluoroethyl ether) ... 353.41
29118-24-9 R1234ze(E) (trans-1,3,3,3-tetrafluoropropene) ... 373.14

(continues on next page)

1.15. Surface Tension (chemicals.interface) 209

chemicals Documentation, Release 1.1.4

(continued from previous page)

[115 rows x 10 columns]

In [3]: chemicals.interface.sigma_data_Jasper_Lange
Out[3]:

Name a b Tmin Tmax
CAS
55-21-0 Benzamide 47.26 0.0705 402.15 563.15
55-63-0 Glycerol tris(nitrate) 55.74 0.2504 286.15 433.15
56-23-5 Carbon tetrachloride 29.49 0.1224 250.15 349.85
57-06-7 Allyl isothiocyanate 36.76 0.1074 193.15 425.15
60-29-7 Diethyl ether 18.92 0.0908 157.15 307.75
...
13952-84-6 sec-Butylamine 23.75 0.1057 169.15 336.15
14901-07-6 -Ionone 35.36 0.0950 401.15 401.15
18854-56-3 1,2-Dipropoxyethane 25.03 0.0972 NaN NaN
19550-30-2 2,3-Dimethyl-1-butanol 26.22 0.0992 259.15 391.15
40626-78-6 2-Methylhexane 21.22 0.0966 155.15 363.15

[522 rows x 5 columns]

In [4]: chemicals.interface.sigma_data_Somayajulu
Out[4]:

Chemical Tt Tc A B C
CAS
60-29-7 Ethyl ether 157.00 466.74 61.0417 -6.7908 0.14046
64-17-5 Ethanol 159.00 513.92 111.4452 -146.0229 89.57030
64-19-7 Acetic acid 290.00 592.70 91.9020 -91.7035 77.50720
67-56-1 Methanol 175.59 512.64 122.6257 -199.4044 153.37440
71-23-8 Propanaol 147.00 536.78 107.1238 -133.8128 84.43570
...
10035-10-6 Hydrogen bromide 187.15 363.20 74.0521 20.1043 -30.25710
10102-43-9 Nitric oxide 112.15 180.00 58.6304 97.8722 -33.67390
13465-07-1 Hydrogen disulfide 185.15 572.00 130.1176 -40.6216 4.77160
17778-80-2 Oxygen 54.35 154.58 38.2261 5.6316 -7.74050
19287-45-7 Diborane 104.15 289.80 38.0417 29.7743 -24.26050

[64 rows x 6 columns]

In [5]: chemicals.interface.sigma_data_Somayajulu2
Out[5]:

Chemical Tt Tc A B C
CAS
60-29-7 Ethyl ether 157.00 466.74 61.0417 -6.7908 0.14046
64-17-5 Ethanol 159.00 513.92 111.4452 -146.0229 89.57030
64-19-7 Acetic acid 290.00 592.70 91.9020 -91.7035 77.50720
67-56-1 Methanol 175.59 512.64 122.6257 -199.4044 153.37440
71-23-8 Propanaol 147.00 536.78 107.1238 -133.8128 84.43570
...
10035-10-6 Hydrogen bromide 187.15 363.20 74.0521 20.1043 -30.25710
10102-43-9 Nitric oxide 112.15 180.00 58.6304 97.8722 -33.67390
13465-07-1 Hydrogen disulfide 185.15 572.00 150.6970 -102.9100 56.72580

(continues on next page)

210 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

17778-80-2 Oxygen 54.35 154.58 38.2261 5.6316 -7.74050
19287-45-7 Diborane 104.15 289.80 38.0417 29.7743 -24.26050

[64 rows x 6 columns]

In [6]: chemicals.interface.sigma_data_VDI_PPDS_11
Out[6]:

Chemical Tm Tc ... C D E
CAS ...
50-00-0 Formaldehyde 181.15 408.05 ... 0.00000 0.00000 0.00000
56-23-5 Carbon tetrachloride 250.25 556.35 ... 0.00000 0.00000 0.00000
56-81-5 Glycerol 291.45 850.05 ... 0.00000 0.00000 0.00000
60-29-7 Diethyl ether 156.75 466.63 ... 0.00000 0.00000 0.00000
62-53-3 Aniline 267.15 699.05 ... 0.00000 0.00000 0.00000
...
10097-32-2 Bromine 265.85 584.15 ... 0.00000 0.00000 0.00000
10102-43-9 Nitric oxide 112.15 180.15 ... 0.00000 0.00000 0.00000
10102-44-0 Nitrogen dioxide 261.85 431.15 ... 0.00000 0.00000 0.00000
10544-72-6 Dinitrogentetroxide 261.85 431.10 ... 0.00000 0.00000 0.00000
132259-10-0 Air 63.05 132.53 ... 0.06889 0.17918 -0.14564

[272 rows x 8 columns]

1.16 Lennard-Jones Models (chemicals.lennard_jones)

This module contains lookup functions and estimation methods for the parameters molecular diameter sigma and the
Stockmayer parameter epsilon. These are used for diffusivity calculations. It also contains several methods for com-
puting the collision integral, another parameter used in the Lennard-Jones model.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Stockmayer Parameter

• Stockmayer Parameter Correlations

• Molecular Diameter

• Molecular Diameter Correlations

• Utility Functions

1.16.1 Stockmayer Parameter

chemicals.lennard_jones.Stockmayer(CASRN='', Tm=None, Tb=None, Tc=None, Zc=None, omega=None,
method=None)

This function handles the retrieval or calculation a chemical’s Stockmayer parameter. Values are available from
one source with lookup based on CASRNs, or can be estimated from 7 CSP methods. Will automatically select
a data source to use if no method is provided; returns None if the data is not available.

Preferred sources are ‘Magalhães, Lito, Da Silva, and Silva (2013)’ for common chemicals which had valies
listed in that source, and the CSP method Tee, Gotoh, and Stewart CSP with Tc, omega (1966) for chemicals

1.16. Lennard-Jones Models (chemicals.lennard_jones) 211

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

which don’t.

Parameters
CASRN [str, optional] CASRN [-]

Tm [float, optional] Melting temperature of compound [K]

Tb [float, optional] Boiling temperature of compound [K]

Tc [float, optional] Critical temperature of compound, [K]

Zc [float, optional] Critical compressibility of compound, [-]

omega [float, optional] Acentric factor of compound, [-]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in Stock-

mayer_all_methods

Notes

These values are somewhat rough, as they attempt to pigeonhole a chemical into L-J behavior.

The tabulated data is from [2], for 322 chemicals.

References

[1], [2]

Examples

>>> Stockmayer(CASRN='64-17-5')
1291.41
>>> Stockmayer('7727-37-9')
71.4

chemicals.lennard_jones.Stockmayer_methods(CASRN=None, Tm=None, Tb=None, Tc=None, Zc=None,
omega=None)

Return all methods available to obtain the Stockmayer parameter for the desired chemical.

Parameters
CASRN [str, optional] CASRN [-]

Tm [float, optional] Melting temperature of compound [K]

Tb [float, optional] Boiling temperature of compound [K]

Tc [float, optional] Critical temperature of compound, [K]

Zc [float, optional] Critical compressibility of compound, [-]

omega [float, optional] Acentric factor of compound, [-]

Returns

212 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

methods [list[str]] Methods which can be used to obtain Stockmayer with the given inputs.

See also:

Stockmayer

chemicals.lennard_jones.Stockmayer_all_methods = ('Magalhães, Lito, Da Silva, and Silva
(2013)', 'Poling et al. (2001)', 'Tee, Gotoh, and Stewart CSP with Tc, omega (1966)',
'Stiel and Thodos Tc, Zc (1962)', 'Flynn (1960)', 'Bird, Stewart, and Light (2002)
critical relation', 'Tee, Gotoh, and Stewart CSP with Tc (1966)', 'Bird, Stewart, and
Light (2002) boiling relation', 'Bird, Stewart, and Light (2002) melting relation')

Tuple of method name keys. See the Stockmayer for the actual references

1.16.2 Stockmayer Parameter Correlations

chemicals.lennard_jones.epsilon_Flynn(Tc)
Calculates Lennard-Jones depth of potential-energy minimum. Uses critical temperature. CSP method by [1] as
reported in [2].

𝜖/𝑘 = 1.77𝑇 5/6
𝑐

Parameters
Tc [float] Critical temperature of fluid [K]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

References

[1], [2]

Examples

>>> epsilon_Flynn(560.1)
345.2984087011443

chemicals.lennard_jones.epsilon_Bird_Stewart_Lightfoot_critical(Tc)
Calculates Lennard-Jones depth of potential-energy minimum. Uses critical temperature. CSP method by [1].

𝜖/𝑘 = 0.77𝑇𝑐

Parameters
Tc [float] Critical temperature of fluid [K]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

1.16. Lennard-Jones Models (chemicals.lennard_jones) 213

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> epsilon_Bird_Stewart_Lightfoot_critical(560.1)
431.27700000000004

chemicals.lennard_jones.epsilon_Bird_Stewart_Lightfoot_boiling(Tb)
Calculates Lennard-Jones depth of potential-energy minimum. Uses boiling temperature. CSP method by [1].

𝜖/𝑘 = 1.15𝑇𝑏

Parameters
Tb [float] Boiling temperature [K]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

References

[1]

Examples

>>> epsilon_Bird_Stewart_Lightfoot_boiling(357.85)
411.5275

chemicals.lennard_jones.epsilon_Bird_Stewart_Lightfoot_melting(Tm)
Calculates Lennard-Jones depth of potential-energy minimum. Uses melting temperature. CSP method by [1].

𝜖/𝑘 = 1.92𝑇𝑚

Parameters
Tm [float] Melting temperature [K]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

References

[1]

214 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> epsilon_Bird_Stewart_Lightfoot_melting(231.15)
443.808

chemicals.lennard_jones.epsilon_Stiel_Thodos(Tc, Zc)
Calculates Lennard-Jones depth of potential-energy minimum. Uses Critical temperature and critical compress-
ibility. CSP method by [1].

𝜖/𝑘 = 65.3𝑇𝑐𝑍
3.6
𝑐

Parameters
Tc [float] Critical temperature of fluid [K]

Zc [float] Critical compressibility of fluid, [-]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

References

[1]

Examples

Fluorobenzene

>>> epsilon_Stiel_Thodos(358.5, 0.265)
196.3755830305783

chemicals.lennard_jones.epsilon_Tee_Gotoh_Steward_1(Tc)
Calculates Lennard-Jones depth of potential-energy minimum. Uses Critical temperature. CSP method by [1].

𝜖/𝑘 = 0.7740𝑇𝑐

Parameters
Tc [float] Critical temperature of fluid [K]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

Notes

Further regressions with other parameters were performed in [1] but are not included here, except for ep-
silon_Tee_Gotoh_Steward_2.

1.16. Lennard-Jones Models (chemicals.lennard_jones) 215

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> epsilon_Tee_Gotoh_Steward_1(560.1)
433.5174

chemicals.lennard_jones.epsilon_Tee_Gotoh_Steward_2(Tc, omega)
Calculates Lennard-Jones depth of potential-energy minimum. Uses critical temperature and acentric factor.
CSP method by [1].

𝜖/𝑘 = (0.7915 + 0.1693𝜔)𝑇𝑐

Parameters
Tc [float] Critical temperature of fluid [K]

omega [float] Acentric factor for fluid, [-]

Returns
epsilon_k [float] Lennard-Jones depth of potential-energy minimum over k, [K]

Notes

Further regressions with other parameters were performed in [1] but are not included here, except for ep-
silon_Tee_Gotoh_Steward_1.

References

[1]

Examples

>>> epsilon_Tee_Gotoh_Steward_2(560.1, 0.245)
466.55125785

1.16.3 Molecular Diameter

chemicals.lennard_jones.molecular_diameter(CASRN=None, Tc=None, Pc=None, Vc=None, Zc=None,
omega=None, Vm=None, Vb=None, method=None)

This function handles the retrieval or calculation a chemical’s L-J molecular diameter. Values are available from
one source with lookup based on CASRNs, or can be estimated from 9 CSP methods. Will automatically select
a data source to use if no method is provided; returns None if the data is not available.

Preferred sources are ‘Magalhães, Lito, Da Silva, and Silva (2013)’ for common chemicals which had valies
listed in that source, and the CSP method Tee, Gotoh, and Stewart CSP with Tc, Pc, omega (1966) for chemicals
which don’t.

Parameters

216 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

CASRN [str, optional] CASRN [-]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Vc [float, optional] Critical volume, [m^3/mol]

Zc [float, optional] Critical compressibility, [-]

omega [float, optional] Acentric factor of compound, [-]

Vm [float, optional] Molar volume of liquid at the melting point of the fluid [K]

Vb [float, optional] Molar volume of liquid at the boiling point of the fluid [K]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in molec-

ular_diameter_all_methods

Notes

These values are somewhat rough, as they attempt to pigeonhole a chemical into L-J behavior.

The tabulated data is from [2], for 322 chemicals.

References

[1], [2]

Examples

>>> molecular_diameter(CASRN='64-17-5')
4.23738
>>> molecular_diameter('7727-37-9')
3.798

chemicals.lennard_jones.molecular_diameter_methods(CASRN=None, Tc=None, Pc=None, Vc=None,
Zc=None, omega=None, Vm=None, Vb=None)

Return all methods available to obtain the molecular diameter for the desired chemical.

Parameters
CASRN [str, optional] CASRN [-]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Vc [float, optional] Critical volume, [m^3/mol]

Zc [float, optional] Critical compressibility, [-]

omega [float, optional] Acentric factor of compound, [-]

Vm [float, optional] Molar volume of liquid at the melting point of the fluid [K]

1.16. Lennard-Jones Models (chemicals.lennard_jones) 217

chemicals Documentation, Release 1.1.4

Vb [float, optional] Molar volume of liquid at the boiling point of the fluid [K]

Returns
methods [list[str]] Methods which can be used to obtain molecular_diameter with the given

inputs.

See also:

molecular_diameter

chemicals.lennard_jones.molecular_diameter_all_methods = ('Magalhães, Lito, Da Silva, and
Silva (2013)', 'Poling et al. (2001)', 'Tee, Gotoh, and Stewart CSP with Tc, Pc, omega
(1966)', 'Silva, Liu, and Macedo (1998) critical relation with Tc, Pc', 'Bird, Stewart,
and Light (2002) critical relation with Tc, Pc', 'Tee, Gotoh, and Stewart CSP with Tc, Pc
(1966)', 'Stiel and Thodos Vc, Zc (1962)', 'Flynn (1960)', 'Bird, Stewart, and Light
(2002) critical relation with Vc', 'Bird, Stewart, and Light (2002) boiling relation',
'Bird, Stewart, and Light (2002) melting relation')

Tuple of method name keys. See the molecular_diameter for the actual references

1.16.4 Molecular Diameter Correlations

chemicals.lennard_jones.sigma_Flynn(Vc)
Calculates Lennard-Jones molecular diameter. Uses critical volume. CSP method by [1] as reported in [2].

𝜎 = 0.561(𝑉 1/3
𝑐)5/4

Parameters
Vc [float] Critical volume of fluid [m^3/mol]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Vc is originally in units of mL/mol.

References

[1], [2]

Examples

>>> sigma_Flynn(0.000268)
5.2506948422196285

chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_critical_2(Tc, Pc)
Calculates Lennard-Jones molecular diameter. Uses critical temperature and pressure. CSP method by [1].

𝜎 = 2.44(𝑇𝑐/𝑃𝑐)
1/3

Parameters

218 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of critical pressure are atmospheres.

References

[1]

Examples

>>> sigma_Bird_Stewart_Lightfoot_critical_2(560.1, 4550000)
5.658657684653222

chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_critical_1(Vc)
Calculates Lennard-Jones molecular diameter. Uses critical volume. CSP method by [1].

𝜎 = 0.841𝑉 1/3
𝑐

Parameters
Vc [float] Critical volume of fluid [m^3/mol]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Vc are mL/mol.

References

[1]

Examples

>>> sigma_Bird_Stewart_Lightfoot_critical_1(0.000268)
5.422184116631474

chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_boiling(Vb)
Calculates Lennard-Jones molecular diameter. Uses molar volume of liquid at boiling. CSP method by [1].

𝜎 = 1.166𝑉
1/3
𝑏,𝑙𝑖𝑞

Parameters

1.16. Lennard-Jones Models (chemicals.lennard_jones) 219

chemicals Documentation, Release 1.1.4

Vb [float] Boiling molar volume of liquid [m^3/mol]

Returns
sigma [float] Lennard-Jones collision integral, [Angstrom]

Notes

Original units of Vb are mL/mol.

References

[1]

Examples

>>> sigma_Bird_Stewart_Lightfoot_boiling(0.0001015)
5.439018856944655

chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_melting(Vm)
Calculates Lennard-Jones molecular diameter. Uses molar volume of a liquid at its melting point. CSP method
by [1].

𝜎 = 1.222𝑉
1/3
𝑚,𝑠𝑜𝑙

Parameters
Vm [float] Melting molar volume of a liquid at its melting point [m^3/mol]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Vm are mL/mol.

References

[1]

Examples

>>> sigma_Bird_Stewart_Lightfoot_melting(8.8e-05)
5.435407341351406

chemicals.lennard_jones.sigma_Stiel_Thodos(Vc, Zc)
Calculates Lennard-Jones molecular diameter. Uses critical volume and compressibility. CSP method by [1].

𝜎 = 0.1866𝑉 1/3
𝑐 𝑍−6/5

𝑐

Parameters

220 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Vc [float] Critical volume of fluid [m^3/mol]

Zc [float] Critical compressibility of fluid, [-]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Vc is originally in units of mL/mol.

References

[1]

Examples

Monofluorobenzene

>>> sigma_Stiel_Thodos(0.000271, 0.265)
5.94300853971033

chemicals.lennard_jones.sigma_Tee_Gotoh_Steward_1(Tc, Pc)
Calculates Lennard-Jones molecular diameter. Uses critical temperature and pressure. CSP method by [1].

𝜎 = 2.3647

(︂
𝑇𝑐
𝑃𝑐

)︂1/3

Parameters
Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Pc are atm. Further regressions with other parameters were performed in [1] but are not included
here, except for sigma_Tee_Gotoh_Steward_2.

References

[1]

1.16. Lennard-Jones Models (chemicals.lennard_jones) 221

chemicals Documentation, Release 1.1.4

Examples

>>> sigma_Tee_Gotoh_Steward_1(560.1, 4550000)
5.48402779790962

chemicals.lennard_jones.sigma_Tee_Gotoh_Steward_2(Tc, Pc, omega)
Calculates Lennard-Jones molecular diameter. Uses critical temperature, pressure, and acentric factor. CSP
method by [1].

𝜎 = (2.3551 − 0.0874𝜔)

(︂
𝑇𝑐
𝑃𝑐

)︂1/3

Parameters
Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Pc are atm. Further regressions with other parameters were performed in [1] but are not included
here, except for sigma_Tee_Gotoh_Steward_1.

References

[1]

Examples

>>> sigma_Tee_Gotoh_Steward_2(560.1, 4550000, 0.245)
5.412104867264477

chemicals.lennard_jones.sigma_Silva_Liu_Macedo(Tc, Pc)
Calculates Lennard-Jones molecular diameter. Uses critical temperature and pressure. CSP method by [1].

𝜎3
𝐿𝐽 = 0.17791 + 11.779

(︂
𝑇𝑐
𝑃𝑐

)︂
− 0.049029

(︂
𝑇𝑐
𝑃𝑐

)︂2

Parameters
Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
sigma [float] Lennard-Jones molecular diameter, [Angstrom]

222 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Pc is originally in bar. An excellent paper. None is returned if the polynomial returns a negative number, as in
the case of 1029.13 K and 3.83 bar.

References

[1]

Examples

>>> sigma_Silva_Liu_Macedo(560.1, 4550000)
5.164483998730177

1.16.5 Utility Functions

chemicals.lennard_jones.T_star(T, epsilon_k=None, epsilon=None)
This function calculates the parameter T_star as needed in performing collision integral calculations.

𝑇 * =
𝑘𝑇

𝜖

Parameters
epsilon_k [float, optional] Lennard-Jones depth of potential-energy minimum over k, [K]

epsilon [float, optional] Lennard-Jones depth of potential-energy minimum [J]

Returns
T_star [float] Dimentionless temperature for calculating collision integral, [-]

Notes

Tabulated values are normally listed as epsilon/k. k is the Boltzman constant, with units of J/K.

References

[1]

Examples

>>> T_star(T=318.2, epsilon_k=308.43)
1.0316765554582887

1.16. Lennard-Jones Models (chemicals.lennard_jones) 223

chemicals Documentation, Release 1.1.4

1.17 Miscellaneous Data (chemicals.miscdata)

This module contains several tables which are common to different lookup functions.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Temperature Dependent data

1.17.1 Temperature Dependent data

chemicals.miscdata.lookup_VDI_tabular_data(CASRN, prop)
This function retrieves the tabular data available for a given chemical and a given property. Lookup is based on
CASRNs. Length of data returned varies between chemicals. All data is at saturation condition from [1].

Function has data for 58 chemicals.

Parameters
CASRN [str] CASRN [-]

prop [string] Property [-]

Returns
Ts [list] Temperatures where property data is available, [K]

props [list] Properties at each temperature, [various]

Notes

The available properties are ‘P’, ‘Density (l)’, ‘Density (g)’, ‘Hvap’, ‘Cp (l)’, ‘Cp (g)’, ‘Mu (l)’, ‘Mu (g)’, ‘K (l)’,
‘K (g)’, ‘Pr (l)’, ‘Pr (g)’, ‘sigma’, ‘Beta’, ‘Volume (l)’, and ‘Volume (g)’.

Data is available for all properties and all chemicals; surface tension data was missing for mercury, but added as
estimated from the a/b coefficients listed in Jasper (1972) to simplify the function.

References

[1]

Examples

>>> lookup_VDI_tabular_data('67-56-1', 'Mu (g)')
([337.63, 360.0, 385.0, 410.0, 435.0, 460.0, 500.0], [1.11e-05, 1.18e-05, 1.27e-05,␣
→˓1.36e-05, 1.46e-05, 1.59e-05, 2.04e-05])
>>> lookup_VDI_tabular_data('7782-41-4', 'sigma')
([53.49, 64.0, 74.0, 85.04, 92.0, 102.0, 112.0, 122.0, 132.0, 144.41], [0.0227, 0.
→˓02, 0.0166, 0.0136, 0.0117, 0.0092, 0.0068, 0.0045, 0.0024, 0.0])

224 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.18 Chemical Geometry (chemicals.molecular_geometry)

This module contains various radius of gyration functions.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Lookup Functions

1.18.1 Lookup Functions

chemicals.molecular_geometry.RG(CASRN, method=None)
This function handles the retrieval of a chemical’s radius of gyration. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 670 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
RG [float] Radius of gyration, [m]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

RG_methods

Notes

The available sources are as follows:

• ‘PSI4_2022A’, values computed using the Psi4 version 1.3.2 quantum chemistry software, with initialized
positions from rdkit’s EmbedMolecule method, the basis set 6-31G** and the method mp2 [1].

• ‘CHEMSEP’, from the databank included and distributed with the licence notice ChemSep v8.1 pure com-
ponent data - Copyright (c) Harry Kooijman and Ross Taylor (2018) - http://www.perlfoundation.org/
artistic_license_2_0. A small portion of the data is used.

References

[1], [2]

Examples

>>> RG(CASRN='64-17-5')
2.225e-10

chemicals.molecular_geometry.RG_methods(CASRN)
Return all methods available to obtain the radius of gyration for the desired chemical.

Parameters

1.18. Chemical Geometry (chemicals.molecular_geometry) 225

https://github.com/CalebBell/chemicals/
http://www.perlfoundation.org/artistic_license_2_0
http://www.perlfoundation.org/artistic_license_2_0

chemicals Documentation, Release 1.1.4

CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the RG with the given inputs.

See also:

RG

chemicals.molecular_geometry.RG_all_methods = ('PSI4_2022A', 'CHEMSEP')
Tuple of method name keys. See the RG for the actual references

chemicals.molecular_geometry.linear(CASRN, method=None)
This function handles the retrieval whether or not a chemical is linear. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 300 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
linear [bool] Whether or not the chemical is linear, [-]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in lin-

ear_methods

Notes

The available sources are as follows:

• ‘PSI4_2022A’, values computed using the Psi4 version 1.3.2 quantum chemistry software, with initialized
positions from rdkit’s EmbedMolecule method, the basis set 6-31G** and the method mp2 [1].

Warning: This function does not yet have a reliable data source.

References

[1]

Examples

>>> linear(CASRN='64-17-5')
False

chemicals.molecular_geometry.linear_methods(CASRN)
Return all methods available to obtain whether or not the desired chemical is linear.

Parameters
CASRN [str] CASRN, [-]

Returns

226 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

methods [list[str]] Methods which can be used to obtain the linear with the given inputs.

See also:

linear

chemicals.molecular_geometry.linear_all_methods = ('PSI4_2022A',)
Tuple of method name keys. See the linear for the actual references

1.19 Support for Numba (chemicals.numba)

Basic module which wraps most of chemicals functions and classes to be compatible with the Numba dynamic Python
compiler. Numba is only supported on Python 3, and may require the latest version of Numba. Numba is rapidly
evolving, and hopefully in the future it will support more of the functionality of fluids.

Using the numba-accelerated version of chemicals is easy; simply call functions and classes from the chemicals.numba
namespace. The chemicals.numba module must be imported separately on Python < 3.7; it is not loaded automatically
as part of chemicals.

>>> import chemicals
>>> import chemicals.numba
>>> chemicals.numba.Antoine(180, A=8.95894, B=510.595, C=-15.95)
702271.05185795

There is a delay while the code is compiled when using Numba; the speed is not quite free.

Some parts of chemicals are not supported in the Numba interface. Any data lookup function like Tc() and
omega_methods() are not numba compatible. These functions could not be speed up anyway though as they are
memory-bound and numba helps with things that are compute-bound.

Today, the list of things known not to work is as follows:

• Everything in chemicals.identifiers

• Everything in chemicals.combustion (uses dictionaries)

• Everything in chemicals.elements (uses dictionaries, periodic_table class, string parsing)

• Everything in chemicals.critical except the mixture critical point routines

• In chemicals.flash_basic, flash_Tb_Tc_Pc() and flash_ideal() have not been ported but can be made
compatible.

• In chemicals.dippr, only EQ102() is unsupported as it uses a complex hyp2f1 call.

• In chemicals.reaction, stoichiometric_matrix() (dictionaries), balance_stoichiometry() (scipy
functions, fractional numbers).

• In chemicals.safety, LFL_ISO_10156_2017() (dictionaries)

• The assorted functions collision_integral_Kim_Monroe(), Henry_pressure_mixture(),
T_converter(), Wilke(), Wilke_prefactors(), Brokaw() viscosity_converter(), CAS_to_int(),
int_to_CAS(), sorted_CAS_key() may or may not be able to be ported but have not yet been.

All of the regular Numba-compiled functions are built with the nogil flag, which means you can use Python’s threading
mechanism effectively to get the speed of parallel processing.

1.19. Support for Numba (chemicals.numba) 227

https://github.com/numba/numba

chemicals Documentation, Release 1.1.4

1.20 Relative Permittivity/Dielectric Constant (chemicals.permittivity)

This module contains various permittivity calculation routines and dataframes of coefficients for correlations.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Correlations for Specific Substances

• Fit Coefficients

1.20.1 Correlations for Specific Substances

chemicals.permittivity.permittivity_IAPWS(T, rho)
Calculate the relative permittivity of pure water as a function of. temperature and density. Assumes the 1997
IAPWS [1] formulation.

𝜖(𝜌, 𝑇) =
1 +𝐴+ 5𝐵 + (9 + 2𝐴+ 18𝐵 +𝐴2 + 10𝐴𝐵 + 9𝐵2)0.5

4(1 −𝐵)

𝐴(𝜌, 𝑇) =
𝑁𝐴𝜇

2𝜌𝑔

𝑀𝜖0𝑘𝑇

𝐵(𝜌) =
𝑁𝐴𝛼𝜌

3𝑀𝜖0

𝑔(𝛿, 𝜏) = 1 +

11∑︁
𝑖=1

𝑛𝑖𝛿
𝐼𝑖𝜏𝐽𝑖 + 𝑛12𝛿

(︂
647.096

228
𝜏−1 − 1

)︂−1.2

𝛿 = 𝜌/(322 kg/m3)

𝜏 = 𝑇/647.096K

Parameters
T [float] Temperature of water [K]

rho [float] Mass density of water at T and P [kg/m^3]

Returns
epsilon [float] Relative permittivity of water at T and rho, [-]

Notes

Validity:

273.15 < T < 323.15 K for 0 < P < iceVI melting pressure at T or 1000 MPa, whichever is smaller.

323.15 < T < 873.15 K 0 < p < 600 MPa.

Coefficients and constants (they are optimized away in the function itself):

ih = [1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 10]

jh = [0.25, 1, 2.5, 1.5, 1.5, 2.5, 2, 2, 5, 0.5, 10]

Nh = [0.978224486826, -0.957771379375, 0.237511794148, 0.714692244396, -0.298217036956, -
0.108863472196, 0.949327488264E-1, -.980469816509E-2, 0.165167634970E-4, 0.937359795772E-4,
-0.12317921872E-9]

228 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

polarizability = 1.636E-40

dipole = 6.138E-30

References

[1]

Examples

>>> permittivity_IAPWS(373., 958.46)
55.565841872697234

>>> permittivity_IAPWS(650., 40.31090)
1.2659205723606064

chemicals.permittivity.permittivity_CRC(T, a, b, c, d)
Return the relative permittivity (epsilon) of a chemical using a polynomical equation as in [1].

Parameters
a,b,c,d [float] Regressed coefficients.

Notes

The permittivity is given by 𝜖𝑟 = 𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3

References

[1]

Examples

Calculate the permittivity of 4-Nitroaniline:

>>> permittivity_CRC(450., 487, -1.5, 0.00129, 0.)
73.225

1.20.2 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.permittivity.permittivity_data_CRC
Data from [1] with coefficients fit to a polynomial in terms of temperature in K. 𝜖𝑟 = 𝐴 + 𝐵𝑇 + 𝐶𝑇 2 + 𝐷𝑇 3

is the equation, although some chemcials only have a constant value.

In [1]: import chemicals

In [2]: chemicals.permittivity.permittivity_data_CRC
Out[2]:

(continues on next page)

1.20. Relative Permittivity/Dielectric Constant (chemicals.permittivity) 229

chemicals Documentation, Release 1.1.4

(continued from previous page)

Chemical ... Tmax
CAS ...
50-70-4 D-Glucitol ... NaN
50-78-2 2-(Acetyloxy)benzoic acid ... 416.0
51-79-6 Ethyl carbamate ... 368.0
54-11-5 L-Nicotine ... 363.0
55-63-0 Trinitroglycerol ... NaN
...
100295-85-0 6-Methyl-3-heptanol, ()- ... 383.0
100296-26-2 2-Methyl-3-heptanol, ()- ... 403.0
111675-77-5 2-Methyl-1-heptanol, ()- ... 328.0
111767-95-4 5-Methyl-1-heptanol, ()- ... 328.0
123434-07-1 2,4,6-Trimethyl-3-heptene (unspecified isomer) ... NaN

[1303 rows x 9 columns]

1.21 Phase Change Properties (chemicals.phase_change)

This module contains lookup functions for melting and boiling point, heat of fusion, various enthalpy of vaporization
estimation routines, and dataframes of fit coefficients.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Boiling Point

• Melting Point

• Heat of Fusion

• Heat of Vaporization at Tb Correlations

• Heat of Vaporization at T Correlations

• Heat of Vaporization at T Model Equations

• Heat of Sublimation

• Fit Coefficients

1.21.1 Boiling Point

chemicals.phase_change.Tb(CASRN, method=None)
This function handles the retrieval of a chemical’s normal boiling point. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.
Function has data for approximately 34000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Tb [float] Boiling temperature, [K]

Other Parameters

230 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

method [string, optional] A string for the method name to use, as defined in the variable,
Tb_all_methods.

See also:

Tb_methods

Notes

The available sources are as follows:

• ‘CRC_ORG’, a compillation of data on organics as published in [1].

• ‘CRC_INORG’, a compillation of data on inorganic as published in [1].

• ‘WEBBOOK’, a NIST resource [6] containing mostly experimental and averaged values

• ‘WIKIDATA’, data from the Wikidata project [3]

• ‘COMMON_CHEMISTRY’, a project from the CAS [4]

• ‘JOBACK’, an estimation method for organic substances in [5]

• ‘YAWS’, a large compillation of data from a variety of sources both experimental and predicted; no data
points are sourced in the work of [2].

• ‘HEOS’, a series of values from the NIST REFPROP Database for Highly Accurate Properties of Industri-
ally Important Fluids (and other high-precision fundamental equations of state)

References

[1], [2], [3], [4], [5], [6], [7]

Examples

>>> Tb('7732-18-5')
373.124

chemicals.phase_change.Tb_methods(CASRN)
Return all methods available to obtain the normal boiling point for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Tb with the given inputs.

See also:

Tb

chemicals.phase_change.Tb_all_methods = ('HEOS', 'CRC_INORG', 'CRC_ORG',
'COMMON_CHEMISTRY', 'WEBBOOK', 'YAWS', 'WIKIDATA', 'JOBACK')

Tuple of method name keys. See the Tbg for the actual references

1.21. Phase Change Properties (chemicals.phase_change) 231

chemicals Documentation, Release 1.1.4

1.21.2 Melting Point

chemicals.phase_change.Tm(CASRN, method=None)
This function handles the retrieval of a chemical’s melting point. Lookup is based on CASRNs. Will automati-
cally select a data source to use if no method is provided; returns None if the data is not available. Function has
data for approximately 83000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Tm [float] Melting temperature, [K]

Other Parameters
method [string, optional] A string for the method name to use, as defined by the vairable

Tm_all_methods.

See also:

Tm_methods

Notes

The available sources are as follows:

• ‘OPEN_NTBKM, a compillation of data on organics as published in [1] as Open Notebook Melting Points;
Averaged (median) values were used when multiple points were available. For more information on this
invaluable and excellent collection, see http://onswebservices.wikispaces.com/meltingpoint.

• ‘CRC_ORG’, a compillation of data on organics as published in [2].

• ‘CRC_INORG’, a compillation of data on inorganic as published in [2].

• ‘WEBBOOK’, a NIST resource [6] containing mostly experimental and averaged values

• ‘WIKIDATA’, data from the Wikidata project [3]

• ‘COMMON_CHEMISTRY’, a project from the CAS [4]

• ‘JOBACK’, an estimation method for organic substances in [5]

References

[1], [2], [3], [4], [5], [6]

Examples

>>> Tm(CASRN='7732-18-5')
273.15

chemicals.phase_change.Tm_methods(CASRN)
Return all methods available to obtain the melting point for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

232 Chapter 1. Key Features & Capabilities

http://onswebservices.wikispaces.com/meltingpoint

chemicals Documentation, Release 1.1.4

Returns
methods [list[str]] Methods which can be used to obtain the Tm with the given inputs.

See also:

Tm

chemicals.phase_change.Tm_all_methods = ('OPEN_NTBKM', 'CRC_INORG', 'CRC_ORG',
'COMMON_CHEMISTRY', 'WEBBOOK', 'WIKIDATA', 'JOBACK')

Tuple of method name keys. See the Tm for the actual references

1.21.3 Heat of Fusion

Heat of fusion does not strongly depend on temperature or pressure. This is the standard value, at 1 atm and the normal
melting point.

chemicals.phase_change.Hfus(CASRN, method=None)
This function handles the retrieval of a chemical’s heat of fusion. Lookup is based on CASRNs. Will automati-
cally select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 22000 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
Hfus [float] Molar enthalpy of fusion at normal melting point, [J/mol]

Other Parameters
method [string, optional] A string for the method name to use, as defined by the variable,

Hfus_all_methods.

See also:

Hfus_methods

Notes

The available sources are as follows:

• ‘CRC’, a compillation of data on organics and inorganics as published in [1].

• ‘WEBBOOK’, a NIST resource [4] containing mostly experimental and averaged values

• ‘WIKIDATA’, data from the Wikidata project [2]

• ‘JOBACK’, an estimation method for organic substances in [3]

1.21. Phase Change Properties (chemicals.phase_change) 233

chemicals Documentation, Release 1.1.4

References

[1], [2], [3], [4]

Examples

>>> Hfus('7732-18-5')
6010.0

chemicals.phase_change.Hfus_methods(CASRN)
Return all methods available to obtain the heat of fusion for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Hfus with the given inputs.

See also:

Hfus

chemicals.phase_change.Hfus_all_methods = ('CRC', 'WEBBOOK', 'WIKIDATA', 'JOBACK')
Tuple of method name keys. See the Hfus for the actual references

1.21.4 Heat of Vaporization at Tb Correlations

chemicals.phase_change.Riedel(Tb, Tc, Pc)
Calculates enthalpy of vaporization at the boiling point, using the Ridel [1] CSP method. Required information
are critical temperature and pressure, and boiling point. Equation taken from [2] and [3].

The enthalpy of vaporization is given by:

∆𝑣𝑎𝑝𝐻 = 1.093𝑇𝑏𝑅
ln𝑃𝑐 − 1.013

0.930 − 𝑇𝑏𝑟

Parameters
Tb [float] Boiling temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
Hvap [float] Enthalpy of vaporization at the normal boiling point, [J/mol]

234 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This equation has no example calculation in any source. The source has not been verified. It is equation 4-144
in Perry’s. Perry’s also claims that errors seldom surpass 5%.

[2] is the source of example work here, showing a calculation at 0.0% error.

Internal units of pressure are bar.

References

[1], [2], [3]

Examples

Pyridine, 0.0% err vs. exp: 35090 J/mol; from Poling [2].

>>> Riedel(388.4, 620.0, 56.3E5)
35089.80179000598

chemicals.phase_change.Chen(Tb, Tc, Pc)
Calculates enthalpy of vaporization using the Chen [1] correlation and a chemical’s critical temperature, pressure
and boiling point.

The enthalpy of vaporization is given by:

∆𝐻𝑣𝑏 = 𝑅𝑇𝑏
3.978𝑇𝑟 − 3.958 + 1.555 ln𝑃𝑐

1.07 − 𝑇𝑟

Parameters
Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

The formulation presented in the original article is similar, but uses units of atm and calorie instead. The form
in [2] has adjusted for this. A method for estimating enthalpy of vaporization at other conditions has also been
developed, but the article is unclear on its implementation. Based on the Pitzer correlation.

Internal units: bar and K

1.21. Phase Change Properties (chemicals.phase_change) 235

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

Same problem as in Perry’s examples.

>>> Chen(294.0, 466.0, 5.55E6)
26705.902558030946

chemicals.phase_change.Liu(Tb, Tc, Pc)
Calculates enthalpy of vaporization at the normal boiling point using the Liu [1] correlation, and a chemical’s
critical temperature, pressure and boiling point.

The enthalpy of vaporization is given by:

∆𝐻𝑣𝑎𝑝 = 𝑅𝑇𝑏

[︂
𝑇𝑏
220

]︂0.0627
(1 − 𝑇𝑏𝑟)0.38 ln(𝑃𝑐/𝑃𝐴)

1 − 𝑇𝑏𝑟 + 0.38𝑇𝑏𝑟 ln𝑇𝑏𝑟

Parameters
Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

This formulation can be adjusted for lower boiling points, due to the use of a rationalized pressure relationship.
The formulation is taken from the original article.

A correction for alcohols and organic acids based on carbon number, which only modifies the boiling point, is
available but not implemented.

No sample calculations are available in the article.

Internal units: Pa and K

References

[1]

236 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Same problem as in Perry’s examples

>>> Liu(294.0, 466.0, 5.55E6)
26378.575260517395

chemicals.phase_change.Vetere(Tb, Tc, Pc, F=1.0)
Calculates enthalpy of vaporization at the boiling point, using the Vetere [1] CSP method. Required information
are critical temperature and pressure, and boiling point. Equation taken from [2].

The enthalpy of vaporization is given by:

∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑏
=
𝜏0.38𝑏

[︁
ln𝑃𝑐 − 0.513 + 0.5066

𝑃𝑐𝑇 2
𝑏𝑟

]︁
𝜏𝑏 + 𝐹 (1 − 𝜏0.38𝑏) ln𝑇𝑏𝑟

Parameters
Tb [float] Boiling temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

F [float, optional] Constant for a fluid, [-]

Returns
Hvap [float] Enthalpy of vaporization at the boiling point, [J/mol]

Notes

The equation cannot be found in the original source. It is believed that a second article is its source, or that
DIPPR staff have altered the formulation.

Internal units of pressure are bar.

References

[1], [2]

Examples

Example as in [2], p2-487; exp: 25.73

>>> Vetere(294.0, 466.0, 5.55E6)
26363.43895706672

1.21. Phase Change Properties (chemicals.phase_change) 237

chemicals Documentation, Release 1.1.4

1.21.5 Heat of Vaporization at T Correlations

chemicals.phase_change.Pitzer(T, Tc, omega)
Calculates enthalpy of vaporization at arbitrary temperatures using a fit by [2] to the work of Pitzer [1]; requires
a chemical’s critical temperature and acentric factor.

The enthalpy of vaporization is given by:

∆𝑣𝑎𝑝𝐻

𝑅𝑇𝑐
= 7.08(1 − 𝑇𝑟)0.354 + 10.95𝜔(1 − 𝑇𝑟)0.456

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

omega [float] Acentric factor [-]

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

This equation is listed in [3], page 2-487 as method #2 for estimating Hvap. This cites [2].

The recommended range is 0.6 to 1 Tr. Users should expect up to 5% error. This function converges to zero at
Tc. If Tc is larger than T, 0 is returned as the model would return complex numbers.

The original article has been reviewed and found to have a set of tabulated values which could be used instead
of the fit function to provide additional accuracy.

References

[1], [2], [3]

Examples

Example as in [3], p2-487; exp: 37.51 kJ/mol

>>> Pitzer(452, 645.6, 0.35017)
36696.749078320056

chemicals.phase_change.SMK(T, Tc, omega)
Calculates enthalpy of vaporization at arbitrary temperatures using a the work of [1]; requires a chemical’s critical
temperature and acentric factor.

The enthalpy of vaporization is given by:

∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐
=

(︂
∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐

)︂(𝑅1)

+

(︂
𝜔 − 𝜔(𝑅1)

𝜔(𝑅2) − 𝜔(𝑅1)

)︂[︃(︂
∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐

)︂(𝑅2)

−
(︂

∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐

)︂(𝑅1)
]︃

(︂
∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐

)︂(𝑅1)

= 6.537𝜏1/3 − 2.467𝜏5/6 − 77.251𝜏1.208 + 59.634𝜏 + 36.009𝜏2 − 14.606𝜏3(︂
∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐

)︂(𝑅2)

−
(︂

∆𝐻𝑣𝑎𝑝

𝑅𝑇𝑐

)︂(𝑅1)

= −0.133𝜏1/3 − 28.215𝜏5/6 − 82.958𝜏1.208 + 99.00𝜏 + 19.105𝜏2 − 2.796𝜏3

238 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝜏 = 1 − 𝑇/𝑇𝑐

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

omega [float] Acentric factor [-]

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

The original article has been reviewed and found to have coefficients with slightly more precision. Additionally,
the form of the equation is slightly different, but numerically equivalent.

The refence fluids are:

𝜔0 = benzene = 0.212

𝜔1 = carbazole = 0.461

A sample problem in the article has been verified. The numerical result presented by the author requires high
numerical accuracy to obtain.

This function converges to zero at Tc. If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

[1]

Examples

Problem in [1]:

>>> SMK(553.15, 751.35, 0.302)
39866.18999046229

chemicals.phase_change.MK(T, Tc, omega)
Calculates enthalpy of vaporization at arbitrary temperatures using a the work of [1]; requires a chemical’s critical
temperature and acentric factor.

The enthalpy of vaporization is given by:

∆𝐻𝑣𝑎𝑝 = ∆𝐻(0)
𝑣𝑎𝑝 + 𝜔∆𝐻(1)

𝑣𝑎𝑝 + 𝜔2∆𝐻(2)
𝑣𝑎𝑝

∆𝐻
(𝑖)
𝑣𝑎𝑝

𝑅𝑇𝑐
= 𝑏(𝑗)𝜏1/3 + 𝑏

(𝑗)
2 𝜏5/6 + 𝑏

(𝑗)
3 𝜏1.2083 + 𝑏

(𝑗)
4 𝜏 + 𝑏

(𝑗)
5 𝜏2 + 𝑏

(𝑗)
6 𝜏3

𝜏 = 1 − 𝑇/𝑇𝑐

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

1.21. Phase Change Properties (chemicals.phase_change) 239

chemicals Documentation, Release 1.1.4

omega [float] Acentric factor [-]

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

The original article has been reviewed. A total of 18 coefficients are used:

WARNING: The correlation has been implemented as described in the article, but its results seem different and
with some error. Its results match with other functions however.

Has poor behavior for low-temperature use. This function converges to zero at Tc. If Tc is larger than T, 0 is
returned as the model would return complex numbers.

References

[1]

Examples

Problem in article for SMK function.

>>> MK(553.15, 751.35, 0.302)
38728.00667307733

chemicals.phase_change.Velasco(T, Tc, omega)
Calculates enthalpy of vaporization at arbitrary temperatures using a the work of [1]; requires a chemical’s critical
temperature and acentric factor.

The enthalpy of vaporization is given by:

∆𝑣𝑎𝑝𝐻 = 𝑅𝑇𝑐(7.2729 + 10.4962𝜔 + 0.6061𝜔2)(1 − 𝑇𝑟)0.38

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

omega [float] Acentric factor [-]

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

The original article has been reviewed. It is regressed from enthalpy of vaporization values at 0.7Tr, from 121
fluids in REFPROP 9.1. A value in the article was read to be similar, but slightly too low from that calculated
here. This function converges to zero at Tc. If Tc is larger than T, 0 is returned as the model would return complex
numbers.

240 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

From graph, in [1] for perfluoro-n-heptane.

>>> Velasco(333.2, 476.0, 0.5559)
33299.428636069264

chemicals.phase_change.Clapeyron(T, Tc, Pc, dZ=1, Psat=101325)
Calculates enthalpy of vaporization at arbitrary temperatures using the Clapeyron equation.

The enthalpy of vaporization is given by:

∆𝐻𝑣𝑎𝑝 = 𝑅𝑇∆𝑍
ln(𝑃𝑐/𝑃𝑠𝑎𝑡)

(1 − 𝑇𝑟)

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

dZ [float] Change in compressibility factor between liquid and gas, []

Psat [float] Saturation pressure of fluid [Pa], optional

Returns
Hvap [float] Enthalpy of vaporization, [J/mol]

Notes

No original source is available for this equation. [1] claims this equation overpredicts enthalpy by several percent.
Under Tr = 0.8, dZ = 1 is a reasonable assumption. This equation is most accurate at the normal boiling point.

Internal units are bar.

WARNING: I believe it possible that the adjustment for pressure may be incorrect

References

[1]

1.21. Phase Change Properties (chemicals.phase_change) 241

chemicals Documentation, Release 1.1.4

Examples

Problem from Perry’s examples.

>>> Clapeyron(T=294.0, Tc=466.0, Pc=5.55E6)
26512.36357131963

chemicals.phase_change.Watson(T, Hvap_ref, T_ref, Tc, exponent=0.38)
Calculates enthalpy of vaporization of a chemical at a temperature using the known heat of vaporization at
another temperature according to the Watson [1] [2] correlation. This is an application of the corresponding-
states principle, with an emperical temperature dependence.

∆𝐻𝑇1
𝑣𝑎𝑝

∆𝐻𝑇2
𝑣𝑎𝑝

=

(︂
1 − 𝑇𝑟,1
1 − 𝑇𝑟,2

)︂0.38

Parameters
T [float] Temperature for which to calculate heat of vaporization, [K]

Hvap_ref [float] Enthalpy of vaporization at the known temperature point, [J/mol]

T_ref [float] Reference temperature; ideally as close to T as posible, [K]

Tc [float] Critical temperature of fluid [K]

exponent [float, optional] A fit exponent can optionally be used instead of the Watson 0.38
exponent, [-]

Returns
Hvap [float] Enthalpy of vaporization at T, [J/mol]

References

[1], [2]

Examples

Predict the enthalpy of vaporization of water at 320 K from a point at 300 K:

>>> Watson(T=320, Hvap_ref=43908, T_ref=300.0, Tc=647.14)
42928.990094915454

The error is 0.38% compared to the correct value of 43048 J/mol.

If the provided temperature is above the critical point, zero is returned.

chemicals.phase_change.Watson_n(T1, T2, Hvap1, Hvap2, Tc)
Calculates the Watson heat of vaporizaton extrapolation exponent given two known heats of vaporization.

𝑛 =

⎡⎣ ln
(︁

𝐻𝑣𝑎𝑝1

𝐻𝑣𝑎𝑝2

)︁
ln
(︁

𝑇1−𝑇𝑐

𝑇2−𝑇𝑐

)︁
⎤⎦

Parameters
T1 [float] Temperature of first heat of vaporization point, [K]

T2 [float] Temperature of second heat of vaporization point, [K]

242 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Hvap1 [float] Enthalpy of vaporization at the first known temperature point, [J/mol]

Hvap2 [float] Enthalpy of vaporization at the second known temperature point, [J/mol]

Tc [float] Critical temperature of fluid [K]

Returns
exponent [float] A fit exponent that can be used instead of the Watson 0.38 exponent, [-]

Notes

This can be useful for extrapolating when a correlation does not reach the critical point.

Examples

>>> Watson_n(T1=320, T2=300, Hvap1=42928.990094915454, Hvap2=43908, Tc=647.14)
0.380000000000

1.21.6 Heat of Vaporization at T Model Equations

chemicals.phase_change.Alibakhshi(T, Tc, C)
Calculates enthalpy of vaporization of a chemical at a temperature using a theoretically-derived single-coefficient
fit equation developed in [1]. This model falls apart at ~0.8 Tc.

∆𝐻𝑣𝑎𝑝 = (4.5𝜋𝑁𝐴)
1/3.

4.2 × 10−7(𝑇𝑐 − 6) − 0.5𝑅𝑇 ln(𝑇) + 𝐶𝑇

Parameters
T [float] Temperature for which to calculate heat of vaporization, [K]

Tc [float] Critical temperature of fluid [K]

C [float] Alibakhshi fit coefficient, [J/mol/K]

Returns
Hvap [float] Enthalpy of vaporization at T, [J/mol]

Notes

The authors of [1] evaluated their model on 1890 compounds for a temperature range of 50 K under Tb to 100 K
below Tc, and obtained an average absolute relative error of 4.5%.

References

[1]

1.21. Phase Change Properties (chemicals.phase_change) 243

chemicals Documentation, Release 1.1.4

Examples

Predict the enthalpy of vaporization of water at 320 K:

>>> Alibakhshi(T=320.0, Tc=647.14, C=-16.7171)
41961.30490225752

The error is 2.5% compared to the correct value of 43048 J/mol.

chemicals.phase_change.PPDS12(T, Tc, A, B, C, D, E)
Calculate the enthalpy of vaporization of a fluid using the 5-term power fit developed by the PPDS and named
PPDS equation 12.

𝐻𝑣𝑎𝑝 = 𝑅𝑇𝑐

(︁
𝐴𝜏1/3 +𝐵𝜏2/3 + 𝐶𝜏 +𝐷𝜏2 + 𝐸𝜏6

)︁
𝜏 = 1 − 𝑇

𝑇𝑐
Parameters

T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [-]

C [float] Coefficient, [-]

D [float] Coefficient, [-]

E [float] Coefficient, [-]

Returns
Hvap [float] Enthalpy of vaporization at T, [J/mol]

Notes

Coefficients can be found in [1], but no other source for these coefficients has been found.

References

[1], [2]

Examples

Example from [1]:

>>> PPDS12(300.0, 591.75, 4.60584, 13.97224, -10.592315, 2.120205, 4.277128)
37948.76862035925

Example from [2] for benzene; note the coefficients from [2] predict enthalpy of vaporization in kJ/mol, so the
output must be adjusted. The same effect can be obtained by multiplying each of the coefficients by 1000.

>>> 1000.0*PPDS12(300.0, 562.05, 0.00171484, 0.0258604, -0.0243564, 0.00740881, 0.
→˓00680068)
33662.4258030

244 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.21.7 Heat of Sublimation

No specific correlation is provided. This value is fairly strongly temperature dependent; the dependency comes almost
entirely from the vaporization enthalpy’s dependence. To calculate heat of sublimation at any temperature, use the
equation 𝐻𝑠𝑢𝑏 = 𝐻𝑓𝑢𝑠 +𝐻𝑣𝑎𝑝.

1.21.8 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.phase_change.phase_change_data_Perrys2_150
A collection of 344 coefficient sets from the DIPPR database published openly in [1]. Provides temperature
limits for all its fluids. See chemicals.dippr.EQ106 for the model equation.

chemicals.phase_change.phase_change_data_VDI_PPDS_4
Coefficients for a equation form developed by the PPDS, published openly in [2]. Extrapolates poorly at low
temperatures. See PPDS12 for the model equation.

chemicals.phase_change.phase_change_data_Alibakhshi_Cs
One-constant limited temperature range regression coefficients presented in [3], with constants for ~2000 chem-
icals from the DIPPR database. Valid up to 100 K below the critical point, and 50 K under the boiling point. See
Alibakhshi for the model equation.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.phase_change.phase_change_data_Perrys2_150
Out[2]:

Chemical Tc C1 ... C4 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 408.00 30760.0 ... 0.00000 181.15 408.00
55-21-0 Benzamide 824.00 87809.0 ... -0.14162 403.00 824.00
56-23-5 Carbon tetrachloride 556.35 43252.0 ... 0.00000 250.33 556.35
57-55-6 1,2-Propylene glycol 626.00 80700.0 ... 0.00000 213.15 626.00
60-29-7 Diethyl ether 466.70 40600.0 ... 0.00000 156.85 466.70
...
10028-15-6 Ozone 261.00 18587.0 ... 0.00000 80.15 261.00
10035-10-6 Hydrogen bromide 363.15 24850.0 ... 0.00000 185.15 363.15
10102-43-9 Nitric oxide 180.15 21310.0 ... 0.00000 109.50 180.15
13511-13-2 Propenylcyclohexene 636.00 58866.0 ... 0.00000 199.00 636.00
132259-10-0 Air 132.45 8474.0 ... 0.00000 59.15 132.45

[344 rows x 8 columns]

In [3]: chemicals.phase_change.phase_change_data_VDI_PPDS_4
Out[3]:

Chemical MW ... D E
CAS ...
50-00-0 Formaldehyde 30.03 ... -4.856937 11.036836
56-23-5 Carbon tetrachloride 153.82 ... -0.172679 3.053272
56-81-5 Glycerol 92.09 ... 2.052518 -13.771300
60-29-7 Diethyl ether 74.12 ... -0.175016 3.557340
62-53-3 Aniline 93.13 ... -1.656520 3.263408

(continues on next page)

1.21. Phase Change Properties (chemicals.phase_change) 245

chemicals Documentation, Release 1.1.4

(continued from previous page)

...
10097-32-2 Bromine 159.82 ... -0.025698 -0.197360
10102-43-9 Nitric oxide 30.01 ... -5.159373 97.203137
10102-44-0 Nitrogen dioxide 46.01 ... 10.653997 68.680656
10544-72-6 Dinitrogentetroxide 92.01 ... -1.535179 102.679020
132259-10-0 Air 28.96 ... -8.064787 14.645081

[272 rows x 8 columns]

In [4]: chemicals.phase_change.phase_change_data_Alibakhshi_Cs
Out[4]:

Chemical C
CAS
50-00-0 formaldehyde -26.7916
50-21-5 lactic acid 30.5238
50-70-4 sorbitol 89.1371
50-78-2 acetylsalicylic acid 15.9121
50-81-7 ascorbic acid 102.2858
...
7642-10-6 cis-3-heptene -17.8032
7719-09-7 thionyl chloride -31.2745
7719-12-2 phosphorus trichloride -27.0024
7783-06-4 hydrogen sulfide -37.3259
7783-07-5 hydrogen selenide -38.5320

[1890 rows x 2 columns]

1.22 Rachford-Rice Equation Solvers (chemicals.rachford_rice)

This module contains functions for solving the Rachford-Rice Equation. This is used to solve ideal flashes, and is the
inner loop of the sequential-substitution flash algorithm. It is not used by full newton-algorithms. The sequential-
substitution is normally recommended because it does not suffer from the ~N^3 behavior of solving a matrix.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Two Phase - Interface

• Two Phase - Implementations

• Two Phase - High-Precision Implementations

• Three Phase

• N Phase

• Two Phase Utility Functions

• Numerical Notes

246 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.22.1 Two Phase - Interface

chemicals.rachford_rice.flash_inner_loop(zs, Ks, method=None, guess=None, check=False)
This function handles the solution of the inner loop of a flash calculation, solving for liquid and gas mole fractions
and vapor fraction based on specified overall mole fractions and K values. As K values are weak functions of
composition, this should be called repeatedly by an outer loop. Will automatically select an algorithm to use if
no method is provided. Should always provide a solution.

The automatic algorithm selection will try an analytical solution, and use the Rachford-Rice method if there are
6 or more components in the mixture.

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

guess [float, optional] Optional initial guess for vapor fraction, [-]

check [bool, optional] Whether or not to check the K values to ensure a positive-composition
solution exists, [-]

Returns
V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Other Parameters
method [string, optional] The method name to use. Accepted methods are ‘Analytical’,

‘Rachford-Rice (Secant)’, ‘Rachford-Rice (Newton-Raphson)’, ‘Rachford-Rice (Halley)’,
‘Rachford-Rice (NumPy)’, ‘Leibovici and Nichita 2’, ‘Rachford-Rice (polynomial)’, and ‘Li-
Johns-Ahmadi’. All valid values are also held in the list flash_inner_loop_methods.

Notes

A total of eight methods are available for this function. They are:

• ‘Analytical’, an exact solution derived with SymPy, applicable only only to mixtures of two, three, or four
components

• ‘Rachford-Rice (Secant)’, ‘Rachford-Rice (Newton-Raphson)’, ‘Rachford-Rice (Halley)’, or ‘Rachford-
Rice (NumPy)’, which numerically solves an objective function described in Rachford_Rice_solution.

• ‘Leibovici and Nichita 2’, a transformation of the RR equation described in
Rachford_Rice_solution_LN2.

• ‘Li-Johns-Ahmadi’, which numerically solves an objective function described in
Li_Johns_Ahmadi_solution.

• ‘Leibovici and Neoschil’, which numerically solves an objective function described in
Rachford_Rice_solution_Leibovici_Neoschil.

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 247

chemicals Documentation, Release 1.1.4

Examples

>>> flash_inner_loop(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738, [0.3394086969663, 0.3650560590371, 0.29553524399648], [0.
→˓571903654388, 0.27087159580558, 0.1572247498061])

chemicals.rachford_rice.flash_inner_loop_methods(N)
Return all methods able to solve the Rachford-Rice equation for the specified number of components.

Parameters
N [int] Number of components, [-]

Returns
methods [list[str]] Methods which can be used to solve the Rachford-rice equation

See also:

flash_inner_loop

chemicals.rachford_rice.flash_inner_loop_all_methods = ('Analytical', 'Rachford-Rice
(Secant)', 'Rachford-Rice (Newton-Raphson)', 'Rachford-Rice (Halley)', 'Rachford-Rice
(NumPy)', 'Li-Johns-Ahmadi', 'Rachford-Rice (polynomial)', 'Leibovici and Nichita 2',
'Leibovici and Neoschil')

Tuple of method name keys. See the flash_inner_loop for the actual references

1.22.2 Two Phase - Implementations

chemicals.rachford_rice.Rachford_Rice_solution(zs, Ks, fprime=False, fprime2=False, guess=None)
Solves the objective function of the Rachford-Rice flash equation [1]. Uses the method proposed in [2] to obtain
an initial guess. ∑︁

𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

fprime [bool, optional] Whether or not to use the first derivative of the objective function in the
solver (Newton-Raphson is used) or not (secant is used), [-]

fprime2 [bool, optional] Whether or not to use the second derivative of the objective function
in the solver (parabolic Halley`s method is used if True) or not, [-]

guess [float, optional] Optional initial guess for vapor fraction, [-]

Returns
V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

248 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The initial guess is the average of the following, as described in [2].(︂
𝑉

𝐹

)︂
𝑚𝑖𝑛

=
(𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛)𝑧𝑜𝑓 𝐾𝑚𝑎𝑥 − (1 −𝐾𝑚𝑖𝑛)

(1 −𝐾𝑚𝑖𝑛)(𝐾𝑚𝑎𝑥 − 1)(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

=
1

1 −𝐾𝑚𝑖𝑛

Another algorithm for determining the range of the correct solution is given in [3]; [2] provides a narrower range
however. For both cases, each guess should be limited to be between 0 and 1 as they are often negative or larger
than 1. (︂

𝑉

𝐹

)︂
𝑚𝑖𝑛

=
1

1 −𝐾𝑚𝑎𝑥(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

=
1

1 −𝐾𝑚𝑖𝑛

If the newton method does not converge, a bisection method (brenth) is used instead. However, it is somewhat
slower, especially as newton will attempt 50 iterations before giving up.

In all benchmarks attempted, secant method provides better performance than Newton-Raphson or parabolic
Halley`s method. This may not be generally true; but it is for Python and SciPy’s implementation. They are
implemented for benchmarking purposes.

The first and second derivatives are:

𝑑 obj
𝑑𝑉
𝐹

=
∑︁
𝑖

−𝑧𝑖(𝐾𝑖 − 1)2

(1 + 𝑉
𝐹 (𝐾𝑖 − 1))2

𝑑2 obj
𝑑(𝑉

𝐹)2
=
∑︁
𝑖

2𝑧𝑖(𝐾𝑖 − 1)3

(1 + 𝑉
𝐹 (𝐾𝑖 − 1))3

References

[1], [2], [3]

Examples

>>> Rachford_Rice_solution(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738544, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858],␣
→˓[0.5719036543882889, 0.27087159580558057, 0.15722474980613044])

chemicals.rachford_rice.Rachford_Rice_solution_LN2(zs, Ks, guess=None)
Solves the a objective function for the Rachford-Rice flash equation according to the Leibovici and Nichita
(2010) transformation (method 2). This transformation makes the only zero of the function be the desired one.
Consequently, higher-order methods may be used to solve this equation. Halley’s (second derivative) method is
found to be the best; typically needing ~50% fewer iterations than the RR formulation with Secant method.

𝐻(𝑦) =

𝑛∑︁
𝑖

𝑧𝑖
𝜆− 𝑐𝑖

= 0

𝜆 = 𝑐𝑘 +
𝑐𝑘+1 − 𝑐𝑘
1 + 𝑒−𝑦

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 249

chemicals Documentation, Release 1.1.4

𝑐𝑖 =
1

1 −𝐾𝑖

𝑐𝑘 =

(︂
𝑉

𝐹

)︂
𝑚𝑖𝑛

𝑐𝑘+1 =

(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

Note the two different uses of c in the above equation, confusingly given in [1]. lambda is the vapor fraction.

Once the equation has been solved for y, the vapor fraction can be calculated outside the solver.

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

guess [float, optional] Optional initial guess for vapor fraction, [-]

Returns
V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [2].(︂
𝑉

𝐹

)︂
𝑚𝑖𝑛

=
(𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛)𝑧𝑜𝑓 𝐾𝑚𝑎𝑥

− (1 −𝐾𝑚𝑖𝑛)

(1 −𝐾𝑚𝑖𝑛)(𝐾𝑚𝑎𝑥 − 1)(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

=
1

1 −𝐾𝑚𝑖𝑛

The first and second derivatives are derived with sympy as follows:

>>> from sympy import *
>>> VF_min, VF_max, ai, ci, y = symbols('VF_min, VF_max, ai, ci, y')
>>> V_over_F = (VF_min + (VF_max - VF_min)/(1 + exp(-y)))
>>> F = ai/(V_over_F - ci)
>>> terms = [F, diff(F, y), diff(F, y, 2)]
>>> cse(terms, optimizations='basic')

Some helpful information about this transformation can also be found in [3].

References

[1], [2], [3]

250 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> Rachford_Rice_solution_LN2(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738, [0.3394086969663, 0.3650560590371, 0.29553524399648], [0.
→˓571903654388, 0.27087159580558, 0.1572247498061])

chemicals.rachford_rice.Li_Johns_Ahmadi_solution(zs, Ks, guess=None)
Solves the objective function of the Li-Johns-Ahmadi flash equation. Uses the method proposed in [1] to obtain
an initial guess.

0 = 1 +

(︂
𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛

𝐾𝑚𝑖𝑛 − 1

)︂
𝑥𝑚𝑎𝑥 +

𝑛−1∑︁
𝑖=2

𝐾𝑖 −𝐾𝑚𝑖𝑛

𝐾𝑚𝑖𝑛 − 1

[︂
𝑧𝑖(𝐾𝑚𝑎𝑥 − 1)𝑥𝑚𝑎𝑥

(𝐾𝑖 − 1)𝑧𝑚𝑎𝑥 + (𝐾𝑚𝑎𝑥 −𝐾𝑖)𝑥𝑚𝑎𝑥

]︂
Parameters

zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

Returns
V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [1]. Each guess should be limited to be between
0 and 1 as they are often negative or larger than 1. max refers to the corresponding mole fractions for the species
with the largest K value. (︂

1 −𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛

)︂
𝑧𝑚𝑎𝑥 ≤ 𝑥𝑚𝑎𝑥 ≤

(︂
1 −𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛

)︂
If the newton method does not converge, a bisection method (brenth) is used instead. However, it is somewhat
slower, especially as newton will attempt 50 iterations before giving up.

This method does not work for problems of only two components. K values are sorted internally. Has not been
found to be quicker than the Rachford-Rice equation.

References

[1]

Examples

>>> Li_Johns_Ahmadi_solution(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738544, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858],␣
→˓[0.5719036543882889, 0.27087159580558057, 0.15722474980613044])

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 251

chemicals Documentation, Release 1.1.4

chemicals.rachford_rice.Rachford_Rice_solution_Leibovici_Neoschil(zs, Ks, guess=None)
Solves the objective function of the Rachford-Rice flash equation as modified by Leibovici and Neoschil. This
modification helps convergence near the vapor fraction boundaries only; it slows convergence in other regions.(︂

𝑉

𝐹
− 𝛼𝐿

)︂(︂
𝛼𝑅 − 𝑉

𝐹

)︂∑︁
𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

𝛼𝐿 = − 1

𝐾𝑚𝑎𝑥 − 1

𝛼𝑅 =
1

1 −𝐾𝑚𝑖𝑛

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

guess [float, optional] Optional initial guess for vapor fraction, [-]

Returns
L_over_F [float] Liquid fraction solution [-]

V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following.(︂
𝑉

𝐹

)︂
𝑚𝑖𝑛

=
(𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛)𝑧𝑜𝑓 𝐾𝑚𝑎𝑥

− (1 −𝐾𝑚𝑖𝑛)

(1 −𝐾𝑚𝑖𝑛)(𝐾𝑚𝑎𝑥 − 1)(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

=
1

1 −𝐾𝑚𝑖𝑛

References

[1]

Examples

>>> Rachford_Rice_solution_Leibovici_Neoschil(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742,␣
→˓0.532])
(0.3092697372261, 0.69073026277385, [0.339408696966343, 0.36505605903717, 0.
→˓29553524399648], [0.57190365438828, 0.270871595805580, 0.157224749806130])

chemicals.rachford_rice.Rachford_Rice_solution_polynomial(zs, Ks)
Solves the Rachford-Rice equation by transforming it into a polynomial, and then either analytically calculating
the roots, or, using the known range the correct root is in, numerically solving for the correct polynomial root.
The analytical solutions are used for N from 2 to 4.

252 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Uses the method proposed in [2] to obtain an initial guess when solving the polynomial for the root numerically.∑︁
𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

Warning: : Using this function with more than 20 components is likely to crash Python! This model does
not work well with many components!

This method, developed first in [3] and expanded in [1], is clever but of little use for large numbers of components.

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

Returns
V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Notes

This approach has mostly been ignored by academia, despite some of its advantages.

The initial guess is the average of the following, as described in [2].(︂
𝑉

𝐹

)︂
𝑚𝑖𝑛

=
(𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛)𝑧𝑜𝑓 𝐾𝑚𝑎𝑥

− (1 −𝐾𝑚𝑖𝑛)

(1 −𝐾𝑚𝑖𝑛)(𝐾𝑚𝑎𝑥 − 1)(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

=
1

1 −𝐾𝑚𝑖𝑛

If the newton method does not converge, a bisection method (brenth) is used instead. However, it is somewhat
slower, especially as newton will attempt 50 iterations before giving up.

This method could be speed up somewhat for N <= 4; the checks for the vapor fraction range are not really
needed.

References

[1], [2], [3]

Examples

>>> Rachford_Rice_solution_polynomial(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738543, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858],␣
→˓[0.5719036543882889, 0.27087159580558057, 0.15722474980613044])

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 253

chemicals Documentation, Release 1.1.4

1.22.3 Two Phase - High-Precision Implementations

chemicals.rachford_rice.Rachford_Rice_solution_mpmath(zs, Ks, dps=200, tol=1e-100)
Solves the the Rachford-Rice flash equation using numerical root-finding to a high precision using the mpmath
library. ∑︁

𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

dps [int, optional] Number of decimal places to use in the intermediate values of the calculation,
[-]

tol [float, optional] The tolerance of the solver used in mpmath, [-]

Returns
L_over_F [float] Liquid fraction solution [-]

V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Notes

This function is written solely for development purposes with the aim of returning bit-accurate solutions.

Note that the liquid fraction is also returned; it is insufficient to compute it as 𝐿
𝐹 = 1 − 𝑉

𝐹 .

Examples

>>> Rachford_Rice_solution_mpmath(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.3092697372261456, 0.6907302627738544, [0.33940869696634357, 0.3650560590371706,␣
→˓0.29553524399648584], [0.5719036543882889, 0.27087159580558057, 0.
→˓15722474980613046])
>>> Rachford_Rice_solution_mpmath(zs=[0.999999999999, 1e-12], Ks=[2.0, 1e-12])
(1e-12, 0.999999999999, [0.49999999999975003, 0.50000000000025], [0.
→˓9999999999995001, 5.0000000000025e-13])

chemicals.rachford_rice.Rachford_Rice_solution_binary_dd(zs, Ks)
Solves the the Rachford-Rice flash equation for a binary system using double-double math. This increases the
range in which the calculation can be performed accurately but does not totally eliminate error.∑︁

𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

The analytical solution for a binary system is:

𝑉

𝐹
=

−𝐾0𝑧0 −𝐾1𝑧1 + 𝑧0 + 𝑧1
𝐾0𝐾1𝑧0 +𝐾0𝐾1𝑧1 −𝐾0𝑧0 −𝐾0𝑧1 −𝐾1𝑧0 −𝐾1𝑧1 + 𝑧0 + 𝑧1

Parameters

254 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

Returns
L_over_F [float] Liquid fraction solution [-]

V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

Examples

This system with large volatility difference and a trace of a component shows a correct calculation. Try it out
with other solvers for bad results!

>>> Rachford_Rice_solution_binary_dd(zs=[1E-27, 1.0], Ks=[1000000000000,0.1])
(1.000000000001, -1.0000000000009988e-12, [9.0000000000009e-13, 0.9999999999991],␣
→˓[0.90000000000009, 0.09999999999991001])

Note the limitations of this solver can be explored by comparing against Rachford_Rice_solution_mpmath .
For example, with z0 of 1e-28 in the above example error creeps back in.

chemicals.rachford_rice.Rachford_Rice_solution_Leibovici_Neoschil_dd(zs, Ks, guess=None)
Solves the objective function of the Rachford-Rice flash equation as modified by Leibovici and Neoschil, using
double-double precision math for maximum accuracy. For most cases, this function will return bit-for-bit accurate
results; but there are pathological inputs where error still occurs.(︂

𝑉

𝐹
− 𝛼𝐿

)︂(︂
𝛼𝑅 − 𝑉

𝐹

)︂∑︁
𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

𝛼𝐿 = − 1

𝐾𝑚𝑎𝑥 − 1

𝛼𝑅 =
1

1 −𝐾𝑚𝑖𝑛

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

guess [float, optional] Optional initial guess for vapor fraction, [-]

Returns
L_over_F [float] Liquid fraction solution [-]

V_over_F [float] Vapor fraction solution [-]

xs [list[float]] Mole fractions of each species in the liquid phase, [-]

ys [list[float]] Mole fractions of each species in the vapor phase, [-]

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 255

chemicals Documentation, Release 1.1.4

Notes

The initial guess is the average of the following.(︂
𝑉

𝐹

)︂
𝑚𝑖𝑛

=
(𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛)𝑧𝑜𝑓 𝐾𝑚𝑎𝑥

− (1 −𝐾𝑚𝑖𝑛)

(1 −𝐾𝑚𝑖𝑛)(𝐾𝑚𝑎𝑥 − 1)(︂
𝑉

𝐹

)︂
𝑚𝑎𝑥

=
1

1 −𝐾𝑚𝑖𝑛

References

[1]

Examples

>>> Rachford_Rice_solution_Leibovici_Neoschil_dd(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.
→˓742, 0.532])
(0.3092697372261, 0.69073026277385, [0.339408696966343, 0.36505605903717, 0.
→˓29553524399648], [0.57190365438828, 0.270871595805580, 0.157224749806130])

1.22.4 Three Phase

chemicals.rachford_rice.Rachford_Rice_solution2(ns, Ks_y, Ks_z, beta_y=0.5, beta_z=1e-06)
Solves the two objective functions of the Rachford-Rice flash equation for a three-phase system. Initial guesses
are required for both phase fractions, beta_y and beta_z. The Newton method is used, with an analytical Jacobian.

𝐹0 =
∑︁
𝑖

𝑧𝑖(𝐾𝑦 − 1)

1 + 𝛽𝑦(𝐾𝑦 − 1) + 𝛽𝑧(𝐾𝑧 − 1)
= 0

𝐹1 =
∑︁
𝑖

𝑧𝑖(𝐾𝑧 − 1)

1 + 𝛽𝑦(𝐾𝑦 − 1) + 𝛽𝑧(𝐾𝑧 − 1)
= 0

Parameters
ns [list[float]] Overall mole fractions of all species (would be zs except that is conventially used

for one of the three phases), [-]

Ks_y [list[float]] Equilibrium K-values of y phase to x phase, [-]

Ks_z [list[float]] Equilibrium K-values of z phase to x phase, [-]

beta_y [float, optional] Initial guess for y phase (between 0 and 1), [-]

beta_z [float, optional] Initial guess for z phase (between 0 and 1), [-]

Returns
beta_y [float] Phase fraction of y phase, [-]

beta_z [float] Phase fraction of z phase, [-]

xs [list[float]] Mole fractions of each species in the x phase, [-]

ys [list[float]] Mole fractions of each species in the y phase, [-]

zs [list[float]] Mole fractions of each species in the z phase, [-]

256 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The elements of the Jacobian are calculated as follows:

𝜕𝐹0

𝜕𝛽𝑦
=
∑︁
𝑖

−𝑧𝑖(𝐾𝑦 − 1)2

(1 + 𝛽𝑦(𝐾𝑦 − 1) + 𝛽𝑧(𝐾𝑧 − 1))
2

𝜕𝐹1

𝜕𝛽𝑧
=
∑︁
𝑖

−𝑧𝑖(𝐾𝑧 − 1)2

(1 + 𝛽𝑦(𝐾𝑦 − 1) + 𝛽𝑧(𝐾𝑧 − 1))
2

𝜕𝐹1

𝜕𝛽𝑦
=
∑︁
𝑖

𝜕𝐹0

𝜕𝛽𝑧
=

−𝑧𝑖(𝐾𝑧 − 1)(𝐾𝑦 − 1)

(1 + 𝛽𝑦(𝐾𝑦 − 1) + 𝛽𝑧(𝐾𝑧 − 1))
2

In general, the solution which Newton’s method converges to may not be the desired one, so further constraints
are required.

Okuno’s method in [1] provides a polygonal region where the correct answer lies. It has not been implemented.

The Leibovici and Neoschil method [4] provides a method to compute/update the damping parameter, which
is suposed to ensure convergence. It claims to be able to calculate the maximum damping factor for Newton’s
method, if it tries to go out of bounds.

A custom region which is believed to be the same as that of Okuno is implemented instead - the region which
ensures positive compositions for all compounds in all phases, but does not restrict the phase fractions to be
between 0 and 1 or even positive.

With the convergence restraint, it is believed if a solution lies within (0, 1) for both variables, the correct solution
will be converged to so long as the initial guesses are within the correct region.

Some helpful information has also been found in [2] and [3].

References

[1], [2], [3], [4]

Examples

>>> ns = [0.204322076984, 0.070970999150, 0.267194323384, 0.296291964579, 0.
→˓067046080882, 0.062489248292, 0.031685306730]
>>> Ks_y = [1.23466988745, 0.89727701141, 2.29525708098, 1.58954899888, 0.
→˓23349348597, 0.02038108640, 1.40715641002]
>>> Ks_z = [1.52713341421, 0.02456487977, 1.46348240453, 1.16090546194, 0.
→˓24166289908, 0.14815282572, 14.3128010831]
>>> Rachford_Rice_solution2(ns, Ks_y, Ks_z, beta_y=.1, beta_z=.6)
(0.6868328915094766, 0.06019424397668606, [0.1712804659711611, 0.08150738616425436,␣
→˓0.1393433949193188, 0.20945175387703213, 0.15668977784027893, 0.22650123851718007,
→˓ 0.015225982711774586], [0.21147483364299702, 0.07313470386530294, 0.
→˓31982891387635903, 0.33293382568889657, 0.036586042443791586, 0.
→˓004616341311925655, 0.02142533917172731], [0.26156812278601893, 0.
→˓00200221914149187, 0.20392660665189805, 0.2431536850887592, 0.03786610596908295,␣
→˓0.03355679851539993, 0.21792646184834918])

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 257

chemicals Documentation, Release 1.1.4

1.22.5 N Phase

chemicals.rachford_rice.Rachford_Rice_solutionN(ns, Ks, betas)
Solves the (phases -1) objectives functions of the Rachford-Rice flash equation for an N-phase system. Initial
guesses are required for all phase fractions except the last. The Newton method is used, with an analytical
Jacobian.

Parameters
ns [list[float]] Overall mole fractions of all species, [-]

Ks [list[list[float]]] Equilibrium K-values of all phases with respect to the x (reference) phase,
[-]

betas [list[float]] Phase fraction initial guesses only for the first N - 1 phases; each value corre-
sponds to the phase fraction of each set of the K values; if a phase fraction is specified for
the last phase as well, it is ignored [-]

Returns
betas [list[float]] Phase fractions of all of the phases; one each for each K value set given, plus

the reference phase phase fraction [-]

compositions [list[list[float]]] Mole fractions of each species in each phase; order each phase
in the same order as the K values were provided, and then the x phase last, which was the
reference phase [-]

Notes

This algorithm has been used without issue for 4 and 5 phase flashes.

Some helpful information was found in [1], although this method does not follow it exactly.

References

[1]

Examples

>>> ns = [0.204322076984, 0.070970999150, 0.267194323384, 0.296291964579, 0.
→˓067046080882, 0.062489248292, 0.031685306730]
>>> Ks_y = [1.23466988745, 0.89727701141, 2.29525708098, 1.58954899888, 0.
→˓23349348597, 0.02038108640, 1.40715641002]
>>> Ks_z = [1.52713341421, 0.02456487977, 1.46348240453, 1.16090546194, 0.
→˓24166289908, 0.14815282572, 14.3128010831]
>>> Rachford_Rice_solutionN(ns, [Ks_y, Ks_z], [.1, .6])
([0.6868328915094767, 0.06019424397668605, 0.25297286451383727], [[0.
→˓21147483364299702, 0.07313470386530294, 0.3198289138763589, 0.33293382568889657,␣
→˓0.03658604244379159, 0.004616341311925657, 0.02142533917172731], [0.
→˓26156812278601893, 0.00200221914149187, 0.203926606651898, 0.2431536850887592, 0.
→˓03786610596908296, 0.033556798515399944, 0.21792646184834918], [0.
→˓1712804659711611, 0.08150738616425436, 0.13934339491931877, 0.20945175387703213,␣
→˓0.15668977784027896, 0.22650123851718015, 0.015225982711774586]])

258 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.22.6 Two Phase Utility Functions

chemicals.rachford_rice.Rachford_Rice_polynomial(zs, Ks)
Transforms the Rachford-Rice equation into a polynomial and returns its coefficients. A spelled-out solution is
used for N from 2 to 5, derived with SymPy and optimized with the common sub expression approach.

Warning: For large numbers of components (>20) this model performs terribly, though with future opti-
mization it may be possible to have better performance.

𝑁∑︁
𝑖=1

𝑧𝑖𝐶𝑖

[︂
Π𝑁

𝑗 ̸=𝑖

(︂
1 +

𝑉

𝐹
𝐶𝑗

)︂]︂
= 0

𝐶𝑖 = 𝐾𝑖 − 1.0

Once the above calculation is performed, it must be rearranged into polynomial form.

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

Returns
coeffs [float] Coefficients, with earlier coefficients corresponding to higher powers, [-]

Notes

Explicit calculations for any degree can be obtained with SymPy, changing N as desired:

>>> from sympy import *
>>> N = 4
>>> Cs = symbols('C0:' + str(N))
>>> zs = symbols('z0:' + str(N))
>>> alpha = symbols('alpha')
>>> tot = 0
>>> for i in range(N):
... mult_sum = 1
>>> for j in range(N):
... if j != i:
... mult_sum *= (1 + alpha*Cs[j])
... tot += zs[i]*Cs[i]*mult_sum

poly_expr = poly(expand(tot), alpha) coeff_list = poly_expr.all_coeffs() cse(coeff_list, optimizations=’basic’)

[1] suggests a matrix-math based approach for solving the model, but that has not been performed here. [1] also
has explicit equations for up to N = 7 to derive the coefficients.

The general form was derived to be slightly different than that in [1], but is confirmed to also be correct as it
matches other methods for solving the Rachford-Rice equation. [2] has similar information to [1].

The first coefficient is always 1.

The approach is also discussed in [3], with one example.

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 259

chemicals Documentation, Release 1.1.4

References

[1], [2], [3]

Examples

>>> Rachford_Rice_polynomial(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
[1.0, -3.6926529966760824, 2.073518878815093]

chemicals.rachford_rice.Rachford_Rice_flash_error(V_over_F, zs, Ks)
Calculates the objective function of the Rachford-Rice flash equation. This function should be called by a solver
seeking a solution to a flash calculation. The unknown variable is V_over_F, for which a solution must be between
0 and 1. ∑︁

𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

Parameters
V_over_F [float] Vapor fraction guess [-]

zs [list[float]] Overall mole fractions of all species, [-]

Ks [list[float]] Equilibrium K-values, [-]

Returns
error [float] Deviation between the objective function at the correct V_over_F and the attempted

V_over_F, [-]

Notes

The derivation is as follows:

𝐹𝑧𝑖 = 𝐿𝑥𝑖 + 𝑉 𝑦𝑖

𝑥𝑖 =
𝑧𝑖

1 + 𝑉
𝐹 (𝐾𝑖 − 1)∑︁

𝑖

𝑦𝑖 =
∑︁
𝑖

𝐾𝑖𝑥𝑖 = 1

∑︁
𝑖

(𝑦𝑖 − 𝑥𝑖) = 0

∑︁
𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

= 0

This objective function was proposed in [1].

260 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Rachford_Rice_flash_error(0.5, zs=[0.5, 0.3, 0.2],
... Ks=[1.685, 0.742, 0.532])
0.04406445591174976

1.22.7 Numerical Notes

For the two-phase problem, there are the following ways of computing the vapor and liquid mole fractions once the
vapor fraction and liquid fraction has been computed:

The most commonly shown expression is:

𝑥𝑖 =
𝑧𝑖

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

This can cause numerical issues when 𝐾𝑖 is near 1. It also shows issues near 𝑉
𝐹 (𝐾𝑖 − 1) = −1.

Another expression which avoids the second issue is

𝑥𝑖 =
𝑧𝑖

𝐿
𝐹 + (1 − 𝐿

𝐹)𝐾𝑖

Much like the other expression above this numerical issues but at different conditions: 𝐿
𝐹 = 1 and 𝐿

𝐹 = −(1 − 𝐿
𝐹)𝐾𝑖.

One more expression using both liquid and vapor fraction is:

𝑥𝑖 =
𝑧𝑖

𝐾𝑖
𝑉
𝐹 + 𝐿

𝐹

This expression only has one problematic area: 𝐾𝑖
𝑉
𝐹 = 𝐿

𝐹 . Preferably, this is computed with a fused-multiply-add
operation.

Another expression which flips the K value into the liquid form and swaps the vapor fraction for the liquid fraction
in-line is as follows

𝑥𝑖 =
𝑧𝑖
𝐾𝑖

𝐿
𝐹

𝐾𝑖
+ 𝑉

𝐹

This also has numerical problems when −
𝐿
𝐹

𝐾𝑖
= 𝑉

𝐹 .

Even when computing a solution with high precision such as with mpmath, the resulting compositions and phase
fractions may fail basic tests. In the following case, a nasty problem has a low-composition but relatively volatile last
component. Mathematically, 1 =

𝐿
𝐹 𝑥𝑖+

𝑉
𝐹 𝑦𝑖

𝑧𝑖
. This is true for all components except the last one in this case, where

significant error exists.

1.22. Rachford-Rice Equation Solvers (chemicals.rachford_rice) 261

chemicals Documentation, Release 1.1.4

>>> zs = [0.004632150100959984, 0.019748784459594933, 0.0037494212674659875, 0.
→˓0050492815033649835, 7.049818284201636e-05, 0.019252941309184937, 0.022923068733233923,
→˓ 0.02751809363371991, 0.044055273670258854, 0.026348159124199914, 0.029384949788372902,
→˓ 0.022368938441593926, 0.03876345111451487, 0.03440715821883388, 0.04220510198067186,␣
→˓0.04109191458414686, 0.031180945124537895, 0.024703227642798916, 0.010618543295340965,␣
→˓0.043262442161003854, 0.006774922650311977, 0.02418090788262392, 0.033168278052077886,␣
→˓0.03325881573680989, 0.027794535589044905, 0.00302091746847699, 0.013693571363003955,␣
→˓0.043274465132840854, 0.02431371852108292, 0.004119055065872986, 0.03314056562191489,␣
→˓0.03926511182895087, 0.0305068048046159, 0.014495317922126952, 0.03603737707409988, 0.
→˓04346278949361786, 0.019715052322446934, 0.028565255195219907, 0.023343683279902924, 0.
→˓026532427286078915, 2.0833722372767433e-06]
>>> Ks = [0.000312001984979, 0.478348350355814, 0.057460349529956, 0.142866526725442, 0.
→˓186076915390803, 1.67832923245552, 0.010784509466239, 0.037204384948088, 0.
→˓005359146955631, 2.41896552551221, 0.020514598049597, 0.104545054017411, 2.
→˓37825397780443, 0.176463709057649, 0.000474240879865, 0.004738042026669, 0.
→˓02556030236928, 0.00300089652604, 0.010614774675069, 1.75142303167203, 1.
→˓47213647779132, 0.035773024794854, 4.15016401471676, 0.024475125100923, 0.
→˓00206952065986, 2.09173484409107, 0.06290795470216, 0.001537212006245, 1.
→˓16935817509767, 0.001830422812888, 0.058398776367331, 0.516860928072656, 1.
→˓03039372722559, 0.460775800103578, 0.10980302936483, 0.009883724220094, 0.
→˓021938589630783, 0.983011657214417, 0.01978995396409, 0.204144939961852, 14.
→˓0521979447538]
>>> LF, VF, xs, ys = Rachford_Rice_solution_mpmath(zs=zs, Ks=Ks)
>>> (LF*xs[-1] + VF*ys[-1])/zs[-1]
1.0000000000028162

1.23 Chemical Reactions (chemicals.reaction)

This module contains lookup functions enthalpies and standard entropies of formation. Lookup functions are availa
for the liquid, solid, and gas states. A compound may be in more than one lookup function.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Solid Heat of Formation

• Liquid Heat of Formation

• Gas Heat of Formation

• Solid Absolute Entropy

• Liquid Absolute Entropy

• Gas Absolute Entropy

• Utility Functions

• Chemical Reactions

262 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.23.1 Solid Heat of Formation

chemicals.reaction.Hfs(CASRN, method=None)
This function handles the retrieval of a chemical’s solid/crystaline standard phase heat of formation. The lookup
is based on CASRNs. Will automatically select a data source to use if no method is provided; returns None if
the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
Hfs [float] Solid standard-state heat of formation, [J/mol]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

Hfs_methods

See also:

Hfs_methods

Notes

Sources are:

• ‘CRC’, from the CRC handbook (1360 values) [1]

• ‘WEBBOOK’ (2000 values) [2]

References

[1], [2]

Examples

>>> Hfs('101-81-5') # Diphenylmethane
71500.0

chemicals.reaction.Hfs_methods(CASRN)
Return all methods available to obtain the solid-phase heat of formation for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Hfs with the given inputs.

See also:

Hfs

chemicals.reaction.Hfs_all_methods = ('CRC', 'WEBBOOK')
Tuple of method name keys. See the Hfs for the actual references

1.23. Chemical Reactions (chemicals.reaction) 263

chemicals Documentation, Release 1.1.4

1.23.2 Liquid Heat of Formation

chemicals.reaction.Hfl(CASRN, method=None)
This function handles the retrieval of a chemical’s liquid standard phase heat of formation. The lookup is based
on CASRNs. Will automatically select a data source to use if no method is provided; returns None if the data is
not available.

Parameters
CASRN [str] CASRN [-]

Returns
Hfl [float] Liquid standard-state heat of formation, [J/mol]

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

Hfl_all_methods.

See also:

Hfl_methods

Notes

Sources are:

• ‘ATCT_L’, the Active Thermochemical Tables version 1.112. [1]

• ‘CRC’, from the CRC handbook (1360 values) [2]

• ‘WEBBOOK’ (2000 values) [3]

References

[1], [2], [3]

Examples

>>> Hfl('67-56-1')
-238400.0

chemicals.reaction.Hfl_methods(CASRN)
Return all methods available to obtain the standard liquid-state heat of formation for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Hfl with the given inputs.

See also:

Hfl

264 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.reaction.Hfl_all_methods = ('ATCT_L', 'CRC', 'WEBBOOK', 'JANAF')
Tuple of method name keys. See the Hfl for the actual references

1.23.3 Gas Heat of Formation

chemicals.reaction.Hfg(CASRN, method=None)
This function handles the retrieval of a chemical’s gas heat of formation. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
Hfg [float] Ideal gas phase heat of formation, [J/mol]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

Hfg_methods

See also:

Hfg_methods

Notes

Function has data for approximately 8700 chemicals. Sources are:

• ‘ATCT_G’, the Active Thermochemical Tables version 1.112 (600 values) [1]

• ‘TRC’, from a 1994 compilation (1750 values) [2]

• ‘CRC’, from the CRC handbook (1360 values) [3]

• ‘WEBBOOK’, a NIST resource [6] containing mostly experimental and averaged values

• ‘JANAF’, the 1998 JANAF values online

• ‘JOBACK’, an estimation method for organic substances in [5]

• ‘YAWS’, a large compillation of values, mostly estimated (5000 values) [4]

‘TRC’ data may have come from computational procedures, for example petane is off by 30%.

References

[1], [2], [3], [4], [5], [6]

1.23. Chemical Reactions (chemicals.reaction) 265

chemicals Documentation, Release 1.1.4

Examples

>>> Hfg('67-56-1')
-200700.0
>>> Hfg('67-56-1', method='YAWS')
-200900.0
>>> Hfg('67-56-1', method='CRC')
-201000.0
>>> Hfg('67-56-1', method='TRC')
-190100.0

chemicals.reaction.Hfg_methods(CASRN)
Return all methods available to obtain the gas phase heat of formation for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Hfg with the given inputs.

See also:

Hfg

chemicals.reaction.Hfg_all_methods = ('ATCT_G', 'TRC', 'CRC', 'WEBBOOK', 'JANAF', 'YAWS',
'JOBACK')

Tuple of method name keys. See the Hfg for the actual references

1.23.4 Solid Absolute Entropy

chemicals.reaction.S0s(CASRN, method=None)
This function handles the retrieval of a chemical’s absolute entropy at a reference temperature of 298.15 K and
pressure of 1 bar, in the solid state. Lookup is based on CASRNs. Will automatically select a data source to use
if no method is provided; returns None if the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
S0s [float] Ideal gas standard absolute entropy of compound, [J/mol/K]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

S0s_all_methods.

See also:

S0s_methods

266 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Sources are:

• ‘CRC’ [1] from the CRC handbook (1360 values)

• ‘WEBBOOK’, a NIST resource [2] containing mostly experimental and averaged values

References

[1], [2]

Examples

>>> S0s('7439-93-2') # Lithium
29.1

chemicals.reaction.S0s_methods(CASRN)
Return all methods available to obtain the absolute entropy of the compound in the solid phase for the desired
chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the S0s with the given inputs.

See also:

S0s

chemicals.reaction.S0s_all_methods = ('CRC', 'WEBBOOK')
Tuple of method name keys. See the S0s for the actual references

1.23.5 Liquid Absolute Entropy

chemicals.reaction.S0l(CASRN, method=None)
This function handles the retrieval of a chemical’s absolute entropy at a reference temperature of 298.15 K and
pressure of 1 bar, in the liquid state.

Lookup is based on CASRNs. Will automatically select a data source to use if no method is provided; returns
None if the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
S0l [float] Ideal gas standard absolute entropy of compound, [J/mol/K]

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

S0l_all_methods.

See also:

1.23. Chemical Reactions (chemicals.reaction) 267

chemicals Documentation, Release 1.1.4

S0l_methods

Notes

Sources are:

• ‘CRC’, from the CRC handbook

References

[1]

Examples

>>> S0l('7439-97-6') # Mercury
75.9

chemicals.reaction.S0l_methods(CASRN)
Return all methods available to obtain the absolute entropy for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the S0l with the given inputs.

See also:

S0l

chemicals.reaction.S0l_all_methods = ('CRC', 'WEBBOOK', 'JANAF')
Tuple of method name keys. See the S0l for the actual references

1.23.6 Gas Absolute Entropy

chemicals.reaction.S0g(CASRN, method=None)
This function handles the retrieval of a chemical’s absolute entropy at a reference temperature of 298.15 K and
pressure of 1 bar, in the ideal gas state.

Lookup is based on CASRNs. Will automatically select a data source to use if no method is provided; returns
None if the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
S0g [float] Ideal gas standard absolute entropy of compound, [J/mol/K]

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

S0g_all_methods

See also:

268 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

S0g_methods

Notes

Function has data for approximately 5400 chemicals. Sources are:

• ‘CRC’, from the CRC handbook (520 values)

• ‘YAWS’, a large compillation of values, mostly estimated (4890 values)

• ‘WEBBOOK’, a NIST resource [3] containing mostly experimental and averaged values

References

[1], [2], [3]

Examples

>>> S0g('67-56-1')
239.9
>>> S0g('67-56-1', method='YAWS')
239.88

chemicals.reaction.S0g_methods(CASRN)
Return all methods available to obtain the S0g for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the S0g with the given inputs.

See also:

S0g

chemicals.reaction.S0g_all_methods = ('CRC', 'WEBBOOK', 'JANAF', 'YAWS')
Tuple of method name keys. See the S0g for the actual references

1.23.7 Utility Functions

chemicals.reaction.Gibbs_formation(dHf, S0_abs, dHfs_std, S0_abs_elements, coeffs_elements,
T_ref=298.15)

This function calculates the Gibbs free energy of formation of a compound, from its constituent elements.

The calculated value will be for a “standard-state” value if dHf and S0_abs are provided in the standard state; or
it will be in an “ideal gas” basis if they are both for an ideal gas. For compounds which are gases at STP, the two
values are the same.

Parameters
dHf [float] Molar enthalpy of formation of the created compound, [J/mol]

S0_abs [float] Absolute molar entropy of the created compound at the reference temperature,
[J/mol/K]

1.23. Chemical Reactions (chemicals.reaction) 269

chemicals Documentation, Release 1.1.4

dHfs_std [list[float]] List of standard molar enthalpies of formation of all elements used in the
formation of the created compound, [J/mol]

S0_abs_elements [list[float]] List of standard absolute molar entropies at the reference temper-
ature of all elements used in the formation of the created compound, [J/mol/K]

coeffs_elements [list[float]] List of coefficients for each compound (i.e. 1 for C, 2 for H2 if the
target is methane), in the same order as dHfs_std and S0_abs_elements, [-]

T_ref [float, optional] The standard state temperature, default 298.15 K; few values are tabulated
at other temperatures, [-]

Returns
dGf [float] Gibbs free energy of formation for the created compound, [J/mol]

Notes

Be careful for elements like Bromine - is the tabulated value for Br2 or Br?

References

[1]

Examples

Calculate the standard-state Gibbs free energy of formation for water, using water’s standard state heat of forma-
tion and absolute entropy at 298.15 K:

>>> Gibbs_formation(-285830, 69.91, [0, 0], [130.571, 205.147], [1, .5])
-237161.633825

Calculate the ideal-gas state Gibbs free energy of formation for water, using water’s ideal-gas state heat of for-
mation and absolute entropy at 298.15 K as a gas:

>>> Gibbs_formation(-241818, 188.825, [0, 0], [130.571, 205.147], [1, .5])
-228604.141075

Calculate the Gibbs free energy of formation for CBrF3 (it is a gas at STP, so its standard-state and ideal-gas
state values are the same) at 298.15 K:

>>> Gibbs_formation(-648980, 297.713, [0, 0, 0], [5.74, 152.206, 202.789], [1, .5,␣
→˓1.5])
-622649.329975

Note in the above calculation that the Bromine’s S0 and Hf are for Br2; and that the value for Bromine as a liquid,
which is its standard state, is used.

chemicals.reaction.entropy_formation(Hf, Gf, T_ref=298.15)
This function calculates the entropy of formation of a compound, from its constituent elements.

The calculated value will be for a “standard-state” value if Hf and Gf are provided in the standard state; or it
will be in an “ideal gas” basis if they are both for an ideal gas. For compounds which are gases at STP, the two
values are the same.

Parameters

270 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Hf [float] Molar enthalpy of formation of the compound, [J/mol]

Gf [float] Molar Gibbs free energy of formation of the compound, [J/mol]

T_ref [float, optional] The standard state temperature, default 298.15 K; few values are tabulated
at other temperatures, [-]

Returns
S0 [float] Entropy of formation of the compound, [J/mol/K]

Examples

Entropy of formation of methane:

>>> entropy_formation(Hf=-74520, Gf=-50490)
-80.59701492537314

Entropy of formation of water in ideal gas state:

>>> entropy_formation(Hf=-241818, Gf=-228572)
-44.427301693778304

chemicals.reaction.Hf_basis_converter(Hvapm, Hf_liq=None, Hf_gas=None)
This function converts a liquid or gas enthalpy of formation to the other. This is useful, as thermodynamic
packages often work with ideal- gas as the reference state and require ideal-gas enthalpies of formation.

Parameters
Hvapm [float] Molar enthalpy of vaporization of compound at 298.15 K or (unlikely) the refer-

ence temperature, [J/mol]

Hf_liq [float, optional] Enthalpy of formation of the compound in its liquid state, [J/mol]

Hf_gas [float, optional] Enthalpy of formation of the compound in its ideal-gas state, [J/mol]

Returns
Hf_calc [float, optional] Enthalpy of formation of the compound in the other state to the one

provided, [J/mol]

Examples

Calculate the ideal-gas enthalpy of formation for water, from its standard- state (liquid) value:

>>> Hf_basis_converter(44018, Hf_liq=-285830)
-241812

Calculate the standard-state (liquid) enthalpy of formation for water, from its ideal-gas value:

>>> Hf_basis_converter(44018, Hf_gas=-241812)
-285830

1.23. Chemical Reactions (chemicals.reaction) 271

chemicals Documentation, Release 1.1.4

1.23.8 Chemical Reactions

chemicals.reaction.balance_stoichiometry(matrix, rounding=9, allow_fractional=False)
This function balances a chemical reaction.

Parameters
matrix [list[list[float]]]

Chemical reaction matrix for further processing; rows contain element counts of each
compound, and the columns represent each chemical, [-]

Returns
coefficients [list[float]] Balanced coefficients; all numbers are positive, [-]

Notes

Balance the reaction 4 NH3 + 5 O2 = 4 NO + 6 H2O, without knowing the coefficients:

>>> matrix = stoichiometric_matrix([{'N': 1, 'H': 3}, {'O': 2}, {'N': 1, 'O': 1}, {
→˓'H': 2, 'O': 1}], [True, True, False, False])
>>> matrix
[[3, 0, 0, -2], [1, 0, -1, 0], [0, 2, -1, -1]]
>>> balance_stoichiometry(matrix)
[4.0, 5.0, 4.0, 6.0]
>>> balance_stoichiometry(matrix, allow_fractional=True)
[1.0, 1.25, 1.0, 1.5]

This algorithm relies on scipy. The behavior of this function for inputs which do not have a unique solution is
undefined.

This algorithm may suffer from floating point issues. If you believe there is an error in the result, please report
your reaction to the developers.

References

[1], [2]

chemicals.reaction.stoichiometric_matrix(atomss, reactants)
This function calculates a stoichiometric matrix of reactants and stoichiometric matrix, as required by a solver
to compute the reation coefficients.

Parameters
atomss [list[dict[(str, float)]]] A list of dictionaties of (element, element_count) pairs for each

chemical, [-]

reactants [list[bool]] List of booleans indicating whether each chemical is a reactant (True) or
a product (False), [-]

Returns
matrix [list[list[float]]]

Chemical reaction matrix for further processing; rows contain element counts of each
compound, and the columns represent each chemical, [-]

272 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The rows of the matrix contain the element counts of each compound, and the columns represent each chemical.

References

[1], [2]

Examples

MgO2 -> Mg + 1/2 O2 (k=1)

>>> stoichiometric_matrix([{'Mg': 1, 'O': 1}, {'Mg': 1}, {'O': 2}], [True, False,␣
→˓False])
[[1, -1, 0], [1, 0, -2]]

Cl2 + propylene -> allyl chloride + HCl

>>> stoichiometric_matrix([{'Cl': 2}, {'C': 3, 'H': 6}, {'C': 3, 'Cl': 1, 'H': 5}, {
→˓'Cl': 1, 'H': 1}], [True, True, False, False, False])
[[0, 3, -3, 0], [2, 0, -1, -1], [0, 6, -5, -1]]

Al + 4HNO3 -> Al(NO3)3 + NO + 2H2O (k=1)

>>> stoichiometric_matrix([{'Al': 1}, {'H': 1, 'N': 1, 'O': 3}, {'Al': 1, 'N': 3, 'O
→˓': 9}, {'N': 1, 'O': 1}, {'H': 2, 'O': 1}], [True, True, False, False, False])
[[1, 0, -1, 0, 0], [0, 1, 0, 0, -2], [0, 1, -3, -1, 0], [0, 3, -9, -1, -1]]

4Fe + 3O2 -> 2(Fe2O3) (k=2)

>>> stoichiometric_matrix([{'Fe': 1}, {'O': 2}, {'Fe':2, 'O': 3}], [True, True,␣
→˓False])
[[1, 0, -2], [0, 2, -3]]

4NH3 + 5O2 -> 4NO + 6(H2O) (k=4)

>>> stoichiometric_matrix([{'N': 1, 'H': 3}, {'O': 2}, {'N': 1, 'O': 1}, {'H': 2, 'O
→˓': 1}], [True, True, False, False])
[[3, 0, 0, -2], [1, 0, -1, 0], [0, 2, -1, -1]]

No unique solution: C2H5NO2 + C3H7NO3 + 2C6H14N4O2 + 3C5H9NO2 + 2C9H11NO2 -> 8H2O +
C50H73N15O11

>>> stoichiometric_matrix([{'C': 2, 'H': 5, 'N': 1, 'O': 2}, {'C': 3, 'H': 7, 'N':␣
→˓1, 'O': 3}, {'C': 6, 'H': 14, 'N': 4, 'O': 2}, {'C': 5, 'H': 9, 'N': 1, 'O': 2}, {
→˓'C': 9, 'H': 11, 'N': 1, 'O': 2}, {'H': 2, 'O': 1}, {'C': 50, 'H': 73, 'N': 15, 'O
→˓': 11}], [True, True, True, True, True, False, False])
[[2, 3, 6, 5, 9, 0, -50], [5, 7, 14, 9, 11, -2, -73], [1, 1, 4, 1, 1, 0, -15], [2,␣
→˓3, 2, 2, 2, -1, -11]]

1.23. Chemical Reactions (chemicals.reaction) 273

chemicals Documentation, Release 1.1.4

1.24 Refractive Index (chemicals.refractivity)

This module contains various refractive index lookup, calculation, and unit conversion routines and dataframes.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Lookup Functions

• Correlations for Specific Substances

• Unit Conversions

• Utility functions

• Pure Component Liquid Fit Correlations

1.24.1 Lookup Functions

chemicals.refractivity.RI(CASRN, method=None)
This function handles the retrieval of a chemical’s refractive index. Lookup is based on CASRNs. Will auto-
matically select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 4500 chemicals.

Parameters
CASRN [str] CASRN [-]

Returns
RI [float] Refractive Index on the Na D line, [-]

T [float or None] Temperature at which refractive index reading was made; None if not available,
[K]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in

RI_methods

Notes

The available sources are as follows:

• ‘CRC’, a compillation of Organic RI data in [1].

• ‘WIKIDATA’, data from the Wikidata project [2]

274 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> RI(CASRN='64-17-5')
(1.3611, 293.15)
>>> RI("60-35-5")
(1.4278, None)
>>> RI('100-41-4', method='WIKIDATA')
(1.495, None)

chemicals.refractivity.RI_methods(CASRN)
Return all methods available to obtain the refractive index for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the RI with the given inputs.

See also:

RI

chemicals.refractivity.RI_all_methods = ('CRC', 'WIKIDATA')
Tuple of method name keys. See the RI for the actual references

1.24.2 Correlations for Specific Substances

chemicals.refractivity.RI_IAPWS(T, rho, wavelength=5.893e-07)
Calculates the refractive index of water at a given temperature, density, and wavelength.

𝑛(𝜌, 𝑇, 𝜆) =

(︂
2𝐴+ 1

1 −𝐴

)︂0.5

𝐴(𝛿, 𝜃,Λ) = 𝛿

(︂
𝑎0 + 𝑎1𝛿 + 𝑎2𝜃 + 𝑎3Λ2𝜃 + 𝑎4Λ−2 𝑎5

Λ2 − Λ2
𝑈𝑉

+
𝑎6

Λ2 − Λ2
𝐼𝑅

+ 𝑎7𝛿
2

)︂
𝛿 = 𝜌/(1000 kg/m3)

𝜃 = 𝑇/273.15K

Λ = 𝜆/0.589𝜇𝑚

Λ𝐼𝑅 = 5.432937

Λ𝑈𝑉 = 0.229202

Parameters
T [float] Temperature of the water [K]

rho [float] Density of the water [kg/m^3]

1.24. Refractive Index (chemicals.refractivity) 275

chemicals Documentation, Release 1.1.4

wavelength [float] Wavelength of fluid [meters]

Returns
RI [float] Refractive index of the water, [-]

Notes

This function is valid in the following range: 261.15 K < T < 773.15 K 0 < rho < 1060 kg/m^3 0.2 < wavelength
< 1.1 micrometers

Test values are from IAPWS 2010 book.

References

[1]

Examples

>>> RI_IAPWS(298.15, 997.047435)
1.3328581926471605

1.24.3 Unit Conversions

chemicals.refractivity.brix_to_RI(brix)
Convert a refractive index measurement on the brix scale to a standard refractive index.

Parameters
brix [float] Degrees brix to be converted, [°Bx]

Returns
RI [float] Refractive index, [-]

Notes

The scale is officially defined from 0 to 85; but the data source contains values up to 95. Linear extrapolation
outside of the bounds is performed; and a table of 96 values are linearly interpolated.

The ICUMSA (International Committee of Uniform Method of Sugar Analysis) published a document setting
out the reference values in 1974; but an original data source has not been found and reviewed.

References

[1]

276 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> brix_to_RI(5.8)
1.341452
>>> brix_to_RI(0.0)
1.33299
>>> brix_to_RI(95.0)
1.532

chemicals.refractivity.RI_to_brix(RI)
Convert a standard refractive index measurement to the brix scale.

Parameters
RI [float] Refractive index, [-]

Returns
brix [float] Degrees brix to be converted, [°Bx]

Notes

The scale is officially defined from 0 to 85; but the data source contains values up to 95.

Linear extrapolation to values under 0 or above 95 is performed.

The ICUMSA (International Committee of Uniform Method of Sugar Analysis) published a document setting
out the reference values in 1974; but an original data source has not been found and reviewed.

References

[1]

Examples

>>> RI_to_brix(1.341452)
5.800000000000059
>>> RI_to_brix(1.33299)
0.0
>>> RI_to_brix(1.532)
95.0

1.24.4 Utility functions

chemicals.refractivity.polarizability_from_RI(RI, Vm)
Returns the polarizability of a fluid given its molar volume and refractive index.

𝛼 =

(︂
3

4𝜋𝑁𝐴

)︂(︂
𝑛2 − 1

𝑛2 + 2

)︂
𝑉𝑚

Parameters
RI [float] Refractive Index on Na D line, [-]

1.24. Refractive Index (chemicals.refractivity) 277

chemicals Documentation, Release 1.1.4

Vm [float] Molar volume of fluid, [m^3/mol]

Returns
alpha [float] Polarizability [m^3]

Notes

This Lorentz-Lorentz-expression is most correct when van der Waals interactions dominate. Alternate conver-
sions have been suggested. This is often expressed in units of cm^3 or Angstrom^3. To convert to these units,
multiply by 1E9 or 1E30 respectively.

References

[1]

Examples

>>> polarizability_from_RI(1.3611, 5.8676E-5)
5.147658206528923e-30

chemicals.refractivity.molar_refractivity_from_RI(RI, Vm)
Returns the molar refractivity of a fluid given its molar volume and refractive index.

𝑅𝑚 =

(︂
𝑛2 − 1

𝑛2 + 2

)︂
𝑉𝑚

Parameters
RI [float] Refractive Index on Na D line, [-]

Vm [float] Molar volume of fluid, [m^3/mol]

Returns
Rm [float] Molar refractivity [m^3/mol]

References

[1]

Examples

>>> molar_refractivity_from_RI(1.3611, 5.8676E-5)
1.2985217089649597e-05

chemicals.refractivity.RI_from_molar_refractivity(Rm, Vm)
Returns the refractive index of a fluid given its molar volume and molar refractivity.

𝑅𝐼 =

√︂
−2𝑅𝑚 − 𝑉𝑚
𝑅𝑚 − 𝑉𝑚

Parameters
Rm [float] Molar refractivity [m^3/mol]

278 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Vm [float] Molar volume of fluid, [m^3/mol]

Returns
RI [float] Refractive Index on Na D line, [-]

References

[1]

Examples

>>> RI_from_molar_refractivity(1.2985e-5, 5.8676E-5)
1.3610932757685672

1.24.5 Pure Component Liquid Fit Correlations

chemicals.refractivity.TDE_RIXExpansion(T, Bs, Cs, wavelength=5.8926e-07)
Calculates the refractive index of a pure liquid at a given temperature, and wavelength, using the NIST TDE
RIXExpansion formula [1].

𝑛(𝑇, 𝜆) =

𝑖∑︁
𝑖=0

𝐵𝑖𝑡
𝑖 +
∑︁
𝑗

𝐶𝑗𝑤
𝑗

𝑡 = 𝑇 − 298.15

𝑤 = 𝑊𝐿× 109 − 589.26

Parameters
T [float] Temperature of the fluid [K]

Bs [list[float]] Polynomial temperature expansion coefficients, in reverse order to the polynomial
(as needed for efficient computation with horner’s method’), [-]

Cs [list[float]] Polynomial wavelength expansion coefficients, in reverse order to the polynomial
(as needed for efficient computation with horner’s method’), [-]

wavelength [float] Wavelength of fluid [meters]

Returns
RI [float] Refractive index of the pure fluid, [-]

References

[1]

1.24. Refractive Index (chemicals.refractivity) 279

chemicals Documentation, Release 1.1.4

Examples

>>> TDE_RIXExpansion(330.0, Bs=[-0.000125041, 1.33245], Cs=[1.20771e-7, -3.56795e-5,
→˓ 0.0], wavelength=589.26e-9*.7)
1.33854894426073

1.25 Health, Safety, and Flammability Properties (chemicals.safety)

This module contains functions for lookup the following properties for a chemical:

• Short-term Exposure Limit (STEL)

• Time-Weighted Average Exposure Limit (TWA)

• Celing limit for working exposure

• Whether a chemicals is absorbed thorough human skin

• Whether a chemical is a carcinogen, suspected of being a carcinogen, or has been identified as unlikely to be a
carcinogen

• Flash point

• Auto ignition point

• Lower flammability limit

• Upper flammability limit

In addition, several estimation methods for chemicals without flammability limits are provided and for calculating the
flammability limits of mixtures.

This module also contains several utility functions.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Short-term Exposure Limit

• Time-Weighted Average Exposure Limit

• Ceiling Limit

• Skin Absorbance

• Carcinogenicity

• Flash Point

• Autoignition Point

• Lower Flammability Limit

• Upper Flammability Limit

• Mixture Flammability Limit

• Utility Methods

280 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.25.1 Short-term Exposure Limit

chemicals.safety.STEL(CASRN, method=None)
This function handles the retrieval of Short-term Exposure Limit (STEL) on worker exposure to dangerous chem-
icals.

Parameters
CASRN [str] CASRN, [-]

method [str] Name of method to use, [-]

Returns
STEL [float] Short-term Exposure Limit, [ppm or mg/m^3]

units [str] One of ppm or mg/m^3, [-]

Notes

The ppm value is preferentially returned if both are available. While they can be converted in specific cases, it
is better to work with the specified units of the original source.

Examples

>>> STEL('67-64-1')
(750.0, 'ppm')
>>> STEL('7664-38-2')
(0.7489774978301237, 'ppm')
>>> STEL('55720-99-5')
(2.0, 'mg/m^3')

chemicals.safety.STEL_methods(CASRN)
Return all methods available to obtain STEL for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain STEL with the given inputs.

See also:

STEL

chemicals.safety.STEL_all_methods = ('Ontario Limits',)
Tuple of method name keys. See the STEL for the actual references

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 281

chemicals Documentation, Release 1.1.4

1.25.2 Time-Weighted Average Exposure Limit

chemicals.safety.TWA(CASRN, method=None)
Return the Time-Weighted Average exposure limits (TWA) for the desired chemical if it is available.

Parameters
CASRN [str] CASRN, [-]

method [str] Name of method to use, [-]

Returns
TWA [float] Time-Weighted Average exposure, [ppm or mg/m^3]

units [str] One of ppm or mg/m^3, [-]

Notes

The ppm value is preferentially returned if both are available. While they can be converted in specific cases, it
is better to work with the specified units of the original source.

Examples

>>> TWA('98-00-0')
(10.0, 'ppm')
>>> TWA('1303-00-0')
(5.0742430905659505e-05, 'ppm')

chemicals.safety.TWA_methods(CASRN)
Return all methods available to obtain the Time-Weighted Average exposure limits (TWA) for the desired chem-
ical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain TWA with the given inputs.

See also:

TWA

Examples

>>> TWA_methods('71-43-2')
['Ontario Limits']

chemicals.safety.TWA_all_methods = ('Ontario Limits',)
Tuple of method name keys. See the TWA for the actual references

282 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.25.3 Ceiling Limit

chemicals.safety.Ceiling(CASRN, method=None)
This function handles the retrieval of ceiling limits on worker exposure to dangerous chemicals. Ceiling limits
are not to be exceeded at any time.

Parameters
CASRN [str] CASRN, [-]

method [str] Name of method to use, [-]

Returns
Ceiling [float] Ceiling Limit, [ppm or mg/m^3]

units [str] One of ppm or mg/m^3, [-]

Examples

>>> Ceiling('75-07-0')
(25.0, 'ppm')
>>> Ceiling('1395-21-7')
(6e-05, 'mg/m^3')

chemicals.safety.Ceiling_methods(CASRN)
Return all methods available to obtain Ceiling limits for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain Ceiling limits with the given inputs.

See also:

Ceiling

chemicals.safety.Ceiling_all_methods = ('Ontario Limits',)
Tuple of method name keys. See the Ceiling for the actual references

1.25.4 Skin Absorbance

chemicals.safety.Skin(CASRN, method=None)
This function handles the retrieval of whether or not a chemical can be absorbed through the skin, relevant to
chemical safety calculations.

Parameters
CASRN [str] CASRN, [-]

method [str] Name of method to use, [-]

Returns
skin [bool] Whether or not the substance is absorbed through human skin, [-]

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 283

chemicals Documentation, Release 1.1.4

Examples

>>> Skin('108-94-1')
True
>>> Skin('1395-21-7')
False

chemicals.safety.Skin_methods(CASRN)
Return all methods available to obtain whether or not a chemical can be absorbed through the skin.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain whether or not a chemical can be ab-

sorbed through the skin.

See also:

Skin

chemicals.safety.Skin_all_methods = ('Ontario Limits',)
Tuple of method name keys. See the Skin for the actual references

1.25.5 Carcinogenicity

chemicals.safety.Carcinogen(CASRN, method=None)
Looks up if a chemical is listed as a carcinogen or not according to either a specifc method or with all methods.
Returns either the status as a string for a specified method, or the status of the chemical in all available data
sources, in the format {source: status}.

Parameters
CASRN [str] CASRN [-]

Returns
status [str or dict] Carcinogen status information [-].

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable, Car-

cinogen_all_methods.

Notes

Supported methods are:
• IARC: International Agency for Research on Cancer, [1]. As extracted with a last update of February

22, 2016. Has listing information of 863 chemicals with CAS numbers. Chemicals without CAS
numbers not included here. If two listings for the same CAS were available, the harshest rating was
used. If two listings were available published at different times, the latest value was used. All else
equal, the most pessimistic value was used.

• NTP: National Toxicology Program, [2]. Has data on 228 chemicals.

284 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> Carcinogen('61-82-5')
{'International Agency for Research on Cancer': 'Not classifiable as to its␣
→˓carcinogenicity to humans (3)', 'National Toxicology Program 13th Report on␣
→˓Carcinogens': 'Reasonably Anticipated'}

chemicals.safety.Carcinogen_methods(CASRN)
Return all methods available to obtain Carcinogen listings for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain Carcinogen listings with the given in-

puts.

See also:

Carcinogen

chemicals.safety.Carcinogen_all_methods = ('International Agency for Research on Cancer',
'National Toxicology Program 13th Report on Carcinogens')

Tuple of method name keys. See the Carcinogen for the actual references

1.25.6 Flash Point

chemicals.safety.T_flash(CASRN, method=None)
This function handles the retrieval or calculation of a chemical’s flash point. Lookup is based on CASRNs. No
predictive methods are currently implemented. Will automatically select a data source to use if no method is
provided; returns None if the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
T_flash [float] Flash point of the chemical, [K]

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

T_flash_all_methods,

See also:

T_flash_methods

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 285

chemicals Documentation, Release 1.1.4

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source ‘NFPA 497 (2008)’ [2] having very
similar data. A third source ‘Serat DIPPR (2017)’ [3] provides third hand experimental but evaluated data from
the DIPPR database, version unspecified, for 870 compounds.

The predicted values from the DIPPR databank are also available in the supporting material in [3], but are not
included.

References

[1], [2], [3], [4]

Examples

>>> T_flash(CASRN='64-17-5')
285.15
>>> T_flash('111-69-3', method='WIKIDATA')
365.92778

chemicals.safety.T_flash_methods(CASRN)
Return all methods available to obtain T_flash for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain T_flash with the given inputs.

See also:

T_flash

chemicals.safety.T_flash_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)',
'Serat DIPPR (2017)', 'WIKIDATA')

Tuple of method name keys. See the T_flash for the actual references

1.25.7 Autoignition Point

chemicals.safety.T_autoignition(CASRN, method=None)
This function handles the retrieval or calculation of a chemical’s autoifnition temperature. Lookup is based on
CASRNs. No predictive methods are currently implemented. Will automatically select a data source to use if no
Method is provided; returns None if the data is not available.

Parameters
CASRN [str] CASRN [-]

Returns
Tautoignition [float] Autoignition point of the chemical, [K].

Other Parameters

286 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

method [string, optional] A string for the method name to use, as defined in the variable,
T_autoignition_all_methods.

See also:

T_autoignition_methods

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source ‘NFPA 497 (2008)’ [2] having very
similar data.

References

[1], [2], [3]

Examples

>>> T_autoignition(CASRN='71-43-2')
771.15
>>> T_autoignition('111-69-3', method='WIKIDATA')
823.15

chemicals.safety.T_autoignition_methods(CASRN)
Return all methods available to obtain T_autoignition for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain T_autoignition with the given inputs.

See also:

T_autoignition

chemicals.safety.T_autoignition_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497
(2008)', 'WIKIDATA')

Tuple of method name keys. See the T_autoignition for the actual references

1.25.8 Lower Flammability Limit

chemicals.safety.LFL(Hc=None, atoms=None, CASRN='', method=None)
This function handles the retrieval or calculation of a chemical’s Lower Flammability Limit. Lookup is based
on CASRNs. Will automatically select a data source to use if no Method is provided; returns None if the data is
not available.

Parameters
Hc [float, optional] Heat of combustion of gas [J/mol].

atoms [dict, optional] Dictionary of atoms and atom counts.

CASRN [str, optional] CASRN, [-]

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 287

chemicals Documentation, Release 1.1.4

Returns
LFL [float] Lower flammability limit of the gas in an atmosphere at STP, [mole fraction].

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

LFL_all_methods.

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source ‘NFPA 497 (2008)’ [2] having very
similar data. If the heat of combustion is provided, the estimation method Suzuki_LFL can be used. If the atoms
of the molecule are available, the method Crowl_Louvar_LFL can be used.

References

[1], [2], [3]

Examples

>>> LFL(CASRN='71-43-2')
0.012
>>> LFL(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
0.044
>>> LFL(CASRN='111-69-3', method='WIKIDATA')
0.017

chemicals.safety.LFL_methods(Hc=None, atoms=None, CASRN='')
Return all methods available to obtain LFL for the desired chemical.

Parameters
Hc [float, optional] Heat of combustion of gas [J/mol].

atoms [dict, optional] Dictionary of atoms and atom counts.

CASRN [str, optional] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain LFL with the given inputs.

See also:

LFL

288 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Methane

>>> LFL_methods(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
['IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'Suzuki (1994)', 'Crowl and Louvar␣
→˓(2001)']

chemicals.safety.LFL_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)',
'WIKIDATA', 'Suzuki (1994)', 'Crowl and Louvar (2001)')

Tuple of method name keys. See the LFL for the actual references

chemicals.safety.Suzuki_LFL(Hc)
Calculates lower flammability limit, using the Suzuki [1] correlation. Uses heat of combustion only.

The lower flammability limit of a gas is air is:

LFL =
−3.42

∆𝐻∘
𝑐

+ 0.569

∆𝐻∘
𝑐 + 0.0538∆𝐻∘2

𝑐 + 1.80

Parameters
Hc [float] Heat of combustion of gas [J/mol]

Returns
LFL [float] Lower flammability limit, mole fraction [-]

Notes

Fit performed with 112 compounds, r^2 was 0.977. LFL in percent volume in air. Hc is at standard conditions,
in MJ/mol. 11 compounds left out as they were outliers. Equation does not apply for molecules with halogen
atoms, only hydrocarbons with oxygen or nitrogen or sulfur. No sample calculation provided with the article.
However, the equation is straightforward. Limits of equations’s validity are -6135596 J where it predicts a LFL
of 0, and -48322129 J where it predicts a LFL of 1.

References

[1]

Examples

Pentane, 1.5 % LFL in literature

>>> Suzuki_LFL(-3536600)
0.014276107095811815

chemicals.safety.Crowl_Louvar_LFL(atoms)
Calculates lower flammability limit, using the Crowl-Louvar [1] correlation. Uses molecular formula only. The
lower flammability limit of a gas is air is:

𝐶𝑚𝐻𝑥𝑂𝑦 + 𝑧𝑂2 → 𝑚𝐶𝑂2 +
𝑥

2
𝐻2𝑂

LFL =
0.55

4.76𝑚+ 1.19𝑥− 2.38𝑦 + 1

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 289

chemicals Documentation, Release 1.1.4

Parameters
atoms [dict] Dictionary of atoms and atom counts

Returns
LFL [float] Lower flammability limit, mole fraction

Notes

Coefficient of 0.55 taken from [2]

References

[1], [2]

Examples

Hexane, example from [1], lit. 1.2 %

>>> Crowl_Louvar_LFL({'H': 14, 'C': 6})
0.011899610558199915

chemicals.safety.LFL_ISO_10156_2017(zs, LFLs, CASs)
Calculate the lower flammability limit of a mixture of combustible gases and inert gases according to ISO 10156
(2017) [1].

LFL =
1∑︀𝑛𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑏𝑙𝑒

𝑖=1
𝐴𝑖

LFL′
𝑖

LFL′
𝑖 =

1 − LFL′
𝑚 − (1 −𝐾)

∑︀𝑛𝑖𝑛𝑒𝑟𝑡
𝑗 𝐵𝑗∑︀𝑛𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑏𝑙𝑒

𝑗 𝐴𝑗
LFL′

𝑚

100 − LFL′
𝑚

LFL𝑖

𝐾 =

𝑛𝑖𝑛𝑒𝑟𝑡∑︁
𝑖

𝑧𝑖𝐾𝑘

The B sum is the total mole fraction of all inert gas compounds; and the A sum is the total mole fraction of all
combustible compounds. 𝐾𝑘 are the looked up inert gas coefficients. LFL′

𝑚 is calculated as the Le Chatelier’s
lower flammability limit if there were no inert gases in the mixture.

Parameters
zs [list[float]] Mole fractions of all components in a gas including inerts, [-]

LFLs [list[float]] Lower or upper flammability limits for each flammable component in a gas,
[-]

CASs [list[str]] CAS numbers of each compound; required to look up inert gas factors, [-]

Returns
LFL [float] Lower or flammability limit of a gas mixture, [-]

290 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Inert gas parameters are available for O2, N2, CO2, He, Ar, Ne, Kr, Xe, SO2, SF6, CF4, C3F8, and C2HF5.

References

[1]

Examples

All the sample problems from [1] have been implemented as tests.

>>> zs = [.15, .15, .3, .35+.05*.79, .05*.21]
>>> LFLs = [.04, .044, None, None, None]
>>> CASs = ['1333-74-0', '74-82-8', '124-38-9', '7727-37-9', '7782-44-7']
>>> LFL_ISO_10156_2017(zs, LFLs, CASs)
0.1427372274

1.25.9 Upper Flammability Limit

chemicals.safety.UFL(Hc=None, atoms=None, CASRN='', method=None)
This function handles the retrieval or calculation of a chemical’s Upper Flammability Limit. Lookup is based on
CASRNs. Two predictive methods are currently implemented. Will automatically select a data source to use if
no Method is provided; returns None if the data is not available.

Parameters
Hc [float, optional] Heat of combustion of gas [J/mol]

atoms [dict, optional] Dictionary of atoms and atom counts

CASRN [str, optional] CASRN [-]

Returns
UFL [float] Upper flammability limit of the gas in an atmosphere at STP, [mole fraction]

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

UFL_all_methods.

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source ‘NFPA 497 (2008)’ [2] having very
similar data. If the heat of combustion is provided, the estimation method Suzuki_UFL can be used. If the atoms
of the molecule are available, the method Crowl_Louvar_UFL can be used.

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 291

chemicals Documentation, Release 1.1.4

References

[1], [2], [3]

Examples

>>> UFL(CASRN='71-43-2')
0.086

Methane

>>> UFL(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
0.17
>>> UFL(CASRN='111-69-3', method='WIKIDATA')
0.05

chemicals.safety.UFL_methods(Hc=None, atoms=None, CASRN='')
Return all methods available to obtain UFL for the desired chemical.

Parameters
Hc [float, optional] Heat of combustion of gas [J/mol].

atoms [dict, optional] Dictionary of atoms and atom counts.

CASRN [str, optional] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain UFL with the given inputs.

See also:

UFL

Examples

Methane

>>> UFL_methods(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
['IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'Suzuki (1994)', 'Crowl and Louvar␣
→˓(2001)']

chemicals.safety.UFL_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)',
'WIKIDATA', 'Suzuki (1994)', 'Crowl and Louvar (2001)')

Tuple of method name keys. See the UFL for the actual references

chemicals.safety.Suzuki_UFL(Hc)
Calculates upper flammability limit, using the Suzuki [1] correlation. Uses heat of combustion only. The upper
flammability limit of a gas is air is:

UFL = 6.3∆𝐻∘
𝑐 + 0.567∆𝐻∘2

𝑐 + 23.5

Parameters
Hc [float] Heat of combustion of gas [J/mol]

Returns

292 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

UFL [float] Upper flammability limit, mole fraction

Notes

UFL in percent volume in air according to original equation. Hc is at standard conditions in the equation, in
units of MJ/mol. AAPD = 1.2% for 95 compounds used in fit. Somewhat better results than the High and
Danner method. 4.9% < UFL < 23.0% -890.3 kJ/mol < dHc < -6380 kJ/mol r^2 = 0.989 Sample calculations
provided for all chemicals, both this method and High and Danner. Examples are from the article. Predicts a
UFL of 1 at 7320190 J and a UFL of 0 at -5554160 J.

References

[1]

Examples

Pentane, literature 7.8% UFL

>>> Suzuki_UFL(-3536600)
0.0831119493052

chemicals.safety.Crowl_Louvar_UFL(atoms)
Calculates upper flammability limit, using the Crowl-Louvar [1] correlation. Uses molecular formula only. The
upper flammability limit of a gas is air is:

𝐶𝑚𝐻𝑥𝑂𝑦 + 𝑧𝑂2 → 𝑚𝐶𝑂2 +
𝑥

2
𝐻2𝑂

UFL =
3.5

4.76𝑚+ 1.19𝑥− 2.38𝑦 + 1

Parameters
atoms [dict] Dictionary of atoms and atom counts

Returns
UFL [float] Upper flammability limit, mole fraction

Notes

Coefficient of 3.5 taken from [2]

References

[1], [2]

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 293

chemicals Documentation, Release 1.1.4

Examples

Hexane, example from [1], lit. 7.5 %

>>> Crowl_Louvar_UFL({'H': 14, 'C': 6})
0.07572479446127219

1.25.10 Mixture Flammability Limit

chemicals.safety.fire_mixing(ys, FLs)
Le Chatelier’s mixing rule for lower and upper flammability limits of mixtures of gases.

Parameters
ys [list[float]] Normalized mole fractions of all flammable components in a gas, [-]

FLs [list[float]] Lower or upper flammability limits for each flammable component in a gas, [-]

Returns
FL [float] Lower or upper flammability limit of a gas, [-]

Notes

This equation has a higher accuracy for lower flammability limits than upper flammability limits. Some sources
recommend not using it for upper flammability limits.

References

[1]

Examples

Sample problems from [1] for the lower and upper flammability limit.

>>> fire_mixing(ys=normalize([0.0024, 0.0061, 0.0015]), FLs=[.012, .053, .031])
0.02751172136637642

>>> fire_mixing(ys=normalize([0.0024, 0.0061, 0.0015]), FLs=[.075, .15, .32])
0.12927551844869378

1.25.11 Utility Methods

chemicals.safety.ppmv_to_mgm3(ppmv, MW, T=298.15, P=101325.0)
Converts a concentration in ppmv to units of mg/m^3. Used in industrial toxicology.

𝑚𝑔

𝑚3
=
𝑝𝑝𝑚𝑣 · 𝑃
𝑅𝑇

· 𝑀𝑊

1000

Parameters
ppmv [float] Concentration of a component in a gas mixure [parts per million, volumetric]

294 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

MW [float] Molecular weight of the trace gas [g/mol]

T [float, optional] Temperature of the gas at which the ppmv is reported, [K]

P [float, optional] Pressure of the gas at which the ppmv is reported, [Pa]

Returns
mgm3 [float] Concentration of a substance in an ideal gas mixture [mg/m^3]

Notes

The term P/(RT)/1000 converts to 0.040874 at STP. Its inverse is reported as 24.45 in [1].

References

[1]

Examples

>>> ppmv_to_mgm3(1.0, 40.0)
1.6349617809430446

chemicals.safety.mgm3_to_ppmv(mgm3, MW, T=298.15, P=101325.0)
Converts a concentration in mg/m^3 to units of ppmv. Used in industrial toxicology.

𝑝𝑝𝑚𝑣 =
1000𝑅𝑇

𝑀𝑊 · 𝑃
· 𝑚𝑔
𝑚3

Parameters
mgm3 [float] Concentration of a substance in an ideal gas mixture [mg/m^3]

MW [float] Molecular weight of the trace gas [g/mol]

T [float, optional] Temperature of the gas at which the ppmv is reported, [K]

P [float, optional] Pressure of the gas at which the ppmv is reported, [Pa]

Returns
ppmv [float] Concentration of a component in a gas mixure [parts per million, volumetric]

Notes

The term P/(RT)/1000 converts to 0.040874 at STP. Its inverse is reported as 24.45 in [1].

References

[1]

1.25. Health, Safety, and Flammability Properties (chemicals.safety) 295

chemicals Documentation, Release 1.1.4

Examples

>>> mgm3_to_ppmv(1.635, 40.0)
1.0000233761164334

chemicals.safety.NFPA_30_classification(T_flash, Tb=None, Psat_100F=None)
Classify a chemical’s flammability/combustibility according to the NFPA 30 standard Flammable and Com-
bustible Liquids Code.

Class IA: Flash Point < 73°F; Boiling Point < 100°F Class IB: Flash Point < 73°F; 100°F <= Boiling Point Class
IC: 73°F <= Flash Point < 100°F Class II: 100°F <= Flash Point < 140°F Class IIIA: 140°F <= Flash Point <
200°F Class IIIB: 200°F <= Flash Point

Class I liquids are designated as flammable; class II and II liquids are designated as combustible.

Parameters
T_flash [float] Flash point (closed-cup method, adjusted for sea level), [K]

Tb [float, optional] Normal boiling point (needed to classify IA and IB liquids), [K]

Psat_100F [float, optional] Vapor pressure at 100°F (needed to classify IA and IB liquids), [K]

Returns
classification [str] One of ‘IA’, ‘IB’, ‘IC’, ‘II’, ‘IIIA’, ‘IIIB’, [-]

Notes

Only one of Tb or Psat_100F is needed.

Class ‘IA’ also includes unstable liquids.

References

[1]

Examples

Ethylene oxide

>>> NFPA_30_classification(253.15, 283.55)
'IA'

Butyl alcohol

>>> NFPA_30_classification(308.15)
'IC'

296 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.26 Solubility (chemicals.solubility)

This module contains various solubility calculation routines and a Henry’s law coefficient converter.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Henry’s Law

• Utility functions

1.26.1 Henry’s Law

chemicals.solubility.Henry_pressure(T, A, B=0.0, C=0.0, D=0.0, E=0.0, F=0.0)
Calculates Henry’s law constant as a function of temperature according to the SI units of Pa and using a common
temperature dependence as used in many process simulation applications.

Only the A parameter is required - which has no temperature dependence when used by itself. As the model is
exponential, a sufficiently high temperature may cause an OverflowError. A negative temperature (or just low, if
fit poorly) may cause a math domain error.

𝐻12 = exp

(︂
𝐴12 +

𝐵12

𝑇
+ 𝐶12 ln(𝑇) +𝐷12𝑇 +

𝐸12

𝑇 2

)︂
Parameters

T [float] Temperature, [K]

A-F [float] Parameter for the equation; chemical and property specific [-]

Returns
H12 [float] Henry’s constant [Pa]

Notes

Add 11.51292 to the A constant if it is said to provide units of bar, so that it provides units of Pa instead.

The F parameter is not often included in models. It is rare to fit all parameters.

References

[1]

Examples

Random test example.

>>> Henry_pressure(300.0, A=15.0, B=300.0, C=.04, D=1e-3, E=1e2, F=1e-5)
37105004.47898146

chemicals.solubility.Henry_pressure_mixture(Hs, weights=None, zs=None)
Mixing rule for Henry’s law components. Applies a logarithmic average to all solvent components and mole
fractions. Optionally, weight factors can be provided instead of using mole fractions - only specify one of them.

A common weight factor is using volume fractions of powers of them, or using critical volumes.

1.26. Solubility (chemicals.solubility) 297

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Parameters
Hs [list[float or None]] Henry’s law constant between each gas and the solvent (None for other

solvents of gases without parameters available), [Pa]

weights [list[float], optional] Weight factors, [-]

zs [list[float]] Mole fractions of all species in phase, [-]

Returns
H [value] Henry’s law constant for the gas in the liquid phase, [-]

Notes

The default weight factor formulation is from [1].

References

[1]

Examples

>>> Henry_pressure_mixture([1072330.36341, 744479.751106, None], zs=[.48, .48, .04])
893492.1611602883

chemicals.solubility.Henry_converter(val, old_scale, new_scale, rhom=None, MW=None)
Converts Henry’s law constant for a gas with respect to a solvent from one scale to another.

There are many scales, but it is recommemed to operate in the scale of SI - which returns a value with units
Pa, and directly gets used in place of vapor pressure inside a flash calculation. This removes the complexity of
Henry’s law, avoiding possible simplication in favor of use with other thermodynamic models.

Only some scales require the molecular weight and the molar density of the solvent. Values for water, the most
common solute, are 55344.59 mol/m^3 at STP and 18.01528 g/mol.

Parameters
val [float] Henry’s law constant, various units

old_scale [str] String representing the scale that val is in originally.

new_scale [str] String representing the scale that val should be converted to.

Returns
result [float] Input val converted from old_scale to new_scale, various units

298 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

The valid scales for this function are any of the following:

(‘Hcp’, ‘mol/(m^3*Pa)’, ‘M/atm’, ‘Hcc’, ‘mol/(kg*Pa)’, ‘Hbp’, ‘mol/(kg*atm)’, ‘Hxp’, ‘1/atm’, ‘alpha’, ‘bunsen
coefficient’, ‘KHpx’, ‘atm’, ‘m^3*Pa/mol’, ‘KHpc’, ‘m^3*atm/mol’, ‘KHcc’, ‘SI’)

References

[1]

Examples

>>> Henry_converter(1.2e-5, old_scale='Hcp', new_scale='SI', rhom=55344.59,
... MW=18.01528)
4612049166.666666

>>> Henry_converter(0.0297475, old_scale='Hcc', new_scale='KHcc',
... rhom=55344.59, MW=18.01528)
33.61627027481301

chemicals.solubility.Henry_constants(lnHenry_matrix, zs, henry_components, skip_zero=True, Hs=None)
Calculate the Henry’s law constants for a list of components, only some of which are henry’s law following
components (solutes) and the rest that are solvents. The empirical mixing rule from [1] is used as follows:

𝐻𝑖 = exp

(︃∑︀
j=solvent 𝑧𝑗 ln𝐻𝑖,𝑗∑︀

j=solvent 𝑧𝑗

)︃

Parameters
lnHenry_matrix [list[list[float]]] Henry’s law constants between every species; 0.0 for non-

applicable solvents, [log(Pa)]

zs [list[float]] Mole fractions of all species in phase; this can be mass or volume fractions as
well, [-]

henry_components [list[bool]] Whether or not each component is a henry’s law solvent or not,
[-]

skip_zero [bool] If true, if parameters are missing from a solvent-solute pair, that pair will not
be counted as part of the solvent fraction. If false, the calculation proceeds and the solubility
is underestimated. Missing parameters are assumed from the value of lnHenry_matrix being
0, [-]

Hs [list[float], optional] Henry’s law constants for each component; 0 for non-henry components
(input array), [Pa]

Returns
Hs [list[float]] Henry’s law constants for each component; 0 for non-henry components, [Pa]

1.26. Solubility (chemicals.solubility) 299

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Oxygen and methane in water:

>>> lnHenry_matrix = [[0.0, 0.0, 0.0], [22.13581843104147, 0.0, 0.0], [22.
→˓239038459475733, 0.0, 0.0]]
>>> Henry_constants(lnHenry_matrix, [0.8, 0.15, 0.05], [False, True, True], True)
[0.0, 4106424071.093, 4552937470.331]

chemicals.solubility.dHenry_constants_dT(lnHenry_matrix, dlnHenry_matrix_dT, zs, henry_components,
skip_zero=True, dH_dTs=None)

Calculate the first temperature derivative of Henry’s law constants for a list of components, only some of which
are henry’s law following components (solutes) and the rest that are solvents. The empirical mixing rule from
[1] is used as follows:

Parameters
lnHenry_matrix [list[list[float]]] Henry’s law constants between every species; 0.0 for non-

applicable solvents, [log(Pa)]

dlnHenry_matrix_dT [list[list[float]]] First temperature derivative of Henry’s law constants
between every species; 0.0 for non-applicable solvents, [log(Pa)/K]

zs [list[float]] Mole fractions of all species in phase; this can be mass or volume fractions as
well, [-]

henry_components [list[bool]] Whether or not each component is a henry’s law solvent or not,
[-]

skip_zero [bool] If true, if parameters are missing from a solvent-solute pair, that pair will not
be counted as part of the solvent fraction. If false, the calculation proceeds and the solubility
is underestimated. Missing parameters are assumed from the value of lnHenry_matrix being
0, [-]

dH_dTs [list[float], optional] First temperature derivative of Henry’s law constants for each
component; 0 for non-henry components (input array), [Pa/K]

Returns
dH_dTs [list[float]] First temperature derivative of Henry’s law constants for each component;

0 for non-henry components, [Pa/K]

References

[1]

300 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Oxygen and methane in water:

>>> lnHenry_matrix = [[0.0, 0.0, 0.0], [22.13581843104147, 0.0, 0.0], [22.
→˓239038459475733, 0.0, 0.0]]
>>> dlnHenry_matrix_dT = [[0.0, 0.0, 0.0], [0.017113988888888904, 0.0, 0.0], [0.
→˓015461911111111101, 0.0, 0.0]]
>>> dHenry_constants_dT(lnHenry_matrix, dlnHenry_matrix_dT, [0.8, 0.15, 0.05],␣
→˓[False, True, True], True)
[0.0, 70277295.92576516, 70397114.46071726]

chemicals.solubility.d2Henry_constants_dT2(lnHenry_matrix, dlnHenry_matrix_dT,
d2lnHenry_matrix_dT2, zs, henry_components,
skip_zero=True, d2H_dT2s=None)

Calculate the second temperature derivative of Henry’s law constants for a list of components, only some of
which are henry’s law following components (solutes) and the rest that are solvents. The empirical mixing rule
from [1] is used as follows:

Parameters
lnHenry_matrix [list[list[float]]] Henry’s law constants between every species; 0.0 for non-

applicable solvents, [log(Pa)]

dlnHenry_matrix_dT [list[list[float]]] First temperature derivative of Henry’s law constants
between every species; 0.0 for non-applicable solvents, [log(Pa)/K]

d2lnHenry_matrix_dT2 [list[list[float]]] Second temperature derivative of Henry’s law con-
stants between every species; 0.0 for non-applicable solvents, [log(Pa)/K^2]

zs [list[float]] Mole fractions of all species in phase; this can be mass or volume fractions as
well, [-]

henry_components [list[bool]] Whether or not each component is a henry’s law solvent or not,
[-]

skip_zero [bool] If true, if parameters are missing from a solvent-solute pair, that pair will not
be counted as part of the solvent fraction. If false, the calculation proceeds and the solubility
is underestimated. Missing parameters are assumed from the value of lnHenry_matrix being
0, [-]

d2H_dT2s [list[float], optional] Second temperature derivative of Henry’s law constants for
each component; 0 for non-henry components (input array), [Pa/K^2]

Returns
d2H_dT2s [list[float]] Second temperature derivative of Henry’s law constants for each compo-

nent; 0 for non-henry components, [Pa/K^2]

1.26. Solubility (chemicals.solubility) 301

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Oxygen and methane in water:

>>> lnHenry_matrix = [[0.0, 0.0, 0.0], [22.13581843104147, 0.0, 0.0], [22.
→˓239038459475733, 0.0, 0.0]]
>>> dlnHenry_matrix_dT = [[0.0, 0.0, 0.0], [0.017113988888888904, 0.0, 0.0], [0.
→˓015461911111111101, 0.0, 0.0]]
>>> d2lnHenry_matrix_dT2 = [[0.0, 0.0, 0.0], [-0.0004070325925925928, 0.0, 0.0], [-
→˓0.00034016518518518524, 0.0, 0.0]]
>>> d2Henry_constants_dT2(lnHenry_matrix, dlnHenry_matrix_dT, d2lnHenry_matrix_dT2,␣
→˓[0.8, 0.15, 0.05], [False, True, True], True)
[0.0, -468723.574327235, -460276.89146166]

1.26.2 Utility functions

chemicals.solubility.solubility_eutectic(T, Tm, Hm, Cpl=0, Cps=0, gamma=1)
Returns the maximum solubility of a solute in a solvent.

ln𝑥𝐿𝑖 𝛾
𝐿
𝑖 =

∆𝐻𝑚,𝑖

𝑅𝑇

(︂
1 − 𝑇

𝑇𝑚,𝑖

)︂
− ∆𝐶𝑝,𝑖(𝑇𝑚,𝑖 − 𝑇)

𝑅𝑇
+

∆𝐶𝑝,𝑖

𝑅
ln
𝑇𝑚
𝑇

∆𝐶𝑝,𝑖 = 𝐶𝐿
𝑝,𝑖 − 𝐶𝑆

𝑝,𝑖

Parameters
T [float] Temperature of the system [K]

Tm [float] Melting temperature of the solute [K]

Hm [float] Heat of melting at the melting temperature of the solute [J/mol]

Cpl [float, optional] Molar heat capacity of the solute as a liquid [J/mol/K]

Cps: float, optional Molar heat capacity of the solute as a solid [J/mol/K]

gamma [float, optional] Activity coefficient of the solute as a liquid [-]

Returns
x [float] Mole fraction of solute at maximum solubility [-]

Notes

gamma is of the solute in liquid phase

302 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

From [1], matching example

>>> solubility_eutectic(T=260., Tm=278.68, Hm=9952., Cpl=0, Cps=0, gamma=3.0176)
0.243400713

chemicals.solubility.solubility_parameter(T, Hvapm, Vml)
This function handles the calculation of a chemical’s solubility parameter. Calculation is a function of tempera-
ture, but is not always presented as such. Hvapm, Vml, T are required.

𝛿 =

√︂
∆𝐻𝑣𝑎𝑝 −𝑅𝑇

𝑉𝑚

Parameters
T [float] Temperature of the fluid [k]

Hvapm [float] Heat of vaporization [J/mol/K]

Vml [float] Specific volume of the liquid [m^3/mol]

Returns
delta [float] Solubility parameter, [Pa^0.5]

Notes

Undefined past the critical point. For convenience, if Hvap is not defined, an error is not raised; None is returned
instead. Also for convenience, if Hvapm is less than RT, None is returned to avoid taking the root of a negative
number.

This parameter is often given in units of cal/ml, which is 2045.48 times smaller than the value returned here.

References

[1]

Examples

Pentane at STP

>>> solubility_parameter(T=298.2, Hvapm=26403.3, Vml=0.000116055)
14357.68128600315

chemicals.solubility.Tm_depression_eutectic(Tm, Hm, x=None, M=None, MW=None)
Returns the freezing point depression caused by a solute in a solvent. Can use either the mole fraction of the
solute or its molality and the molecular weight of the solvent. Assumes ideal system behavior.

∆𝑇𝑚 =
𝑅𝑇 2

𝑚𝑥

∆𝐻𝑚

1.26. Solubility (chemicals.solubility) 303

chemicals Documentation, Release 1.1.4

∆𝑇𝑚 =
𝑅𝑇 2

𝑚(𝑀𝑊)𝑀

1000∆𝐻𝑚

Parameters
Tm [float] Melting temperature of the solute [K]

Hm [float] Heat of melting at the melting temperature of the solute [J/mol]

x [float, optional] Mole fraction of the solute [-]

M [float, optional] Molality [mol/kg]

MW: float, optional Molecular weight of the solvent [g/mol]

Returns
dTm [float] Freezing point depression [K]

Notes

MW is the molecular weight of the solvent. M is the molality of the solute.

References

[1]

Examples

From [1], matching example.

>>> Tm_depression_eutectic(353.35, 19110, .02)
1.0864598583150

1.27 ITS Temperature Scales (chemicals.temperature)

This module contains functionality for converting between the temperature scales ITS-90, ITS-76, ITS-68, ITS-48,
and ITS-27. These historical temperature scales can deviate quite a bit from modern temperature measurements! It is
important to convert old measurements of temperature to their modern equivalent.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Conversion functions

304 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.27.1 Conversion functions

chemicals.temperature.T_converter(T, current, desired)
Converts the a temperature reading made in any of the scales ‘ITS-90’, ‘ITS-68’,’ITS-48’, ‘ITS-76’, or ‘ITS-27’
to any of the other scales. Not all temperature ranges can be converted to other ranges; for instance, ‘ITS-76’ is
purely for low temperatures, and 5 K on it has no conversion to ‘ITS-90’ or any other scale. Both a conversion
to ITS-90 and to the desired scale must be possible for the conversion to occur. The conversion uses cubic spline
interpolation.

ITS-68 conversion is valid from 14 K to 4300 K. ITS-48 conversion is valid from 93.15 K to 4273.15 K ITS-76
conversion is valid from 5 K to 27 K. ITS-27 is valid from 903.15 K to 4273.15 k.

Parameters
T [float] Temperature, on current scale [K]

current [str] String representing the scale T is in, ‘ITS-90’, ‘ITS-68’, ‘ITS-48’, ‘ITS-76’, or
‘ITS-27’.

desired [str] String representing the scale T will be returned in, ‘ITS-90’, ‘ITS-68’, ‘ITS-48’,
‘ITS-76’, or ‘ITS-27’.

Returns
T [float] Temperature, on scale desired [K]

Notes

Because the conversion is performed by spline functions, a re-conversion of a value will not yield exactly the
original value. However, it is quite close.

The use of splines is quite quick (20 micro seconds/calculation). While just a spline for one-way conversion
could be used, a numerical solver would have to be used to obtain an exact result for the reverse conversion. This
was found to take approximately 1 ms/calculation, depending on the region.

References

[1], [2]

Examples

>>> T_converter(500, 'ITS-68', 'ITS-48')
499.9470092992346

chemicals.temperature.ITS90_68_difference(T)
Calculates the difference between ITS-90 and ITS-68 scales using a series of models listed in [1], [2], and [3].

The temperature difference is given by the following equations:

From 13.8 K to 73.15 K:

𝑇90 − 𝑇68 = 𝑎0 +

12∑︁
𝑖=1

𝑎𝑖[(𝑇90/𝐾 − 40)/40]𝑖

From 83.8 K to 903.75 K:

𝑇90 − 𝑇68 =

8∑︁
𝑖=1

𝑏𝑖[(𝑇90/𝐾 − 273.15)/630]𝑖

1.27. ITS Temperature Scales (chemicals.temperature) 305

chemicals Documentation, Release 1.1.4

From 903.75 K to 1337.33 K:

𝑇90 − 𝑇68 =

5∑︁
𝑖=0

𝑐𝑖[𝑇90/
∘𝐶]𝑖

Above 1337.33 K:

𝑇90 − 𝑇68 = −1.398 · 10−7

(︂
𝑇90
𝐾

)︂2

Parameters
T [float] Temperature, ITS-90, or approximately ITS-68 [K]

Returns
dT [float] Temperature, difference between ITS-90 and ITS-68 at T [K]

Notes

The conversion is straightforward when T90 is known. Theoretically, the model should be solved numerically to
convert the reverse way. However, according to [4], the difference is under 0.05 mK from 73.15 K to 903.15 K,
and under 0.26 mK up to 1337.33 K.

For temperatures under 13.8 K, no conversion is performed.

The first set of coefficients is:

-0.005903, 0.008174, -0.061924, -0.193388, 1.490793, 1.252347, -9.835868, 1.411912, 25.277595, -19.183815,
-18.437089, 27.000895, -8.716324.

The second set of coefficients is:

0, -0.148759, -0.267408, 1.08076, 1.269056, -4.089591, -1.871251, 7.438081, -3.536296.

The third set of coefficients is:

7.8687209E1, -4.7135991E-1, 1.0954715E-3, -1.2357884E-6, 6.7736583E-10, -1.4458081E-13.

These last coefficients use the temperature in degrees Celcius. A slightly older model used the following coeffi-
cients but a different equation over the same range:

-0.00317, -0.97737, 1.2559, 2.03295, -5.91887, -3.23561, 7.23364, 5.04151.

The model for these coefficients was:

𝑇90 − 𝑇68 = 𝑐0 +

7∑︁
𝑖=1

𝑐𝑖[(𝑇90/𝐾 − 1173.15)/300]𝑖

For temperatures larger than several thousand K, the differences have no meaning and grows quadratically.

References

[1], [2], [3], [4]

306 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> ITS90_68_difference(1000.)
0.01231818956580355

1.28 Thermal Conductivity (chemicals.thermal_conductivity)

This module contains various thermal conductivity estimation routines, dataframes of fit coefficients, and mixing rules.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Low Pressure Liquid Correlations

• Pure High Pressure Liquid Correlations

• Liquid Mixing Rules

• Pure Low Pressure Gas Correlations

• Pure High Pressure Gas Correlations

• Gas Mixing Rules

• Correlations for Specific Substances

• Fit Correlations

• Fit Coefficients

1.28.1 Pure Low Pressure Liquid Correlations

chemicals.thermal_conductivity.Sheffy_Johnson(T, MW, Tm)
Calculate the thermal conductivity of a liquid as a function of temperature using the Sheffy-Johnson (1961)
method. Requires Temperature, molecular weight, and melting point.

𝑘 = 1.951
1 − 0.00126(𝑇 − 𝑇𝑚)

𝑇 0.216
𝑚 𝑀𝑊 0.3

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Tm [float] Melting point of the fluid [K]

Returns
kl [float] Thermal conductivity of the fluid, W/m/k

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 307

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

The origin of this equation has been challenging to trace. It is presently unknown, and untested.

References

[1]

Examples

>>> Sheffy_Johnson(300, 47, 280)
0.17740150413112193

chemicals.thermal_conductivity.Sato_Riedel(T, MW, Tb, Tc)
Calculate the thermal conductivity of a liquid as a function of temperature using the CSP method of Sato-Riedel
[1], [2], published in Reid [3]. Requires temperature, molecular weight, and boiling and critical temperatures.

𝑘 =
1.1053√
𝑀𝑊

3 + 20(1 − 𝑇𝑟)2/3

3 + 20(1 − 𝑇𝑏𝑟)2/3

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

Notes

This equation has a complicated history. It is proposed by Reid [3]. Limited accuracy should be expected.
Uncheecked.

References

[1], [2], [3]

Examples

>>> Sato_Riedel(300, 47, 390, 520)
0.21037692461337687

chemicals.thermal_conductivity.Lakshmi_Prasad(T, MW)
Estimates thermal conductivity of pure liquids as a function of temperature using a reference fluid approach.
Low accuracy but quick. Developed using several organic fluids.

𝜆 = 0.0655 − 0.0005𝑇 +
1.3855 − 0.00197𝑇

𝑀𝑊 0.5

308 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

Notes

This equation returns negative numbers at high T sometimes. This equation is one of those implemented by
DDBST. If this results in a negative thermal conductivity, no value is returned.

References

[1]

Examples

>>> Lakshmi_Prasad(273.15, 100)
0.013664450

chemicals.thermal_conductivity.Gharagheizi_liquid(T, MW, Tb, Pc, omega)
Estimates the thermal conductivity of a liquid as a function of temperature using the CSP method of Gharagheizi
[1]. A convoluted method claiming high-accuracy and using only statistically significant variable following
analalysis.

Requires temperature, molecular weight, boiling temperature and critical pressure and acentric factor.

𝑘 = 10−4

[︂
10𝜔 + 2𝑃𝑐 − 2𝑇 + 4 + 1.908(𝑇𝑏 +

1.009𝐵2

𝑀𝑊 2
) +

3.9287𝑀𝑊 4

𝐵4
+

𝐴

𝐵8

]︂
𝐴 = 3.8588𝑀𝑊 8(1.0045𝐵 + 6.5152𝑀𝑊 − 8.9756)

𝐵 = 16.0407𝑀𝑊 + 2𝑇𝑏 − 27.9074

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Tb [float] Boiling temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor of the fluid [-]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 309

chemicals Documentation, Release 1.1.4

Notes

Pressure is internally converted into bar, as used in the original equation.

This equation was derived with 19000 points representing 1640 unique compounds.

References

[1]

Examples

>>> Gharagheizi_liquid(300, 40, 350, 1E6, 0.27)
0.2171113029534838

chemicals.thermal_conductivity.Nicola_original(T, MW, Tc, omega, Hfus)
Estimates the thermal conductivity of a liquid as a function of temperature using the CSP method of Nicola [1].
A simpler but long method claiming high-accuracy and using only statistically significant variable following
analalysis.

Requires temperature, molecular weight, critical temperature, acentric factor and the heat of vaporization.

𝜆

1Wm/K
= −0.5694 − 0.1436𝑇𝑟 + 5.4893 × 10−10 ∆𝑓𝑢𝑠𝐻

kmol/J
+ 0.0508𝜔 +

(︂
1kg/kmol
𝑀𝑊

)︂0.0622

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Tc [float] Critical temperature of the fluid [K]

omega [float] Acentric factor of the fluid [-]

Hfus [float] Heat of fusion of the fluid [J/mol]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

Notes

A weird statistical correlation. Recent and yet to be reviewed. This correlation has been superceded by the
author’s later work. Hfus is internally converted to be in J/kmol.

References

[1]

310 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> Nicola_original(300, 142.3, 611.7, 0.49, 201853)
0.2305018632230984

chemicals.thermal_conductivity.Nicola(T, MW, Tc, Pc, omega)
Estimates the thermal conductivity of a liquid as a function of temperature using the CSP method of [1]. A
statistically derived equation using any correlated terms.

Requires temperature, molecular weight, critical temperature and pressure, and acentric factor.

𝜆

0.5147𝑊/𝑚/𝐾
= −0.2537𝑇𝑟 +

0.0017𝑃𝑐

bar
+ 0.1501𝜔 +

(︂
1

𝑀𝑊

)︂−0.2999

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor of the fluid [-]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

Notes

A statistical correlation. A revision of an original correlation.

References

[1]

Examples

>>> Nicola(300, 142.3, 611.7, 2110000.0, 0.49)
0.10863821554584034

chemicals.thermal_conductivity.Bahadori_liquid(T, MW)
Estimates the thermal conductivity of parafin liquid hydrocarbons. Fits their data well, and is useful as only MW
is required. X is the Molecular weight, and Y the temperature.

𝐾 = 𝑎+ 𝑏𝑌 + 𝐶𝑌 2 + 𝑑𝑌 3

𝑎 = 𝐴1 +𝐵1𝑋 + 𝐶1𝑋
2 +𝐷1𝑋

3

𝑏 = 𝐴2 +𝐵2𝑋 + 𝐶2𝑋
2 +𝐷2𝑋

3

𝑐 = 𝐴3 +𝐵3𝑋 + 𝐶3𝑋
2 +𝐷3𝑋

3

𝑑 = 𝐴4 +𝐵4𝑋 + 𝐶4𝑋
2 +𝐷4𝑋

3

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 311

chemicals Documentation, Release 1.1.4

Parameters
T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

Notes

The accuracy of this equation has not been reviewed.

References

[1]

Examples

Data point from [1].

>>> Bahadori_liquid(273.15, 170)
0.1427427810827268

chemicals.thermal_conductivity.kl_Mersmann_Kind(T, MW, Tc, Vc, na)
Estimates the thermal conductivity of organic liquid substances according to the method of [1].

𝜆* =
𝜆 · 𝑉 2/3

𝑐 · 𝑇𝑐 · MW0.5

(𝑘 · 𝑇𝑐)1.5 ·𝑁7/6
𝐴

𝜆* =
2

3

(︁
𝑛𝑎 + 40

√︀
1 − 𝑇𝑟

)︁
Parameters

T [float] Temperature of the fluid [K]

MW [float] Molecular weight of the fluid [g/mol]

Tc [float] Critical temperature of the fluid [K]

Vc [float] Critical volume of the fluid [m^3/mol]

na [float] Number of atoms in the molecule, [-]

Returns
kl [float] Estimated liquid thermal conductivity [W/m/k]

312 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

In the equation, all quantities must be in SI units but N_A is in a kmol basis and Vc is in units of (m^3/kmol);
this is converted internally.

References

[1]

Examples

Dodecane at 400 K:

>>> kl_Mersmann_Kind(400, 170.33484, 658.0,
... 0.000754, 38)
0.0895271829899285

1.28.2 Pure High Pressure Liquid Correlations

chemicals.thermal_conductivity.DIPPR9G(T, P, Tc, Pc, kl)
Adjustes for pressure the thermal conductivity of a liquid using an emperical formula based on [1], but as given
in [2].

𝑘 = 𝑘*
[︂
0.98 + 0.0079𝑃𝑟𝑇

1.4
𝑟 + 0.63𝑇 1.2

𝑟

(︂
𝑃𝑟

30 + 𝑃𝑟

)︂]︂
Parameters

T [float] Temperature of fluid [K]

P [float] Pressure of fluid [Pa]

Tc: float Critical point of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

kl [float] Thermal conductivity of liquid at 1 atm or saturation, [W/m/K]

Returns
kl_dense [float] Thermal conductivity of liquid at P, [W/m/K]

Notes

This equation is entrely dimensionless; all dimensions cancel. The original source has not been reviewed.

This is DIPPR Procedure 9G: Method for the Thermal Conductivity of Pure Nonhydrocarbon Liquids at High
Pressures

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 313

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

From [2], for butyl acetate.

>>> DIPPR9G(515.05, 3.92E7, 579.15, 3.212E6, 7.085E-2)
0.0864419738671184

chemicals.thermal_conductivity.Missenard(T, P, Tc, Pc, kl)
Adjustes for pressure the thermal conductivity of a liquid using an emperical formula based on [1], but as given
in [2].

𝑘

𝑘*
= 1 +𝑄𝑃 0.7

𝑟

Parameters
T [float] Temperature of fluid [K]

P [float] Pressure of fluid [Pa]

Tc: float Critical point of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

kl [float] Thermal conductivity of liquid at 1 atm or saturation, [W/m/K]

Returns
kl_dense [float] Thermal conductivity of liquid at P, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel. An interpolation routine is used here from tabu-
lated values of Q. The original source has not been reviewed.

References

[1], [2]

Examples

Example from [2], toluene; matches.

>>> Missenard(304., 6330E5, 591.8, 41E5, 0.129)
0.2198375777069657

314 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.28.3 Liquid Mixing Rules

chemicals.thermal_conductivity.DIPPR9H(ws, ks)
Calculates thermal conductivity of a liquid mixture according to mixing rules in [1] and also in [2].

𝜆𝑚 =

(︃∑︁
𝑖

𝑤𝑖𝜆
−2
𝑖

)︃−1/2

This is also called the Vredeveld (1973) equation. A review in [3] finds this the best model on average. However,
they did caution that in some cases a linear mole-fraction mixing rule performs better. This equation according to
Poling [1] should not be used if some components have thermal conductivities more than twice other components.
They also say this should not be used with water.

Parameters
ws [float] Mass fractions of components

ks [float] Liquid thermal conductivites of all components, [W/m/K]

Returns
kl [float] Thermal conductivity of liquid mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel. The example is from [2]; all results agree. The
original source has not been reviewed.

DIPPR Procedure 9H: Method for the Thermal Conductivity of Nonaqueous Liquid Mixtures

Average deviations of 3%. for 118 nonaqueous systems with 817 data points. Max deviation 20%. According to
DIPPR.

In some sources, this equation is given with the molecular weights included:

𝜆−2
𝑚 =

∑︀
𝑖 𝑧𝑖𝑀𝑊 𝑖𝜆

−2
𝑖∑︀

𝑖 𝑧𝑖𝑀𝑊 𝑖

References

[1], [2], [3]

Examples

>>> DIPPR9H([0.258, 0.742], [0.1692, 0.1528])
0.15657104706719646

chemicals.thermal_conductivity.DIPPR9I(zs, Vms, ks)
Calculates thermal conductivity of a liquid mixture according to mixing rules in [1]. This is recommended in
[2] for aqueous and nonaqueous systems.

𝑘𝑚𝑖𝑥 =
∑︁
𝑖

∑︁
𝑗

𝜑𝑖𝜑𝑗𝑘𝑖,𝑗

𝑘𝑖,𝑗 =
2

1
𝑘𝑖

+ 1
𝑘𝑗

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 315

chemicals Documentation, Release 1.1.4

𝜑𝑖 =
𝑧𝑖𝑉𝑚,𝑖∑︀𝑛
𝑗 𝑧𝑗𝑉𝑚,𝑗

Parameters
zs [list[float]] Mole fractions of components, [-]

Vms [list[float]] Molar volumes of each component, [m^3/mol]

ks [float] Liquid thermal conductivites of all components, [W/m/K]

Returns
kl [float] Thermal conductivity of liquid mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel. The example is from [2]; all results agree.

[2] found average deviations of 4-6% for 118 nonaqueous systems and 15 aqueous systems at atmospheric pres-
sure, with a maximum deviation of 33%.

The computational complexity here is N^2, with a division present in the inner loop.

References

[1], [2]

Examples

>>> DIPPR9I(zs=[.682, .318], Vms=[1.723e-2, 7.338e-2], ks=[.6037, .1628])
0.25397430656658937

chemicals.thermal_conductivity.Filippov(ws, ks)
Calculates thermal conductivity of a binary liquid mixture according to mixing rules in [2] as found in [1].

𝜆𝑚 = 𝑤1𝜆1 + 𝑤2𝜆2 − 0.72𝑤1𝑤2(𝜆2 − 𝜆1)

Parameters
ws [float] Mass fractions of components

ks [float] Liquid thermal conductivites of all components, [W/m/K]

Returns
kl [float] Thermal conductivity of liquid mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel. The original source has not been reviewed. Only
useful for binary mixtures.

316 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> Filippov([0.258, 0.742], [0.1692, 0.1528])
0.15929167628799998

1.28.4 Pure Low Pressure Gas Correlations

chemicals.thermal_conductivity.Eucken(MW, Cvm, mu)
Estimates the thermal conductivity of a gas as a function of temperature using the CSP method of Eucken [1].

𝜆𝑀𝑊

𝜂𝐶𝑣
= 1 +

9/4

𝐶𝑣/𝑅

Parameters
MW [float] Molecular weight of the gas [g/mol]

Cvm [float] Molar contant volume heat capacity of the gas [J/mol/K]

mu [float] Gas viscosity [Pa*s]

Returns
kg [float] Estimated gas thermal conductivity [W/m/k]

Notes

Temperature dependence is introduced via heat capacity and viscosity. A theoretical equation. No original author
located. MW internally converted to kg/g-mol.

References

[1]

Examples

2-methylbutane at low pressure, 373.15 K. Mathes calculation in [1].

>>> Eucken(MW=72.151, Cvm=135.9, mu=8.77E-6)
0.018792645058456698

chemicals.thermal_conductivity.Eucken_modified(MW, Cvm, mu)
Estimates the thermal conductivity of a gas as a function of temperature using the Modified CSP method of
Eucken [1].

𝜆𝑀𝑊

𝜂𝐶𝑣
= 1.32 +

1.77

𝐶𝑣/𝑅

Parameters

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 317

chemicals Documentation, Release 1.1.4

MW [float] Molecular weight of the gas [g/mol]

Cvm [float] Molar contant volume heat capacity of the gas [J/mol/K]

mu [float] Gas viscosity [Pa*s]

Returns
kg [float] Estimated gas thermal conductivity [W/m/k]

Notes

Temperature dependence is introduced via heat capacity and viscosity. A theoretical equation. No original author
located. MW internally converted to kg/g-mol.

References

[1]

Examples

2-methylbutane at low pressure, 373.15 K. Mathes calculation in [1].

>>> Eucken_modified(MW=72.151, Cvm=135.9, mu=8.77E-6)
0.02359353760551249

chemicals.thermal_conductivity.DIPPR9B(T, MW, Cvm, mu, Tc=None, chemtype=None)
Calculates the thermal conductivity of a gas using one of several emperical equations developed in [1], [2], and
presented in [3].

For monoatomic gases:

𝑘 = 2.5
𝜂𝐶𝑣

𝑀𝑊

For linear molecules:

𝑘 =
𝜂

𝑀𝑊

(︂
1.30𝐶𝑣 + 14644.00 − 2928.80

𝑇𝑟

)︂
For nonlinear molecules:

𝑘 =
𝜂

𝑀𝑊
(1.15𝐶𝑣 + 16903.36)

Parameters
T [float] Temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

MW [float] Molwcular weight of fluid [g/mol]

Cvm [float] Molar heat capacity at constant volume of fluid, [J/mol/K]

mu [float] Viscosity of gas, [Pa*s]

Returns
k_g [float] Thermal conductivity of gas, [W/m/k]

318 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Tested with DIPPR values. Cvm is internally converted to J/kmol/K.

References

[1], [2], [3]

Examples

CO:

>>> DIPPR9B(200., 28.01, 20.826, 1.277E-5, 132.92, chemtype='linear')
0.01813208676438415

chemicals.thermal_conductivity.Chung(T, MW, Tc, omega, Cvm, mu)
Estimates the thermal conductivity of a gas as a function of temperature using the CSP method of Chung [1].

𝜆𝑀𝑊

𝜂𝐶𝑣
=

3.75Ψ

𝐶𝑣/𝑅

Ψ = 1 + 𝛼 {[0.215 + 0.28288𝛼− 1.061𝛽 + 0.26665𝑍]/[0.6366 + 𝛽𝑍 + 1.061𝛼𝛽]}

𝛼 =
𝐶𝑣

𝑅
− 1.5

𝛽 = 0.7862 − 0.7109𝜔 + 1.3168𝜔2

𝑍 = 2 + 10.5𝑇 2
𝑟

Parameters
T [float] Temperature of the gas [K]

MW [float] Molecular weight of the gas [g/mol]

Tc [float] Critical temperature of the gas [K]

omega [float] Acentric factor of the gas [-]

Cvm [float] Molar contant volume heat capacity of the gas [J/mol/K]

mu [float] Gas viscosity [Pa*s]

Returns
kg [float] Estimated gas thermal conductivity [W/m/k]

Notes

MW internally converted to kg/g-mol.

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 319

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

2-methylbutane at low pressure, 373.15 K. Mathes calculation in [2].

>>> Chung(T=373.15, MW=72.151, Tc=460.4, omega=0.227, Cvm=135.9, mu=8.77E-6)
0.023015653797111124

chemicals.thermal_conductivity.Eli_Hanley(T, MW, Tc, Vc, Zc, omega, Cvm)
Estimates the thermal conductivity of a gas as a function of temperature using the reference fluid method of Eli
and Hanley [1] as shown in [2].

𝜆 = 𝜆* +
𝜂*

𝑀𝑊
(1.32)

(︂
𝐶𝑣 −

3𝑅

2

)︂
𝑇𝑟 = min(𝑇𝑟, 2)

𝜃 = 1 + (𝜔 − 0.011)

(︂
0.56553 − 0.86276 ln𝑇𝑟 − 0.69852

𝑇𝑟

)︂
𝜓 = [1 + (𝜔 − 0.011)(0.38560 − 1.1617 ln𝑇𝑟)]

0.288

𝑍𝑐

𝑓 =
𝑇𝑐

190.4
𝜃

ℎ =
𝑉𝑐

9.92𝐸 − 5
𝜓

𝑇0 = 𝑇/𝑓

𝜂*0(𝑇0) =

9∑︁
𝑛=1

𝐶𝑛𝑇
(𝑛−4)/3
0

𝜃0 = 1944𝜂0

𝜆* = 𝜆0𝐻

𝜂* = 𝜂*0𝐻
𝑀𝑊

16.04

𝐻 =

(︂
16.04

𝑀𝑊

)︂0.5

𝑓0.5/ℎ2/3

Parameters
T [float] Temperature of the gas [K]

MW [float] Molecular weight of the gas [g/mol]

Tc [float] Critical temperature of the gas [K]

Vc [float] Critical volume of the gas [m^3/mol]

Zc [float] Critical compressibility of the gas []

omega [float] Acentric factor of the gas [-]

Cvm [float] Molar contant volume heat capacity of the gas [J/mol/K]

Returns
kg [float] Estimated gas thermal conductivity [W/m/k]

320 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Reference fluid is Methane. MW internally converted to kg/g-mol.

References

[1], [2]

Examples

2-methylbutane at low pressure, 373.15 K. Matches calculation in [2].

>>> Eli_Hanley(T=373.15, MW=72.151, Tc=460.4, Vc=3.06E-4, Zc=0.267,
... omega=0.227, Cvm=135.9)
0.02247951724513664

chemicals.thermal_conductivity.Gharagheizi_gas(T, MW, Tb, Pc, omega)
Estimates the thermal conductivity of a gas as a function of temperature using the CSP method of Gharagheizi
[1]. A convoluted method claiming high-accuracy and using only statistically significant variable following
analalysis.

Requires temperature, molecular weight, boiling temperature and critical pressure and acentric factor.

𝑘 = 7.9505 × 10−4 + 3.989 × 10−5𝑇 − 5.419 × 10−5𝑀𝑊 + 3.989 × 10−5𝐴

𝐴 =

(︁
2𝜔 + 𝑇 − (2𝜔+3.2825)𝑇

𝑇𝑏
+ 3.2825

)︁
0.1𝑀𝑃𝑐𝑇

× (3.9752𝜔 + 0.1𝑃𝑐 + 1.9876𝐵 + 6.5243)2

Parameters
T [float] Temperature of the fluid [K]

MW: float Molecular weight of the fluid [g/mol]

Tb [float] Boiling temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor of the fluid [-]

Returns
kg [float] Estimated gas thermal conductivity [W/m/k]

Notes

Pressure is internally converted into 10*kPa but author used correlation with kPa; overall, errors have been
corrected in the presentation of the formula.

This equation was derived with 15927 points and 1574 compounds. Example value from [1] is the first point in
the supportinf info, for CH4.

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 321

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Gharagheizi_gas(580., 16.04246, 111.66, 4599000.0, 0.0115478000)
0.09594861261873211

chemicals.thermal_conductivity.Bahadori_gas(T, MW)
Estimates the thermal conductivity of hydrocarbons gases at low P. Fits their data well, and is useful as only MW
is required. Y is the Molecular weight, and X the temperature.

𝐾 = 𝑎+ 𝑏𝑌 + 𝐶𝑌 2 + 𝑑𝑌 3

𝑎 = 𝐴1 +𝐵1𝑋 + 𝐶1𝑋
2 +𝐷1𝑋

3

𝑏 = 𝐴2 +𝐵2𝑋 + 𝐶2𝑋
2 +𝐷2𝑋

3

𝑐 = 𝐴3 +𝐵3𝑋 + 𝐶3𝑋
2 +𝐷3𝑋

3

𝑑 = 𝐴4 +𝐵4𝑋 + 𝐶4𝑋
2 +𝐷4𝑋

3

Parameters
T [float] Temperature of the gas [K]

MW [float] Molecular weight of the gas [g/mol]

Returns
kg [float] Estimated gas thermal conductivity [W/m/k]

Notes

The accuracy of this equation has not been reviewed.

References

[1]

Examples

>>> Bahadori_gas(40+273.15, 20.0) # Point from article
0.03196816533787329

322 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.28.5 Pure High Pressure Gas Correlations

chemicals.thermal_conductivity.Stiel_Thodos_dense(T, MW, Tc, Pc, Vc, Zc, Vm, kg)
Estimates the thermal conductivity of a gas at high pressure as a function of temperature using difference method
of Stiel and Thodos [1] as shown in [2].

if 𝜌𝑟 < 0.5:

(𝜆− 𝜆∘)Γ𝑍5
𝑐 = 1.22 × 10−2[exp(0.535𝜌𝑟) − 1]

if 0.5 < 𝜌𝑟 < 2.0:

(𝜆− 𝜆∘)Γ𝑍5
𝑐 = 1.22 × 10−2[exp(0.535𝜌𝑟) − 1]

if 2 < 𝜌𝑟 < 2.8:

(𝜆− 𝜆∘)Γ𝑍5
𝑐 = 1.22 × 10−2[exp(0.535𝜌𝑟) − 1]

Γ = 210

(︂
𝑇𝑐𝑀𝑊 3

𝑃 4
𝑐

)︂1/6

Parameters
T [float] Temperature of the gas [K]

MW [float] Molecular weight of the gas [g/mol]

Tc [float] Critical temperature of the gas [K]

Pc [float] Critical pressure of the gas [Pa]

Vc [float] Critical volume of the gas [m^3/mol]

Zc [float] Critical compressibility of the gas [-]

Vm [float] Molar volume of the gas at T and P [m^3/mol]

kg [float] Low-pressure gas thermal conductivity [W/m/k]

Returns
kg [float] Estimated dense gas thermal conductivity [W/m/k]

Notes

Pc is internally converted to bar.

References

[1], [2]

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 323

chemicals Documentation, Release 1.1.4

Examples

>>> Stiel_Thodos_dense(T=378.15, MW=44.013, Tc=309.6, Pc=72.4E5,
... Vc=97.4E-6, Zc=0.274, Vm=144E-6, kg=2.34E-2)
0.041245574404863684

chemicals.thermal_conductivity.Eli_Hanley_dense(T, MW, Tc, Vc, Zc, omega, Cvm, Vm)
Estimates the thermal conductivity of a gas at high pressure as a function of temperature using the reference fluid
method of Eli and Hanley [1] as shown in [2].

𝑇𝑟 = 𝑚𝑖𝑛(𝑇𝑟, 2)

𝑉 𝑟 = 𝑚𝑖𝑛(𝑉 𝑟, 2)

𝑓 =
𝑇𝑐

190.4
𝜃

ℎ =
𝑉𝑐

9.92𝐸 − 5
𝜓

𝑇0 = 𝑇/𝑓

𝜌0 =
16.04

𝑉
ℎ

𝜃 = 1 + (𝜔 − 0.011)

(︂
0.09057 − 0.86276 ln𝑇𝑟 +

(︂
0.31664 − 0.46568

𝑇𝑟

)︂
(𝑉𝑟 − 0.5)

)︂
𝜓 = [1 + (𝜔 − 0.011)(0.39490(𝑉𝑟 − 1.02355) − 0.93281(𝑉𝑟 − 0.75464) ln𝑇𝑟]

0.288

𝑍𝑐

𝜆1 = 1944𝜂0

𝜆2 =

{︃
𝑏1 + 𝑏2

[︂
𝑏3 − ln

(︂
𝑇0
𝑏4

)︂]︂2}︃
𝜌0

𝜆3 = exp

(︂
𝑎1 +

𝑎2
𝑇0

)︂{︂
exp[(𝑎3 +

𝑎4
𝑇 1.5
0

)𝜌0.10 + (
𝜌0

0.1617
− 1)𝜌0.50 (𝑎5 +

𝑎6
𝑇0

+
𝑎7
𝑇 2
0

)] − 1

}︂
𝜆** = [𝜆1 + 𝜆2 + 𝜆3]𝐻

𝐻 =

(︂
16.04

𝑀𝑊

)︂0.5

𝑓0.5/ℎ2/3

𝑋 =

{︂[︂
1 − 𝑇

𝑓

(︂
𝑑𝑓

𝑑𝑇

)︂
𝑣

]︂
0.288

𝑍𝑐

}︂1.5

(︂
𝑑𝑓

𝑑𝑇

)︂
𝑣

=
𝑇𝑐

190.4

(︂
𝑑𝜃

𝑑𝑇

)︂
𝑣(︂

𝑑𝜃

𝑑𝑇

)︂
𝑣

= (𝜔 − 0.011)

[︂
−0.86276

𝑇
+ (𝑉𝑟 − 0.5)

0.46568𝑇𝑐
𝑇 2

]︂
Parameters

T [float] Temperature of the gas [K]

MW [float] Molecular weight of the gas [g/mol]

Tc [float] Critical temperature of the gas [K]

Vc [float] Critical volume of the gas [m^3/mol]

324 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Zc [float] Critical compressibility of the gas [-]

omega [float] Acentric factor of the gas [-]

Cvm [float] Molar contant volume heat capacity of the gas [J/mol/K]

Vm [float] Volume of the gas at T and P [m^3/mol]

Returns
kg [float] Estimated dense gas thermal conductivity [W/m/k]

Notes

Reference fluid is Methane. MW internally converted to kg/g-mol.

References

[1], [2]

Examples

>>> Eli_Hanley_dense(T=473., MW=42.081, Tc=364.9, Vc=1.81E-4, Zc=0.274,
... omega=0.144, Cvm=82.70, Vm=1.721E-4)
0.06038475754109959

chemicals.thermal_conductivity.Chung_dense(T, MW, Tc, Vc, omega, Cvm, Vm, mu, dipole,
association=0.0)

Estimates the thermal conductivity of a gas at high pressure as a function of temperature using the reference fluid
method of Chung [1] as shown in [2].

𝜆 =
31.2𝜂∘Ψ

𝑀 ′ (𝐺−1
2 +𝐵6𝑦) + 𝑞𝐵7𝑦

2𝑇 1/2
𝑟 𝐺2

Ψ = 1 + 𝛼 {[0.215 + 0.28288𝛼− 1.061𝛽 + 0.26665𝑍]/[0.6366 + 𝛽𝑍 + 1.061𝛼𝛽]}

𝛼 =
𝐶𝑣

𝑅
− 1.5

𝛽 = 0.7862 − 0.7109𝜔 + 1.3168𝜔2

𝑍 = 2 + 10.5𝑇 2
𝑟

𝑞 = 3.586 × 10−3(𝑇𝑐/𝑀
′)1/2/𝑉 2/3

𝑐

𝑦 =
𝑉𝑐
6𝑉

𝐺1 =
1 − 0.5𝑦

(1 − 𝑦)3

𝐺2 =
(𝐵1/𝑦)[1 − exp(−𝐵4𝑦)] +𝐵2𝐺1 exp(𝐵5𝑦) +𝐵3𝐺1

𝐵1𝐵4 +𝐵2 +𝐵3

𝐵𝑖 = 𝑎𝑖 + 𝑏𝑖𝜔 + 𝑐𝑖𝜇
4
𝑟 + 𝑑𝑖𝜅

Parameters
T [float] Temperature of the gas [K]

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 325

chemicals Documentation, Release 1.1.4

MW [float] Molecular weight of the gas [g/mol]

Tc [float] Critical temperature of the gas [K]

Vc [float] Critical volume of the gas [m^3/mol]

omega [float] Acentric factor of the gas [-]

Cvm [float] Molar contant volume heat capacity of the gas [J/mol/K]

Vm [float] Molar volume of the gas at T and P [m^3/mol]

mu [float] Low-pressure gas viscosity [Pa*s]

dipole [float] Dipole moment [debye]

association [float, optional] Association factor [-]

Returns
kg [float] Estimated dense gas thermal conductivity [W/m/k]

Notes

MW internally converted to kg/g-mol. Vm internally converted to mL/mol. [1] is not the latest form as presented
in [1]. Association factor is assumed 0. Relates to the polarity of the gas.

Coefficients as follows:

ais = [2.4166E+0, -5.0924E-1, 6.6107E+0, 1.4543E+1, 7.9274E-1, -5.8634E+0, 9.1089E+1]

bis = [7.4824E-1, -1.5094E+0, 5.6207E+0, -8.9139E+0, 8.2019E-1, 1.2801E+1, 1.2811E+2]

cis = [-9.1858E-1, -4.9991E+1, 6.4760E+1, -5.6379E+0, -6.9369E-1, 9.5893E+0, -5.4217E+1]

dis = [1.2172E+2, 6.9983E+1, 2.7039E+1, 7.4344E+1, 6.3173E+0, 6.5529E+1, 5.2381E+2]

References

[1], [2]

Examples

>>> Chung_dense(T=473., MW=42.081, Tc=364.9, Vc=184.6E-6, omega=0.142,
... Cvm=82.67, Vm=172.1E-6, mu=134E-7, dipole=0.4)
0.06160569232570781

1.28.6 Gas Mixing Rules

chemicals.thermal_conductivity.Lindsay_Bromley(T, ys, ks, mus, Tbs, MWs)
Calculates thermal conductivity of a gas mixture according to mixing rules in [1] and also in [2]. It is significantly
more complicated than other kinetic theory models.

𝑘 =
∑︁
𝑖

𝑦𝑖𝑘𝑖∑︀
𝑗 𝑦𝑖𝐴𝑖𝑗

326 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝐴𝑖𝑗 =
1

4

⎧⎨⎩1 +

[︃
𝜂𝑖
𝜂𝑗

(︂
𝑀𝑊𝑗

𝑀𝑊𝑖

)︂0.75(︂
𝑇 + 𝑆𝑖

𝑇 + 𝑆𝑗

)︂]︃0.5⎫⎬⎭
2(︂

𝑇 + 𝑆𝑖𝑗

𝑇 + 𝑆𝑖

)︂
𝑆𝑖𝑗 = 𝑆𝑗𝑖 = (𝑆𝑖𝑆𝑗)

0.5

𝑆𝑖 = 1.5𝑇𝑏

Parameters
T [float] Temperature of gas [K]

ys [float] Mole fractions of gas components

ks [float] Gas thermal conductivites of all components, [W/m/K]

mus [float] Gas viscosities of all components, [Pa*s]

Tbs [float] Boiling points of all components, [K]

MWs [float] Molecular weights of all components, [g/mol]

Returns
kg [float] Thermal conductivity of gas mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel. The example is from [2]; all results agree. The
original source has not been reviewed.

DIPPR Procedure 9D: Method for the Thermal Conductivity of Gas Mixtures

Average deviations of 4-5% for 77 binary mixtures reviewed in [2], from 1342 points; also six ternary mixtures
(70 points); max deviation observed was 40%. (DIPPR)

References

[1], [2], [3]

Examples

>>> Lindsay_Bromley(323.15, [0.23, 0.77], [1.939E-2, 1.231E-2], [1.002E-5, 1.015E-
→˓5], [248.31, 248.93], [46.07, 50.49])
0.013902644179693132

chemicals.thermal_conductivity.Wassiljewa_Herning_Zipperer(zs, ks, MWs, MW_roots=None)
Calculates thermal conductivity of a gas mixture according to the kinetic theory expression of Wassiljewa with
the interaction term from the Herning-Zipperer expression. This is also used for the prediction of gas mixture
viscosity.

𝑘 =
∑︁ 𝑦𝑖𝑘𝑖∑︀

𝑦𝑖𝐴𝑖𝑗

𝐴𝑖𝑗 =

(︂
𝑀𝑊𝑗

𝑀𝑊𝑖

)︂0.5

Parameters

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 327

chemicals Documentation, Release 1.1.4

zs [float] Mole fractions of gas components, [-]

ks [float] gas thermal conductivites of all components, [W/m/K]

MWs [float] Molecular weights of all components, [g/mol]

MW_roots [float, optional] Square roots of molecular weights of all components; speeds up the
calculation if provided, [g^0.5/mol^0.5]

Returns
kg [float] Thermal conductivity of gas mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.

References

[1]

Examples

>>> Wassiljewa_Herning_Zipperer(zs=[.1, .4, .5], ks=[1.002E-5, 1.15E-5, 2e-5],␣
→˓MWs=[40.0, 50.0, 60.0])
1.5861181979916883e-05

1.28.7 Correlations for Specific Substances

chemicals.thermal_conductivity.k_IAPWS(T, rho, Cp=None, Cv=None, mu=None, drho_dP=None,
drho_dP_Tr=None)

Calculate the thermal conductivity of water or steam according to the 2011 IAPWS [1] formulation. Critical
enhancement is ignored unless parameters for it are provided.

�̄� = �̄�0 × �̄�1(𝑇 , 𝜌) + �̄�2(𝑇 , 𝜌)

�̄�0 =

√
𝑇∑︀4

𝑘=0
𝐿𝑘

𝑇𝑘

�̄�1(𝑇 , 𝜌) = exp

⎡⎣𝜌 4∑︁
𝑖=0

⎛⎝(︂ 1

𝑇
− 1

)︂𝑖 5∑︁
𝑗=0

𝐿𝑖𝑗(𝜌− 1)𝑗

⎞⎠⎤⎦
�̄�2 = Γ

𝜌𝑐𝑝𝑇

�̄�
𝑍(𝑦)

𝑍(𝑦) =
2

𝜋𝑦

{︂[︀
(1 − 𝜅−1) arctan(𝑦) + 𝜅−1𝑦

]︀
−
[︂
1 − exp

(︂
−1

𝑦−1 + 𝑦−2/3𝜌2

)︂]︂}︂
𝑦 = 𝑞𝐷𝜉(𝑇 , 𝜌)

𝜉 = 𝜉0

(︂
∆�̄�

Γ0

)︂𝜈/𝛾

328 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

∆�̄�(𝑇 , 𝜌) = 𝜌

[︂
𝜁(𝑇 , 𝜌) − 𝜁(𝑇𝑅, 𝜌)

𝑇𝑅
𝑇

]︂
𝜁 =

(︂
𝜕𝜌

𝜕𝑝

)︂
𝑇

Parameters
T [float] Temperature water [K]

rho [float] Density of water [kg/m^3]

Cp [float, optional] Constant pressure heat capacity of water, [J/kg/K]

Cv [float, optional] Constant volume heat capacity of water, [J/kg/K]

mu [float, optional] Viscosity of water, [Pa*s]

drho_dP [float, optional] Partial derivative of density with respect to pressure at constant tem-
perature, [kg/m^3/Pa]

drho_dP_Tr [float, optional] Partial derivative of density with respect to pressure at constant
temperature (at the reference temperature (970.644 K) and the actual density of water); will
be calculated from the industrial formulation fit if omitted, [kg/m^3/Pa]

Returns
k [float] Thermal condiuctivity, [W/m/K]

Notes

Gamma = 177.8514;

qd = 0.4E-9;

nu = 0.630;

gamma = 1.239;

zeta0 = 0.13E-9;

Gamma0 = 0.06;

TRC = 1.5

The formulation uses the industrial variant of the critical enhancement. It matches to 5E-6 relative tolerance at
the check temperature, and should match even closer outside it.

References

[1]

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 329

chemicals Documentation, Release 1.1.4

Examples

>>> k_IAPWS(647.35, 750.)
0.5976194153179502

Region 1, test 1, from MPEI, exact match:

>>> k_IAPWS(T=620., rho=613.227777440324, Cp=7634.337046792,
... Cv=3037.934412104, mu=70.905106751524E-6, drho_dP=5.209378197916E-6)
0.48148519510200044

Full scientific calculation:

>>> from chemicals.iapws import iapws95_properties, iapws95_P, iapws95_Tc
>>> from chemicals.viscosity import mu_IAPWS
>>> T, P = 298.15, 1e5
>>> rho, _, _, _, Cv, Cp, _, _, _, _, drho_dP = iapws95_properties(T, P)
>>> P_ref = iapws95_P(1.5*iapws95_Tc, rho)
>>> _, _, _, _, _, _, _, _, _, _, drho_dP_Tr = iapws95_properties(1.5*iapws95_Tc, P_
→˓ref)
>>> mu = mu_IAPWS(T, rho, drho_dP, drho_dP_Tr)
>>> k_IAPWS(T, rho, Cp, Cv, mu, drho_dP, drho_dP_Tr)
0.60651532815

chemicals.thermal_conductivity.k_air_lemmon(T, rho, Cp=None, Cv=None, drho_dP=None,
drho_dP_Tr=None, mu=None)

Calculate the thermal conductivity of air using the Lemmon and Jacobsen (2004) [1] formulation. The critical
enhancement term is ignored unless all the rquired parameters for it are provided.

𝜆 = 𝜆0(𝑇) + 𝜆𝑟(𝜏, 𝛿) + 𝜆𝑐(𝜏, 𝛿)

𝜆0 = 𝑁1

[︂
𝜂0(𝑇)

1𝜇Pa · s

]︂
+𝑁2𝜏

𝑡2 +𝑁3𝜏
𝑡3

𝜆𝑟 =

𝑛∑︁
𝑖=4

𝑁𝑖𝜏
𝑡𝑖𝛿𝑑𝑖 exp(−𝛾𝑖𝛿𝑙𝑖)

𝜆𝑐 = 𝜌𝐶𝑝
𝑘𝑅0𝑇

6𝜋𝜉 · 𝜂(𝑇, 𝜌)

(︁
Ω̃ − Ω̃0

)︁
Ω̃ =

2

𝜋

[︂(︂
𝐶𝑝 − 𝐶𝑣

𝐶𝑝

)︂
tan−1(𝜉/𝑞𝐷) +

𝐶𝑣

𝐶𝑝
(𝜉/𝑞𝐷)

]︂
Ω̃0 =

2

𝜋

{︂
1 − exp

[︂
−1

𝑞𝐷/𝜉 + 1/3(𝜉/𝑞𝐷)2(𝜌𝑐/𝜌)2

]︂}︂

𝜉 = 𝜉0

[︃
�̃�(𝑇, 𝜌) − �̃�(𝑇𝑟𝑒𝑓 , 𝜌)

𝑇𝑟𝑒𝑓

𝑇

Γ

]︃𝜈/𝛾

�̃�(𝑇, 𝜌) =
𝑃𝑐𝜌

𝜌2𝑐

(︂
𝜕𝜌

𝜕𝑃

)︂
𝑇

Parameters
T [float] Temperature air [K]

rho [float] Molar density of air [mol/m^3]

330 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Cp [float, optional] Molar constant pressure heat capacity of air, [J/mol/K]

Cv [float, optional] Molar constant volume heat capacity of air, [J/mol/K]

mu [float, optional] Viscosity of air, [Pa*s]

drho_dP [float, optional] Partial derivative of density with respect to pressure at constant tem-
perature, [mol/m^3/Pa]

drho_dP_Tr [float, optional] Partial derivative of density with respect to pressure at con-
stant temperature (at the reference temperature (265.262 K) and the actual density of air),
[mol/m^3/Pa]

Returns
k [float] Thermal condiuctivity of air, [W/m/K]

Notes

The constnts are as follows:

Ni = [1.308, 1.405, -1.036, 8.743, 14.76, -16.62, 3.793, -6.142, -0.3778]

ti = [None, -1.1, -0.3, 0.1, 0.0, 0.5, 2.7, 0.3, 1.3]

di = [None, None, None, 1, 2, 3, 7, 7, 11]

li = [None, None, None, 0, 0, 2, 2, 2, 2]

gammai = [None, None, None, 0, 0, 1, 1, 1, 1]

R0 = 1.01; Pc = 3.78502E6 Pa; xi0 = 0.11E-9 nm; qd = 0.31E-9 nm; Tc = 132.6312 K (actually the maxconden-
therm); T_ref = 265.262 (2Tc rounded differently); rhoc = 10447.7 mol/m^3 (actually the maxcondentherm); k
= 1.380658E-23 J/K; nu = 0.63 and gamma = 1.2415, sigma = 0.36, MW = 28.9586 g/mol.

References

[1]

Examples

Basic calculation at 300 K and approximately 1 bar:

>>> k_air_lemmon(300, 40.0)
0.0263839695044

Calculation near critical point:

>>> k_air_lemmon(132.64, 10400, 2137.078854678728, 35.24316159996235, 0.
→˓07417878614315769, 0.00035919027241528256, 1.7762253265868595e-05)
0.07562307234760

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 331

chemicals Documentation, Release 1.1.4

1.28.8 Fit Correlations

chemicals.thermal_conductivity.PPDS8(T, Tc, a0, a1, a2, a3)
Calculate the thermal conductivity of a liquid using the 4-term tau polynomial developed by the PPDS and named
PPDS equation 8.

𝑘𝑙 = 𝑎0

(︃
1 +

3∑︁
𝑖

𝑎𝑖𝜏
𝑖/3

)︃

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a0 [float] Coefficient, [-]

a1 [float] Coefficient, [-]

a2 [float] Coefficient, [-]

a3 [float] Coefficient, [-]

Returns
k [float] Low pressure liquid thermal conductivity, [W/(m*K)]

References

[1]

Examples

Sample coefficients for benzene in [1], at 500 K:

>>> PPDS8(T=500.0, Tc=562.05, a0=0.0641126, a1=0.61057, a2=-1.72442, a3=3.94394)
0.08536381765218425

chemicals.thermal_conductivity.PPDS3(T, Tc, a1, a2, a3)
Calculate the thermal conductivity of a low-pressure gas using the 3-term Tr polynomial developed by the PPDS
and named PPDS equation 3.

𝑘𝑔 =
√︀
𝑇𝑟

(︃
3∑︁

𝑖=1

𝑎𝑖
𝑇 𝑖
𝑟

)︃−1

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a1 [float] Coefficient, [-]

a2 [float] Coefficient, [-]

a3 [float] Coefficient, [-]

Returns
k [float] Low pressure gas thermal conductivity, [W/(m*K)]

332 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Sample coefficients for pentane in [1], at 400 K:

>>> PPDS3(T=400.0, Tc=470.008, a1=11.6366, a2=25.1191, a3=-7.21674)
0.0251734811601927

chemicals.thermal_conductivity.Chemsep_16(T, A, B, C, D, E)
Calculate the thermal conductivity of a low-pressure liquid using the 5-term T exponential polynomial found in
ChemSep.

𝑘𝑙 = 𝐴+ exp

(︂
𝐵

𝑇
+ 𝐶 +𝐷𝑇 + 𝐸𝑇 2

)︂
Parameters

T [float] Temperature of fluid [K]

A [float] Coefficient, [W/(m*K)]

B [float] Coefficient, [K]

C [float] Coefficient, [-]

D [float] Coefficient, [1/K]

E [float] Coefficient, [1/K^2]

Returns
k [float] Low pressure liquid thermal conductivity, [W/(m*K)]

References

[1]

Examples

Sample coefficients for liquid thermal conductivity of n-hexane in [1], at 300 K:

>>> Chemsep_16(300.0, -0.12682, -1.5015, -1.0467, -0.00088709, -9.3679E-07)
0.11924904787869

1.28. Thermal Conductivity (chemicals.thermal_conductivity) 333

chemicals Documentation, Release 1.1.4

1.28.9 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.thermal_conductivity.k_data_Perrys_8E_2_315
Data from [1] with chemicals.dippr.EQ100 coefficients for liquids.

chemicals.thermal_conductivity.k_data_Perrys_8E_2_314
Data from [1] with chemicals.dippr.EQ102 coefficients for gases.

chemicals.thermal_conductivity.k_data_VDI_PPDS_9
Data from [2] with polynomial coefficients for liquids.

chemicals.thermal_conductivity.k_data_VDI_PPDS_10
Data from [2] with polynomial coefficients for gases.

In [1]: import chemicals

In [2]: chemicals.thermal_conductivity.k_data_Perrys_8E_2_315
Out[2]:

Chemical C1 C2 ... C5 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 0.37329 -0.000650 ... 0.0 204.00 234.00
55-21-0 Benzamide 0.28485 -0.000252 ... 0.0 403.00 563.15
56-23-5 Carbon tetrachloride 0.15890 -0.000199 ... 0.0 250.33 349.79
57-55-6 1,2-Propylene glycol 0.21520 -0.000050 ... 0.0 213.15 460.75
60-29-7 Diethyl ether 0.24950 -0.000407 ... 0.0 156.85 433.15
...
10028-15-6 Ozone 0.17483 0.000753 ... 0.0 77.35 161.85
10035-10-6 Hydrogen bromide 0.23400 -0.000464 ... 0.0 185.15 290.62
10102-43-9 Nitric oxide 0.18780 0.001029 ... 0.0 110.00 176.40
13511-13-2 Propenylcyclohexene 0.18310 -0.000203 ... 0.0 199.00 431.65
132259-10-0 Air 0.28472 -0.001739 ... 0.0 75.00 125.00

[340 rows x 8 columns]

In [3]: chemicals.thermal_conductivity.k_data_Perrys_8E_2_314
Out[3]:

Chemical C1 ... Tmin Tmax
CAS ...
50-00-0 Formaldehyde 44.847000 ... 254.05 994.05
55-21-0 Benzamide 0.025389 ... 563.15 1000.00
56-23-5 Carbon tetrachloride 0.000166 ... 349.79 1000.00
57-55-6 1,2-Propylene glycol 0.000167 ... 460.75 1000.00
60-29-7 Diethyl ether -0.004489 ... 200.00 600.00
...
10028-15-6 Ozone 0.004315 ... 161.85 1000.00
10035-10-6 Hydrogen bromide 0.000497 ... 206.45 600.00
10102-43-9 Nitric oxide 0.000410 ... 121.38 750.00
13511-13-2 Propenylcyclohexene 0.000102 ... 431.65 1000.00
132259-10-0 Air 0.000314 ... 70.00 2000.00

[345 rows x 7 columns]

In [4]: chemicals.thermal_conductivity.k_data_VDI_PPDS_9
(continues on next page)

334 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

Out[4]:
Chemical A ... D E

CAS ...
50-00-0 Formaldehyde 0.3834 ... 1.156000e-09 -2.638000e-12
56-23-5 Carbon tetrachloride 0.1509 ... -7.100000e-11 3.980000e-13
56-81-5 Glycerol 0.2562 ... -1.050000e-10 1.020000e-13
60-29-7 Diethyl ether 0.2499 ... -8.600000e-11 7.300000e-14
62-53-3 Aniline 0.2365 ... -3.600000e-11 2.100000e-14
...
10097-32-2 Bromine -0.1426 ... 2.690200e-08 -1.774400e-11
10102-43-9 Nitric oxide 0.2268 ... -1.993600e-08 1.448400e-11
10102-44-0 Nitrogen dioxide 0.3147 ... 2.620000e-10 -6.980000e-13
10544-72-6 Dinitrogentetroxide 0.1864 ... -5.440000e-10 1.509000e-12
132259-10-0 Air -0.0006 ... 1.114335e-06 -2.670110e-09

[271 rows x 6 columns]

In [5]: chemicals.thermal_conductivity.k_data_VDI_PPDS_10
Out[5]:

Chemical A ... D E
CAS ...
50-00-0 Formaldehyde 8.870000e-04 ... 0.000000e+00 0.000000e+00
56-23-5 Carbon tetrachloride -2.101000e-03 ... 0.000000e+00 0.000000e+00
56-81-5 Glycerol -9.158000e-03 ... 0.000000e+00 0.000000e+00
60-29-7 Diethyl ether -5.130000e-04 ... 0.000000e+00 0.000000e+00
62-53-3 Aniline -9.960000e-03 ... 0.000000e+00 0.000000e+00
...
10097-32-2 Bromine 5.455000e-03 ... 0.000000e+00 0.000000e+00
10102-43-9 Nitric oxide 1.440000e-04 ... 0.000000e+00 0.000000e+00
10102-44-0 Nitrogen dioxide 6.608500e-02 ... 0.000000e+00 0.000000e+00
10544-72-6 Dinitrogentetroxide 1.460000e-09 ... 0.000000e+00 0.000000e+00
132259-10-0 Air -9.080000e-04 ... 5.696400e-11 -1.563100e-14

[275 rows x 6 columns]

1.29 Triple Point (chemicals.triple)

This module contains lookup functions for a chemical’s triple temperature and pressure. The triple temperature is the
unique co-existence point between a pure chemicals’s solid, gas, and liquid state.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Triple Temperature

• Triple Pressure

1.29. Triple Point (chemicals.triple) 335

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

1.29.1 Triple Temperature

chemicals.triple.Tt(CASRN, method=None)
This function handles the retrieval of a chemical’s triple temperature. Lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns None if the data is not available.

Returns data from [1], [2] or [3], or a chemical’s melting point if available.

Parameters
CASRN [str] CASRN [-]

Returns
Tt [float] Triple point temperature, [K].

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

Tt_all_methods.

See also:

Tt_methods

Notes

Median difference between melting points and triple points is 0.02 K. Accordingly, this should be more than
good enough for engineering applications.

The data in [1] is originally on the ITS-68 temperature scale, but was converted to ITS-90. The numbers were
rounded to 6 decimal places arbitrarily and the conversion was performed with this library.

References

[1], [2], [3]

Examples

Ammonia

>>> Tt('7664-41-7')
195.49

chemicals.triple.Tt_methods(CASRN)
Return all methods available to obtain the triple temperature for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Tt with the given inputs.

See also:

Tt

336 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.triple.Tt_all_methods = ('HEOS', 'STAVELEY', 'WEBBOOK', 'MELTING')
Tuple of method name keys. See the Tt for the actual references

1.29.2 Triple Pressure

chemicals.triple.Pt(CASRN, method=None)
This function handles the retrieval of a chemical’s triple pressure. Lookup is based on CASRNs. Will automat-
ically select a data source to use if no method is provided; returns None if the data is not available.

Returns data from [1], [2], or [3].

This function does not implement it but it is also possible to calculate the vapor pressure at the triple temperature
from a vapor pressure correlation, if data is available; note most Antoine-type correlations do not extrapolate
well to this low of a pressure.

Parameters
CASRN [str] CASRN [-]

Returns
Pt [float] Triple point pressure, [Pa]

Other Parameters
method [string, optional] A string for the method name to use, as defined in the variable,

Pt_all_methods.

See also:

Pt_methods

References

[1], [2], [3]

Examples

Ammonia

>>> Pt('7664-41-7')
6053.386

chemicals.triple.Pt_methods(CASRN)
Return all methods available to obtain the Pt for the desired chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain the Pt with the given inputs.

See also:

Pt

1.29. Triple Point (chemicals.triple) 337

chemicals Documentation, Release 1.1.4

chemicals.triple.Pt_all_methods = ('HEOS', 'STAVELEY', 'WEBBOOK')
Tuple of method name keys. See the Pt for the actual references

1.30 Utilities (chemicals.utils)

This module contains miscellaneous functions which may be useful. This includes definitions of some chemical prop-
erties, and conversions between others.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

chemicals.utils.API_to_SG(API)
Calculates specific gravity of a liquid given its API, as shown in [1].

SG at 60∘F =
141.5

API gravity + 131.5

Parameters
API [float] API of the fluid [-]

Returns
SG [float] Specific gravity of the fluid at 60 degrees Farenheight [-]

Notes

Defined only at 60 degrees Fahrenheit.

References

[1]

Examples

>>> API_to_SG(60.62)
0.7365188423901728

chemicals.utils.API_to_rho(API, rho_ref=999.0170824078306)
Calculates mass density of a liquid given its API, as shown in [1].

𝜌 60∘F =
141.5𝜌𝑟𝑒𝑓

API + 131.5

Parameters
API [float] API of the fluid [-]

rho_ref [float, optional] Density of the reference substance, [kg/m^3]

Returns
rho [float] Mass density the fluid at 60 degrees Farenheight [kg/m^3]

338 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

Defined only at 60 degrees Fahrenheit.

References

[1]

Examples

>>> API_to_rho(rho_to_API(820))
820.0

chemicals.utils.Cp_minus_Cv(T, dP_dT, dP_dV)
Calculate the difference between a real gas’s constant-pressure heat capacity and constant-volume heat capacity,
as given in [1], [2], and [3]. The required derivatives should be calculated with an equation of state.

𝐶𝑝 − 𝐶𝑣 = −𝑇
(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Parameters
T [float] Temperature of fluid [K]

dP_dT [float] Derivative of P with respect to T, [Pa/K]

dP_dV [float] Derivative of P with respect to V, [Pa*mol/m^3]

Returns
Cp_minus_Cv [float] Cp - Cv for a real gas, [J/mol/K]

Notes

Equivalent expressions are:

𝐶𝑝 − 𝐶𝑣 = −𝑇
(︂
𝜕𝑉

𝜕𝑇

)︂2

𝑃

/

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

𝐶𝑝 − 𝐶𝑣 = 𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂(︂
𝜕𝑉

𝜕𝑇

)︂
Note that these are not second derivatives, only first derivatives, some of which are squared.

References

[1], [2], [3]

1.30. Utilities (chemicals.utils) 339

chemicals Documentation, Release 1.1.4

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> Cp_minus_Cv(299, 582232.475794113, -3665180614672.253)
27.654681381642394

chemicals.utils.Joule_Thomson(T, V, Cp, dV_dT=None, beta=None)
Calculate a real fluid’s Joule Thomson coefficient. The required derivative should be calculated with an equation
of state, and Cp is the real fluid versions. This can either be calculated with dV_dT directly, or with beta if it is
already known.

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)

Parameters
T [float] Temperature of fluid, [K]

V [float] Molar volume of fluid, [m^3/mol]

Cp [float] Real fluid heat capacity at constant pressure, [J/mol/K]

dV_dT [float, optional] Derivative of V with respect to T, [m^3/mol/K]

beta [float, optional] Isobaric coefficient of a thermal expansion, [1/K]

Returns
mu_JT [float] Joule-Thomson coefficient [K/Pa]

References

[1], [2]

Examples

Example from [2]:

>>> Joule_Thomson(T=390, V=0.00229754, Cp=153.235, dV_dT=1.226396e-05)
1.621956080529905e-05

chemicals.utils.Parachor(MW, rhol, rhog, sigma)
Calculate Parachor for a pure species, using its density in the liquid and gas phases, surface tension, and molecular
weight.

𝑃 =
𝜎0.25𝑀𝑊

𝜌𝐿 − 𝜌𝑉

Parameters
MW [float] Molecular weight, [g/mol]

rhol [float] Liquid density [kg/m^3]

rhog [float] Gas density [kg/m^3]

sigma [float] Surface tension, [N/m]

Returns
P [float] Parachor, [N^0.25*m^2.75/mol]

340 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

To convert the output of this function to units of [mN^0.25*m^2.75/kmol], multiply by 5623.4132519.

Values in group contribution tables for Parachor are often listed as dimensionless, in which they are multiplied
by 5623413 and the appropriate units to make them dimensionless.

References

[1], [2], [3]

Examples

Calculating Parachor from a known surface tension for methyl isobutyl ketone at 293.15 K

>>> Parachor(100.15888, 800.8088185536124, 4.97865317223119, 0.02672166960656005)
5.088443542210164e-05

Converting to the dimensionless form:

>>> 5623413*5.088443542210164e-05
286.14419565030687

Compared to 274.9 according to a group contribution method described in [3].

chemicals.utils.SG(rho, rho_ref=999.0170824078306)
Calculates the specific gravity of a substance with respect to another substance; by default, this is water at 15.555
°C (60 °F). For gases, normally the reference density is 1.2 kg/m^3, that of dry air. However, in general specific
gravity should always be specified with respect to the temperature and pressure of its reference fluid. This can
vary widely.

𝑆𝐺 =
𝜌

𝜌𝑟𝑒𝑓

Parameters
rho [float] Density of the substance, [kg/m^3]

rho_ref [float, optional] Density of the reference substance, [kg/m^3]

Returns
SG [float] Specific gravity of the substance with respect to the reference density, [-]

Notes

Another common reference point is water at 4°C (rho_ref=999.9748691393087). Specific gravity is often used
by consumers instead of density. The reference for solids is normally the same as for liquids - water.

1.30. Utilities (chemicals.utils) 341

chemicals Documentation, Release 1.1.4

Examples

>>> SG(860)
0.8608461408159591

chemicals.utils.SG_to_API(SG)
Calculates API of a liquid given its specific gravity, as shown in [1].

API gravity =
141.5

SG
− 131.5

Parameters
SG [float] Specific gravity of the fluid at 60 degrees Farenheight [-]

Returns
API [float] API of the fluid [-]

Notes

Defined only at 60 degrees Fahrenheit.

References

[1]

Examples

>>> SG_to_API(0.7365)
60.62491513917175

chemicals.utils.Vfs_to_zs(Vfs, Vms)
Converts a list of mass fractions to mole fractions. Requires molecular weights for all species.

𝑧𝑖 =

Vf𝑖
𝑉𝑚,𝑖∑︀
𝑖

Vf𝑖
𝑉𝑚,𝑖

Parameters
Vfs [iterable] Molar volume fractions [-]

VMs [iterable] Molar volumes of species [m^3/mol]

Returns
zs [list] Mole fractions [-]

342 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

Molar volumes are specified in terms of pure components only. Function works with any phase.

Examples

Acetone and benzene example

>>> Vfs_to_zs([0.596, 0.404], [8.0234e-05, 9.543e-05])
[0.6369779395901142, 0.3630220604098858]

chemicals.utils.Vm_to_rho(Vm, MW)
Calculate the density of a chemical, given its molar volume and molecular weight.

𝜌 =
𝑀𝑊

1000 · 𝑉𝑀

Parameters
Vm [float] Molar volume, [m^3/mol]

MW [float] Molecular weight, [g/mol]

Returns
rho [float] Density, [kg/m^3]

References

[1]

Examples

>>> Vm_to_rho(0.000132, 86.18)
652.8787878787879

chemicals.utils.Watson_K(Tb, SG)
Calculates the Watson or UOP K Characterization factor of a liquid of a liquid given its specific gravity, and its
average boiling point as shown in [1].

𝐾𝑊 =
𝑇

1/3
𝑏

SG at 60∘F

Parameters
SG [float] Specific gravity of the fluid at 60 degrees Farenheight [-]

Tb [float] Average normal boiling point, [K]

Returns
K_W [float] Watson characterization factor

1.30. Utilities (chemicals.utils) 343

chemicals Documentation, Release 1.1.4

Notes

There are different ways to compute the average boiling point, so two different definitions are often used - K_UOP
using volume average boiling point (VABP) using distillation points of 10%, 30%, 50%, 70%, and 90%; and
K_Watson using mean average boiling point (MeABP).

References

[1]

Examples

>>> Watson_K(400, .8)
11.20351186639291

Sample problem in Comments on Procedure 2B5.1 of [1]; a fluids has a MEAB of 580 F and a SG of 34.5.

>>> from fluids.core import F2K
>>> Watson_K(F2K(580), API_to_SG(34.5))
11.884570347084471

chemicals.utils.Z(T, P, V)
Calculates the compressibility factor of a gas, given its temperature, pressure, and molar volume.

𝑍 =
𝑃𝑉

𝑅𝑇

Parameters
T [float] Temperature, [K]

P [float] Pressure [Pa]

V [float] Molar volume, [m^3/mol]

Returns
Z [float] Compressibility factor, [-]

References

[1]

Examples

>>> Z(600, P=1E6, V=0.00463)
0.9281016730797026

chemicals.utils.d2ns_to_dn2_partials(d2ns, dns)

Convert second-order mole number derivatives of a quantity to the following second-order partial deriva-
tive:

344 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝜕2𝑛𝐹

𝜕𝑛𝑗𝜕𝑛𝑖
=

𝜕2𝐹

𝜕𝑛𝑖𝜕𝑛𝑗
+
𝜕𝐹

𝜕𝑛𝑖
+
𝜕𝐹

𝜕𝑛𝑗
Requires the second order mole number derivatives and the first order mole number derivatives of the mixture
only.

Parameters
d2ns [list[float]] Second order derivatives of a quantity with respect to mole number (summing

to 1), [prop/mol^2]

dns [list[float]] Derivatives of a quantity with respect to mole number (summing to 1),
[prop/mol]

Returns
second_partial_properties [list[list[float]]] Derivatives of a quantity with respect to mole num-

ber (summing to 1), [prop]

See also:

dxs_to_dns

dns_to_dn_partials

dxs_to_dn_partials

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

This was originally implemented to allow for the calculation of first mole number derivatices of log fugacity
coefficients; the two arguments are the second and first mole number derivatives of the overall mixture log
fugacity coefficient.

Derived with the following SymPy code.

>>> from sympy import *
>>> n1, n2 = symbols('n1, n2')
>>> f, g, h = symbols('f, g, h', cls=Function)
>>> diff(h(n1, n2)*f(n1, n2), n1, n2)
f(n1, n2)*Derivative(h(n1, n2), n1, n2) + h(n1, n2)*Derivative(f(n1, n2), n1, n2) +␣
→˓Derivative(f(n1, n2), n1)*Derivative(h(n1, n2), n2) + Derivative(f(n1, n2),␣
→˓n2)*Derivative(h(n1, n2), n1)

Examples

>>> d2ns = [[0.152, 0.08, 0.547], [0.08, 0.674, 0.729], [0.547, 0.729, 0.131]]
>>> d2ns_to_dn2_partials(d2ns, [20.0, .124, 900.52])
[[40.152, 20.203999999999997, 921.067], [20.204, 0.922, 901.3729999999999], [921.
→˓067, 901.373, 1801.1709999999998]]

chemicals.utils.d2xs_to_d2xsn1(d2xs)
Convert the second mole fraction derivatives of a quantity (calculated so they do not sum to 1) to derivatives
such that they do sum to 1 Requires the second derivatives of the mixture only. The size of the returned array is
one less than the input in both dimensions(︂

𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
∑︀𝑁

𝑥𝑖
=1

=

(︂
𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗
− 𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑁
− 𝜕2𝐹

𝜕𝑥𝑗𝜕𝑥𝑁
+

𝜕2𝐹

𝜕𝑥𝑁𝜕𝑥𝑁

)︂
∑︀𝑁

𝑥𝑖
̸=1

1.30. Utilities (chemicals.utils) 345

chemicals Documentation, Release 1.1.4

Parameters
second [list[float]] Second of a quantity with respect to mole fraction (not summing to 1), [prop]

Returns
d2xsm1 [list[float]] Second derivatives of a quantity with respect to mole fraction (summing to

1 by altering the last component’s composition), [prop]

Examples

>>> d2xs_to_d2xsn1([[-2890.4327598108, -6687.0990540960065, -1549.375443699441], [-
→˓6687.099054095983, -2811.2832904869883, -1228.6223853777503], [-1549.
→˓3754436994498, -1228.6223853777562, -3667.388098758508]])
[[-3459.069971170426, -7576.489323777324], [-7576.489323777299, -4021.
→˓4266184899957]]

chemicals.utils.d2xs_to_dxdn_partials(d2xs, xs)
Convert second-order mole fraction derivatives of a quantity (calculated so they do not sum to 1) to the following
second-order partial derivative:

𝜕2𝑛𝐹

𝜕𝑥𝑗𝜕𝑛𝑖
=

𝜕2𝐹

𝜕𝑥𝑖𝑥𝑗
−
∑︁
𝑘

𝑥𝑘
𝜕2𝐹

𝜕𝑥𝑘𝜕𝑥𝑗

Requires the second derivatives and the mole fractions of the mixture only.

Parameters
d2xs [list[float]]

Second derivatives of a quantity with respect to mole fraction (not summing to 1),
[prop]

xs [list[float]] Mole fractions of the species, [-]

Returns
partial_properties [list[float]] Derivatives of a quantity with respect to mole number (summing

to 1), [prop]

See also:

dxs_to_dns

dns_to_dn_partials

dxs_to_dn_partials

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

346 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> d2xs = [[0.152, 0.08, 0.547], [0.08, 0.674, 0.729], [0.547, 0.729, 0.131]]
>>> d2xs_to_dxdn_partials(d2xs, [0.7, 0.2, 0.1])
[[-0.02510000000000001, -0.18369999999999997, 0.005199999999999982], [-0.0971, 0.
→˓41030000000000005, 0.18719999999999992], [0.3699, 0.4653, -0.41080000000000005]]

chemicals.utils.dns_to_dn_partials(dns, F, partial_properties=None)
Convert the mole number derivatives of a quantity (calculated so they do sum to 1) to partial molar quantites.(︂

𝜕𝑛𝐹

𝜕𝑛𝑖

)︂
𝑛𝑘 ̸=𝑖

= 𝐹𝑖 + 𝑛

(︂
𝜕𝐹

𝜕𝑛𝑖

)︂
𝑛𝑘 ̸=𝑖

In the formula, the n is 1.

Parameters
dns [list[float]] Derivatives of a quantity with respect to mole number (summing to 1),

[prop/mol]

F [float] Property evaluated at constant composition, [prop]

partial_properties [list[float], optional] Optional output array for derivatives of a quantity with
respect to mole number (summing to 1), [prop]

Returns
partial_properties [list[float]] Derivatives of a quantity with respect to mole number (summing

to 1), [prop]

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

This applies to a specific phase only, not to a mixture of multiple phases.

This is especially useful for fugacity calculations.

Examples

>>> dns_to_dn_partials([0.001459, -0.002939, -0.004334], -0.0016567)
[-0.0001977000000000001, -0.0045957, -0.0059907]

chemicals.utils.dxs_to_dn_partials(dxs, xs, F, partial_properties=None)
Convert the mole fraction derivatives of a quantity (calculated so they do not sum to 1) to partial molar quantites.
Requires the derivatives and the mole fractions of the mixture.(︂

𝜕𝑛𝐹

𝜕𝑛𝑖

)︂
=

(︂
𝜕𝐹

𝜕𝑥𝑖

)︂
+ 𝐹 −

∑︁
𝑗

𝑥𝑗

(︂
𝜕𝐹

𝜕𝑥𝑗

)︂
Parameters

dxs [list[float]] Derivatives of a quantity with respect to mole fraction (not summing to 1), [prop]

xs [list[float]] Mole fractions of the species, [-]

F [float] Property evaluated at constant composition, [prop]

1.30. Utilities (chemicals.utils) 347

chemicals Documentation, Release 1.1.4

partial_properties [list[float], optional] Array for Derivatives of a quantity with respect to mole
number (summing to 1), [prop]

Returns
partial_properties [list[float]] Derivatives of a quantity with respect to mole number (summing

to 1), [prop]

See also:

dxs_to_dns

dns_to_dn_partials

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

This applies to a specific phase only, not to a mixture of multiple phases.

Examples

>>> dxs_to_dn_partials([-0.0026404, -0.00719, -0.00859], [0.7, 0.2, 0.1],
... -0.0016567)
[-0.00015182, -0.0047014199999999996, -0.00610142]

chemicals.utils.dxs_to_dns(dxs, xs, dns=None)
Convert the mole fraction derivatives of a quantity (calculated so they do not sum to 1) to mole number derivatives
(where the mole fractions do sum to one). Requires the derivatives and the mole fractions of the mixture.

(︂
𝜕𝑀

𝜕𝑛𝑖

)︂
𝑛𝑘 ̸=𝑖

=

⎡⎣(︂𝜕𝑀
𝜕𝑥𝑖

)︂
𝑥𝑘 ̸=𝑖

−
∑︁
𝑗

𝑥𝑗

(︂
𝜕𝑀

𝜕𝑥𝑗

)︂
𝑥𝑘 ̸=𝑗

⎤⎦
Parameters

dxs [list[float]] Derivatives of a quantity with respect to mole fraction (not summing to 1), [prop]

xs [list[float]] Mole fractions of the species, [-]

dns [list[float], optional] Return array, [prop/mol]

Returns
dns [list[float]] Derivatives of a quantity with respect to mole number (summing to 1),

[prop/mol]

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

This applies to a specific phase only, not to a mixture of multiple phases.

348 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> dxs_to_dns([-0.0028, -0.00719, -0.00859], [0.7, 0.2, 0.1])
[0.0014570000000000004, -0.002933, -0.004333]

chemicals.utils.dxs_to_dxsn1(dxs)
Convert the mole fraction derivatives of a quantity (calculated so they do not sum to 1) to derivatives such that
they do sum to 1 by changing the composition of the last component in the negative of the component which is
changed. Requires the derivatives of the mixture only. The size of the returned array is one less than the input.(︂

𝜕𝐹

𝜕𝑥𝑖

)︂
∑︀𝑁

𝑥𝑖
=1

=

(︂
𝜕𝐹

𝜕𝑥𝑖
− 𝜕𝐹

𝜕𝑥𝑁

)︂
∑︀𝑁

𝑥𝑖
̸=1

Parameters
dxs [list[float]] Derivatives of a quantity with respect to mole fraction (not summing to 1), [prop]

Returns
dxsm1 [list[float]] Derivatives of a quantity with respect to mole fraction (summing to 1 by

altering the last component’s composition), [prop]

Examples

>>> dxs_to_dxsn1([-2651.3181821109024, -2085.574403592012, -2295.0860830203587])
[-356.23209909054367, 209.51167942834672]

chemicals.utils.isentropic_exponent(Cp, Cv)
Calculate the isentropic coefficient of an ideal gas, given its constant- pressure and constant-volume heat capacity.

𝑘 =
𝐶𝑝

𝐶𝑣

Parameters
Cp [float] Ideal gas heat capacity at constant pressure, [J/mol/K]

Cv [float] Ideal gas heat capacity at constant volume, [J/mol/K]

Returns
k [float] Isentropic exponent, [-]

See also:

isentropic_exponent_PV

isentropic_exponent_PT

isentropic_exponent_TV

1.30. Utilities (chemicals.utils) 349

chemicals Documentation, Release 1.1.4

Notes

For real gases, there are more complexities and formulas. Each of the formulas reverts to this formula in the case
of an ideal gas.

References

[1]

Examples

>>> isentropic_exponent(33.6, 25.27)
1.329639889196676

chemicals.utils.isentropic_exponent_PT(Cp, P, dV_dT_P)
Calculate the isentropic coefficient of real fluid using the definition of 𝑃 (1−𝑘)𝑇 𝑘 = const.

𝑘 =
1

1 − 𝑃
𝐶𝑝

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃

Parameters
Cp [float] Real heat capacity at constant pressure, [J/mol/K]

P [float] Pressure [Pa]

dV_dT_P [float] Derivative of V with respect to T (at constant pressure), [m^3/(mol*K)]

Returns
k_PT [float] Isentropic exponent of a real fluid, [-]

See also:

isentropic_exponent_PV

isentropic_exponent

isentropic_exponent_TV

References

[1], [2]

Examples

Isentropic exponent of air according to Lemmon (2000) at 1000 bar and 300 K:

>>> isentropic_exponent_PT(Cp=38.36583283578205, P=100000000.0, dV_dT_P=9.
→˓407705210161724e-08)
1.32487270350443

350 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.utils.isentropic_exponent_PV(Cp, Cv, Vm, P, dP_dV_T)
Calculate the isentropic coefficient of real fluid using the definition of 𝑃𝑉 𝑘 = const.

𝑘 = −𝑉
𝑃

𝐶𝑝

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Parameters
Cp [float] Real heat capacity at constant pressure, [J/mol/K]

Cv [float] Real heat capacity at constant volume, [J/mol/K]

Vm [float] Molar volume, [m^3/mol]

P [float] Pressure [Pa]

dP_dV_T [float] Derivative of P with respect to V (at constant temperature), [Pa*mol/m^3]

Returns
k_PV [float] Isentropic exponent of a real fluid, [-]

See also:

isentropic_exponent

isentropic_exponent_PT

isentropic_exponent_TV

References

[1], [2]

Examples

Isentropic exponent of air according to Lemmon (2000) at 1000 bar and 300 K:

>>> isentropic_exponent_PV(Cp=38.36583283578205, Cv=23.98081290153672, Vm=4.
→˓730885141495376e-05, P=100000000.0, dP_dV_T=-5417785576072.434)
4.100576762582646

chemicals.utils.isentropic_exponent_TV(Cv, Vm, dP_dT_V)
Calculate the isentropic coefficient of real fluid using the definition of 𝑇𝑉 𝑘−1 = const.

𝑘 = 1 +
𝑉

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Parameters
Cv [float] Real heat capacity at constant volume, [J/mol/K]

Vm [float] Molar volume, [m^3/mol]

dP_dT_V [float] Derivative of P with respect to T (at constant volume), [Pa/K]

Returns
k_TV [float] Isentropic exponent of a real fluid, [-]

See also:

1.30. Utilities (chemicals.utils) 351

chemicals Documentation, Release 1.1.4

isentropic_exponent_PV

isentropic_exponent_PT

isentropic_exponent

References

[1], [2]

Examples

Isentropic exponent of air according to Lemmon (2000) at 1000 bar and 300 K:

>>> isentropic_exponent_TV(Cv=23.98081290153672, Vm=4.730885141495376e-05, dP_dT_
→˓V=509689.2959155567)
2.005504495083

chemicals.utils.isobaric_expansion(V, dV_dT)
Calculate the isobaric coefficient of a thermal expansion, given its molar volume at a certain T and P, and its
derivative of molar volume with respect to T.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Parameters
V [float] Molar volume at T and P, [m^3/mol]

dV_dT [float] Derivative of molar volume with respect to T, [m^3/mol/K]

Returns
beta [float] Isobaric coefficient of a thermal expansion, [1/K]

Notes

For an ideal gas, this expression simplified to:

𝛽 =
1

𝑇

References

[1]

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> isobaric_expansion(0.000130229900873546, 1.58875261849113e-7)
0.0012199599384121608

352 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.utils.isothermal_compressibility(V, dV_dP)
Calculate the isothermal coefficient of compressibility, given its molar volume at a certain T and P, and its
derivative of molar volume with respect to P.

𝜅 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Parameters
V [float] Molar volume at T and P, [m^3/mol]

dV_dP [float] Derivative of molar volume with respect to P, [m^3/mol/Pa]

Returns
kappa [float] Isothermal coefficient of compressibility, [1/Pa]

Notes

For an ideal gas, this expression simplified to:

𝜅 =
1

𝑃

The isothermal bulk modulus is the inverse of this quantity:

𝐾 = −𝑉
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

The ideal gas isothermal bulk modulus is simply the gas’s pressure.

References

[1]

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> isothermal_compressibility(0.000130229900873546, -2.72902118209903e-13)
2.095541165119158e-09

Calculate the bulk modulus of propane from the PR EOS at 294 K as a gas:

>>> 1/isothermal_compressibility(0.0024576770482135617, -3.5943321700795866e-09)
683764.5859979445

chemicals.utils.mix_component_flows(IDs1, IDs2, flow1, flow2, fractions1, fractions2)
Mix two flows of potentially different chemicals of given overall flow rates and flow fractions to determine the
outlet components, flow rates, and compositions. The flows do not need to be of the same length.

Parameters
IDs1 [list[str]] List of identifiers of the chemical species in flow one, [-]

IDs2 [list[str]] List of identifiers of the chemical species in flow two, [-]

flow1 [float] Total flow rate of the chemicals in flow one, [mol/s]

1.30. Utilities (chemicals.utils) 353

chemicals Documentation, Release 1.1.4

flow2 [float] Total flow rate of the chemicals in flow two, [mol/s]

fractions1 [list[float]] Mole fractions of each chemical in flow one, [-]

fractions2 [list[float]] Mole fractions of each chemical in flow two, [-]

Returns
cmps [list[str]] List of identifiers of the chemical species in the combined flow, [-]

moles [list[float]] Flow rates of all chemical species in the combined flow, [mol/s]

Notes

Mass or volume flows and fractions can be used instead of molar ones.

If the two flows have the same components, the output list will be in the same order as the one given; otherwise
they are sorted alphabetically.

Examples

>>> mix_component_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'], 1, 1,␣
→˓[0.5, 0.5], [0.5, 0.5])
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.5, 1.0])

chemicals.utils.mix_component_partial_flows(IDs1, IDs2, ns1=None, ns2=None)
Mix two flows of potentially different chemicals; with the feature that the mole flows of either or both streams
may be unknown.

The flows do not need to be of the same length.

Parameters
IDs1 [list[str]] List of identifiers of the chemical species in flow one, [-]

IDs2 [list[str]] List of identifiers of the chemical species in flow two, [-]

ns1 [list[float]] Total flow rate of the chemicals in flow one, [mol/s]

ns2 [list[float]] Total flow rate of the chemicals in flow two, [mol/s]

Returns
cmps [list[str]] List of identifiers of the chemical species in the combined flow, [-]

moles [list[float]] Flow rates of all chemical species in the combined flow, [mol/s]

Notes

Mass or volume flows and fractions can be used instead of molar ones.

If the two flows have the same components, the output list will be in the same order as the one given; otherwise
they are sorted alphabetically.

354 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'],␣
→˓[0.5, 0.5], [0.5, 0.5])
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.5, 1.0])
>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'],␣
→˓None, [0.5, 0.5])
(['64-17-5', '67-56-1', '7732-18-5'], [0.0, 0.5, 0.5])
>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'],␣
→˓[0.5, 0.5], None)
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.0, 0.5])
>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'],␣
→˓None, None)
(['64-17-5', '67-56-1', '7732-18-5'], [0.0, 0.0, 0.0])

chemicals.utils.mix_multiple_component_flows(IDs, flows, fractions)
Mix multiple flows of potentially different chemicals of given overall flow rates and flow fractions to determine
the outlet components, flow rates, and compositions. The flows do not need to be of the same length.

Parameters
IDs [list[list[str]]] List of lists of identifiers of the chemical species in the flows, [-]

flows [list[float]] List of total flow rates of the chemicals in the streams, [mol/s]

fractions [list[list[float]]] List of lists of mole fractions of each chemical in each flow, [-]

Returns
cmps [list[str]] List of identifiers of the chemical species in the combined flow, [-]

moles [list[float]] Flow rates of all chemical species in the combined flow, [mol/s]

Notes

Mass or volume flows and fractions can be used instead of molar ones.

If the every flow have the same components, the output list will be in the same order as the one given; otherwise
they are sorted alphabetically.

Examples

>>> mix_multiple_component_flows([['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1
→˓']],
... [1, 1], [[0.5, 0.5], [0.5, 0.5]])
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.5, 1.0])

chemicals.utils.mixing_logarithmic(fracs, props)
Simple function calculates a property based on weighted averages of logarithmic properties.

𝑦 =
∑︁
𝑖

frac𝑖 · ln(prop𝑖)

Parameters
fracs [array-like] Fractions of a mixture

props: array-like Properties

1.30. Utilities (chemicals.utils) 355

chemicals Documentation, Release 1.1.4

Returns
prop [value] Calculated property

Notes

Does not work on negative values. Returns None if any fractions or properties are missing or are not of the same
length.

Examples

>>> mixing_logarithmic([0.1, 0.9], [0.01, 0.02])
0.01866065983073615

chemicals.utils.mixing_power(fracs, props, r)
Power law mixing rule for any property, with a variable exponent r as input. Optimiezd routines are available for
r=-4,-3,-2,-1,1,2,3,4.

prop𝑟𝑚𝑖𝑥 =
∑︁
𝑖

𝑧𝑖 (prop𝑖)
𝑟

Parameters
fracs [list[float]] Mole fractions of components (or mass, or volume, etc.), [-]

props [list[float]] Properties of all components, [various]

r [float] Power mixing exponent, [-]

Returns
prop [float] Property for mixture, [props]

Notes

This equation is entirely dimensionless; all dimensions cancel.

The following recommendations in [1] exist for different properties:

Surface tension: r = 1 Recommended by an author in [1]; but often non-linear behavior is shown and r= -1 to
r=-3 is recommended. r = -1 is most often used.

Liquid thermal conductivity: r = -2 in [1]; this is known also as procedure DIPPR9B.

References

[1]

356 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> mixing_power([0.258, 0.742], [0.1692, 0.1528], -2)
0.15657104706719646

chemicals.utils.mixing_simple(fracs, props)
Simple function calculates a property based on weighted averages of properties. Weights could be mole fractions,
volume fractions, mass fractions, or anything else.

𝑦 =
∑︁
𝑖

frac𝑖 · prop𝑖

Parameters
fracs [array-like] Fractions of a mixture

props: array-like Properties

Returns
prop [value] Calculated property

Notes

Returns None if there is an error, normally if one of the properties is missing or if they are not the same length
as the fractions.

Examples

>>> mixing_simple([0.1, 0.9], [0.01, 0.02])
0.019000000000000003

chemicals.utils.molar_velocity_to_velocity(v_molar, MW)
Calculate the mass-based velocity (m/s) from the molar velocity of the fluid.

𝑣 =
𝑣𝑚𝑜𝑙𝑎𝑟

√
1000√

MW

Parameters
v_molar [float] Molar velcoity, [m*kg^0.5/s/mol^0.5]

MW [float] Molecular weight, [g/mol]

Returns
v [float] Velocity, [m/s]

1.30. Utilities (chemicals.utils) 357

chemicals Documentation, Release 1.1.4

Examples

>>> molar_velocity_to_velocity(46., 40.445)
228.73

chemicals.utils.none_and_length_check(all_inputs, length=None)
Checks inputs for suitability of use by a mixing rule which requires all inputs to be of the same length and
non-None. A number of variations were attempted for this function; this was found to be the quickest.

Parameters
all_inputs [array-like of array-like] list of all the lists of inputs, [-]

length [int, optional] Length of the desired inputs, [-]

Returns
False/True [bool] Returns True only if all inputs are the same length (or length length) and none

of the inputs contain None [-]

Notes

Does not check for nan values.

Examples

>>> none_and_length_check(([1, 1], [1, 1], [1, 30], [10,0]), length=2)
True

chemicals.utils.normalize(values)
Simple function which normalizes a series of values to be from 0 to 1, and for their sum to add to 1.

𝑥 =
𝑥

𝑠𝑢𝑚𝑖𝑥𝑖

Parameters
values [array-like] array of values

Returns
fractions [array-like] Array of values from 0 to 1

Notes

Does not work on negative values, or handle the case where the sum is zero.

358 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> normalize([3, 2, 1])
[0.5, 0.3333333333333333, 0.16666666666666666]

chemicals.utils.phase_identification_parameter(V, dP_dT, dP_dV, d2P_dV2, d2P_dVdT)
Calculate the Phase Identification Parameter developed in [1] for the accurate and efficient determination of
whether a fluid is a liquid or a gas based on the results of an equation of state. For supercritical conditions, this
provides a good method for choosing which property correlations to use.

Π = 𝑉

[︃
𝜕2𝑃
𝜕𝑉 𝜕𝑇
𝜕𝑃
𝜕𝑇

−
𝜕2𝑃
𝜕𝑉 2

𝜕𝑃
𝜕𝑉

]︃

Parameters
V [float] Molar volume at T and P, [m^3/mol]

dP_dT [float] Derivative of P with respect to T, [Pa/K]

dP_dV [float] Derivative of P with respect to V, [Pa*mol/m^3]

d2P_dV2 [float] Second derivative of P with respect to V, [Pa*mol^2/m^6]

d2P_dVdT [float] Second derivative of P with respect to both V and T, [Pa*mol/m^3/K]

Returns
PIP [float] Phase Identification Parameter, [-]

Notes

Heuristics were used by process simulators before the invent of this parameter.

The criteria for liquid is Pi > 1; for vapor, Pi <= 1.

There is also a solid phase mechanism available. For solids, the Solid Phase Identification Parameter is greater
than 1, like liquids; however, unlike liquids, d2P_dVdT is always >0; it is < 0 for liquids and gases.

References

[1], [2]

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> phase_identification_parameter(0.000130229900874, 582169.397484,
... -3.66431747236e+12, 4.48067893805e+17, -20518995218.2)
11.33428990564796

chemicals.utils.phase_identification_parameter_phase(d2P_dVdT, V=None, dP_dT=None,
dP_dV=None, d2P_dV2=None)

Uses the Phase Identification Parameter concept developed in [1] and [2] to determine if a chemical is a solid,
liquid, or vapor given the appropriate thermodynamic conditions.

The criteria for liquid is PIP > 1; for vapor, PIP <= 1.

1.30. Utilities (chemicals.utils) 359

chemicals Documentation, Release 1.1.4

For solids, PIP(solid) is defined to be d2P_dVdT. If it is larger than 0, the species is a solid. It is less than 0 for
all liquids and gases.

Parameters
d2P_dVdT [float] Second derivative of P with respect to both V and T, [Pa*mol/m^3/K]

V [float, optional] Molar volume at T and P, [m^3/mol]

dP_dT [float, optional] Derivative of P with respect to T, [Pa/K]

dP_dV [float, optional] Derivative of P with respect to V, [Pa*mol/m^3]

d2P_dV2 [float, optionsl] Second derivative of P with respect to V, [Pa*mol^2/m^6]

Returns
phase [str] Either ‘s’, ‘l’ or ‘g’

Notes

The criteria for being a solid phase is checked first, which only requires d2P_dVdT. All other inputs are optional
for this reason. However, an exception will be raised if the other inputs become needed to determine if a species
is a liquid or a gas.

References

[1], [2]

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> phase_identification_parameter_phase(-20518995218.2, 0.000130229900874,
... 582169.397484, -3.66431747236e+12, 4.48067893805e+17)
'l'

chemicals.utils.property_mass_to_molar(A_mass, MW)
Convert a quantity in mass units [thing/kg] to molar units [thing/mol]. The standard gram-mole is used here, as
it is everwhere in this library.

𝐴molar =
𝐴massMW

1000

Parameters
A_mass [float] Quantity in molar units [thing/kg]

MW [float] Molecular weight, [g/mol]

Returns
A_molar [float] Quantity in molar units [thing/mol]

360 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

For legacy reasons, if the value A_mass is None, None is also returned and no exception is returned.

Examples

>>> property_mass_to_molar(20.0, 18.015)
0.3603

chemicals.utils.property_molar_to_mass(A_molar, MW)
Convert a quantity in molar units [thing/mol] to mass units [thing/kg]. The standard gram-mole is used here, as
it is everwhere in this library.

𝐴mass =
1000𝐴molar

MW

Parameters
A_molar [float] Quantity in molar units [thing/mol]

MW [float] Molecular weight, [g/mol]

Returns
A_mass [float] Quantity in molar units [thing/kg]

Notes

For legacy reasons, if the value A_molar is None, None is also returned and no exception is returned.

Examples

>>> property_molar_to_mass(500, 18.015)
27754.648903691366

chemicals.utils.radius_of_gyration(MW, A, B, C, planar=False)
Calculates the radius of gyration of a molecule using the DIPPR definition. The parameters A, B, and C must
be obtained from either vibrational scpectra and analysis or quantum chemistry calculations of programs such as
psi <https://psicode.org/>.

For planar molecules defined by only two moments of inertia,

𝑅𝑔 =

√︂
√
𝐴𝐵

𝑁𝐴

MW

For non-planar molecules with three moments of inertia,

𝑅𝑔 =

√︂
2𝜋(𝐴𝐵𝐶)1/3𝑁𝐴

MW

Parameters
MW [float] Molecular weight, [g/mol]

A [float] First principle moment of inertia, [kg*m^2]

B [float] Second principle moment of inertia, [kg*m^2]

1.30. Utilities (chemicals.utils) 361

chemicals Documentation, Release 1.1.4

C [float] Third principle moment of inertia, [kg*m^2]

planar [bool] Whether the molecule is flat or not, [-]

Returns
Rg [float] Radius of gyration, [m]

Notes

There are many, many quantum chemistry models available which give different results.

References

[1], [2]

Examples

Example calcultion in [1] for hydrazine (optimized with HF/6-31G model):

>>> radius_of_gyration(MW=32.00452, planar=False, A=5.692E-47, B=3.367E-46, C=3.
→˓681E-46)
1.50581642e-10

The same calculation was performed with psi and somewhat different parameters obtained

>>> radius_of_gyration(MW=32.00452, planar=False, A=6.345205205562681e-47, B=3.
→˓2663291891213418e-46, C=3.4321304373822523e-46)
1.507895671e-10

A planar molecule, bromosilane, has two principle moments of inertia in [2]. They are 2.80700 cm^-1 and
0.14416 cm^-1. These can be converted to MHz as follows:

These can then be converted to units of AMU*Angstrom^2, and from there to kg*m^2.

>>> A, B = 2.80700, 0.14416
>>> from scipy.constants import atomic_mass, c, angstrom
>>> A, B = A*c*1e-4, B*c*1e-4 # from cm^-1 to MHz
>>> A, B = [505379.15/i for i in (A, B)] # TODO which constants did this␣
→˓conversion factor come from, AMU*Angstrom^2
>>> A, B = [i*atomic_mass*angstrom**2 for i in (A, B)] # amu*angstrom^2 to kg*m^2
>>> radius_of_gyration(A=A, B=B, planar=True, MW=111.01, C=0)
4.8859099776e-11

Alternatively, doing the conversion all in one:

>>> A, B = 2.80700, 0.14416
>>> from scipy.constants import c, h, pi
>>> A, B = A*c*100, B*c*100 # from cm^-1 to Hz
>>> A, B = [h/(8*pi**2)/i for i in (A, B)] # from Hz to kg*m^2
>>> radius_of_gyration(A=A, B=B, planar=True, MW=111.01, C=0)
4.885909296e-11

This is also nicely documented on this page: https://cccbdb.nist.gov/convertmomint.asp which was unfortunately
found by the author after figuring it out the hard way.

362 Chapter 1. Key Features & Capabilities

https://cccbdb.nist.gov/convertmomint.asp

chemicals Documentation, Release 1.1.4

chemicals.utils.remove_zeros(values, tol=1e-06)
Simple function which removes zero values from an array, and replaces them with a user-specified value, normally
a very small number. Helpful for the case where a function can work with values very close to zero but not quite
zero. The resulting array is normalized so the sum is still one.

Parameters
values [array-like] array of values

tol [float] The replacement value for zeroes

Returns
fractions [array-like] Array of values from 0 to 1

Notes

Works on numpy arrays, and returns numpy arrays only for that case.

Examples

>>> remove_zeros([0, 1e-9, 1], 1e-12)
[9.99999998999e-13, 9.99999998999e-10, 0.999999998999]

chemicals.utils.rho_to_API(rho, rho_ref=999.0170824078306)
Calculates API of a liquid given its mass density, as shown in [1].

API gravity =
141.5𝜌𝑟𝑒𝑓

𝜌
− 131.5

Parameters
rho [float] Mass density the fluid at 60 degrees Farenheight [kg/m^3]

rho_ref [float, optional] Density of the reference substance, [kg/m^3]

Returns
API [float] API of the fluid [-]

Notes

Defined only at 60 degrees Fahrenheit.

References

[1]

1.30. Utilities (chemicals.utils) 363

chemicals Documentation, Release 1.1.4

Examples

>>> rho_to_API(820)
40.8913623
>>> SG_to_API(SG(820))
40.8913623

chemicals.utils.rho_to_Vm(rho, MW)
Calculate the molar volume of a chemical, given its density and molecular weight.

𝑉𝑚 =

(︂
1000𝜌

𝑀𝑊

)︂−1

Parameters
rho [float] Density, [kg/m^3]

MW [float] Molecular weight, [g/mol]

Returns
Vm [float] Molar volume, [m^3/mol]

References

[1]

Examples

>>> rho_to_Vm(652.9, 86.18)
0.0001319957114412621

chemicals.utils.solve_flow_composition_mix(Fs, zs, ws, MWs)
Solve a stream composition problem where some specs are mole flow rates; some are mass fractions; and some
are mole fractions. This algorithm requires at least one mole flow rate; and for every other component, a single
spec in mole or mass or a flow rate. It is permissible for no components to have mole fractions; or no components
to have weight fractions; or both.

Parameters
Fs [list[float]] List of mole flow rates; None if not specified for a component, [mol/s]

zs [list[float]] Mole fractions; None if not specified for a component [-]

ws [list[float]] Mass fractions; None if not specified for a component [-]

MWs [list[float]] Molecular weights, [g/mol]

Returns
Fs [list[float]] List of mole flow rates, [mol/s]

zs [list[float]] Mole fractions, [-]

ws [list[float]] Mass fractions, [-]

364 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

A fast path is used if no weight fractions are provided; the calculation is much simpler for that case.

This algorithm was derived using SymPy, and framed in a form which allows for explicit solving. This is capable
of solving large-scale problems i.e. with 1000 components a solve time is 1 ms; with 10000 it is 10 ms.

Examples

>>> Fs = [3600, None, None, None, None]
>>> zs = [None, .1, .2, None, None]
>>> ws = [None, None, None, .01, .02]
>>> MWs = [18.01528, 46.06844, 32.04186, 72.151, 142.286]
>>> Fs, zs, ws = solve_flow_composition_mix(Fs, zs, ws, MWs)
>>> Fs
[3600, 519.3039148597746, 1038.6078297195493, 17.44015034881175, 17.687253669610733]
>>> zs
[0.6932356751002141, 0.1, 0.2, 0.0033583706669188186, 0.003405954232867038]
>>> ws
[0.5154077420893426, 0.19012206531421305, 0.26447019259644433, 0.01, 0.02]

chemicals.utils.speed_of_sound(V, dP_dV, Cp, Cv, MW=None)
Calculate a real fluid’s speed of sound. The required derivatives should be calculated with an equation of state,
and Cp and Cv are both the real fluid versions. Expression is given in [1] and [2]; a unit conversion is further
performed to obtain a result in m/s. If MW is not provided the result is returned in units of m*kg^0.5/s/mol^0.5.

𝑤 =

[︂
−𝑉 2

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
Parameters

V [float] Molar volume of fluid, [m^3/mol]

dP_dV [float] Derivative of P with respect to V, [Pa*mol/m^3]

Cp [float] Real fluid heat capacity at constant pressure, [J/mol/K]

Cv [float] Real fluid heat capacity at constant volume, [J/mol/K]

MW [float, optional] Molecular weight, [g/mol]

Returns
w [float] Speed of sound for a real gas, m/s or m*kg^0.5/s/mol^0.5 if MW missing

Notes

An alternate expression based on molar density is as follows:

𝑤 =

[︂(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
The form with the unit conversion performed inside it is as follows:

𝑤 =

[︂
−𝑉 2 1000

𝑀𝑊

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2

1.30. Utilities (chemicals.utils) 365

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

Example from [2]:

>>> speed_of_sound(V=0.00229754, dP_dV=-3.5459e+08, Cp=153.235, Cv=132.435, MW=67.
→˓152)
179.5868138460819

chemicals.utils.to_num(values)
Legacy function to turn a list of strings into either floats (if numeric), stripped strings (if not) or None if the string
is empty. Accepts any numeric formatting the float function does.

Parameters
values [list] list of strings

Returns
values [list] list of floats, strings, and None values [-]

Examples

>>> to_num(['1', '1.1', '1E5', '0xB4', ''])
[1.0, 1.1, 100000.0, '0xB4', None]

chemicals.utils.v_molar_to_v(v_molar, MW)
Convert a velocity from units of the molar velocity form to standard m/s units.

𝑣(m/s) = 𝑣

(︂
m
√

kg
𝑠
√

mol

)︂
MW (g/mol)−0.5 ·

(︂
1000g
1kg

)︂0.5

Parameters
v_molar [float] Molar velocity, [m*kg^0.5/s/mol^0.5]

MW [float] Molecular weight, [g/mol]

Returns
v [float] Velocity, [m/s]

Examples

>>> v_molar_to_v(67.10998435404377, 18.015)
499.99999999999994

chemicals.utils.v_to_v_molar(v, MW)
Convert a velocity from units of m/s to a “molar” form of velocity, compatible with thermodynamic calculations
on a molar basis.

𝑣

(︂
m
√

kg
𝑠
√

mol

)︂
= 𝑣(m/s)

√︀
MW (g/mol) ·

(︂
1000g
1kg

)︂−0.5

366 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Parameters
v [float] Velocity, [m/s]

MW [float] Molecular weight, [g/mol]

Returns
v_molar [float] Molar velocity, [m*kg^0.5/s/mol^0.5]

Examples

>>> v_to_v_molar(500, 18.015)
67.10998435404377

chemicals.utils.vapor_mass_quality(VF, MWl, MWg)
Calculates the vapor quality on a mass basis of a two-phase mixture; this is the most common definition, where
1 means a pure vapor and 0 means a pure liquid. The vapor quality on a mass basis is related to the mole basis
vapor fraction according to the following relationship:

𝑥 =
𝑉
𝐹 · MW𝑔

(1 − 𝑉
𝐹)MW𝑙 + 𝑉

𝐹 MW𝑔

Parameters
VF [float] Mole-basis vapor fraction (0 = pure vapor, 1 = pure liquid), [-]

MWl [float] Average molecular weight of the liquid phase, [g/mol]

MWg [float] Average molecular weight of the vapor phase, [g/mol]

Returns
quality [float] Vapor mass fraction of the two-phase system, [-]

Notes

Other definitions of vapor fraction use an enthalpy basis instead of a mass basis; still other less common ones
take 1 to be the value of the liquid, and 0 as pure vapor.

References

[1]

Examples

>>> vapor_mass_quality(0.5, 60, 30)
0.3333333333333333

chemicals.utils.velocity_to_molar_velocity(v, MW)
Calculate the molar velocity from the mass-based (m/s) velocity of the fluid.

𝑣𝑚𝑜𝑙𝑎𝑟 =
𝑣
√

MW√
1000

Parameters

1.30. Utilities (chemicals.utils) 367

chemicals Documentation, Release 1.1.4

v [float] Velocity, [m/s]

MW [float] Molecular weight, [g/mol]

Returns
v_molar [float] Molar velcoity, [m*kg^0.5/s/mol^0.5]

Examples

>>> velocity_to_molar_velocity(228.73, 40.445)
46.

chemicals.utils.ws_to_zs(ws, MWs)
Converts a list of mass fractions to mole fractions. Requires molecular weights for all species.

𝑧𝑖 =
𝑤𝑖

𝑀𝑊𝑖∑︀
𝑖

𝑤𝑖

𝑀𝑊𝑖

Parameters
ws [iterable] Mass fractions [-]

MWs [iterable] Molecular weights [g/mol]

Returns
zs [iterable] Mole fractions [-]

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

Examples

>>> ws_to_zs([0.3333333333333333, 0.6666666666666666], [10, 20])
[0.5, 0.5]

chemicals.utils.zs_to_Vfs(zs, Vms)
Converts a list of mole fractions to volume fractions. Requires molar volumes for all species.

Vf𝑖 =
𝑧𝑖𝑉𝑚,𝑖∑︀
𝑖 𝑧𝑖𝑉𝑚,𝑖

Parameters
zs [iterable] Mole fractions [-]

VMs [iterable] Molar volumes of species [m^3/mol]

Returns
Vfs [list] Molar volume fractions [-]

368 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

Molar volumes are specified in terms of pure components only. Function works with any phase.

Examples

Acetone and benzene example

>>> zs_to_Vfs([0.637, 0.363], [8.0234e-05, 9.543e-05])
[0.5960229712956298, 0.4039770287043703]

chemicals.utils.zs_to_ws(zs, MWs)
Converts a list of mole fractions to mass fractions. Requires molecular weights for all species.

𝑤𝑖 =
𝑧𝑖𝑀𝑊𝑖

𝑀𝑊𝑎𝑣𝑔

𝑀𝑊𝑎𝑣𝑔 =
∑︁
𝑖

𝑧𝑖𝑀𝑊𝑖

Parameters
zs [iterable] Mole fractions [-]

MWs [iterable] Molecular weights [g/mol]

Returns
ws [iterable] Mass fractions [-]

Notes

Does not check that the sums add to one. Does not check that inputs are of the same length.

Examples

>>> zs_to_ws([0.5, 0.5], [10, 20])
[0.3333333333333333, 0.6666666666666666]

1.31 Support for pint Quantities (chemicals.units)

Basic module which wraps all chemicals functions and classes to be compatible with the pint unit handling library. All
other object - dicts, lists, etc - are not wrapped.

>>> import chemicals
>>> chemicals.units.Antoine
<function Antoine at 0x...>

The chemicals.units module also supports star imports; the same objects exported when importing from the main library
will be imported from chemicals.units.

1.31. Support for pint Quantities (chemicals.units) 369

https://github.com/hgrecco/pint

chemicals Documentation, Release 1.1.4

>>> from chemicals.units import *

>>> CAS = CAS_from_any('methanol')
>>> Tc(CAS), Pc(CAS), Vc(CAS), Zc(CAS)
(<Quantity(513.38, 'kelvin')>, <Quantity(8215850.0, 'pascal')>, <Quantity(0.00011382819,
→˓'meter ** 3 / mole')>, <Quantity(0.219093353, 'dimensionless')>)
>>> (Tt(CAS), Tm(CAS), Tb(CAS), Pt(CAS))
(<Quantity(175.61, 'kelvin')>, <Quantity(175.15, 'kelvin')>, <Quantity(337.632383,
→˓'kelvin')>, <Quantity(0.186349762, 'pascal')>)

>>> iapws95_rho(T=55*u.degF, P=500*u.psi)
<Quantity(1000.97992, 'kilogram / meter ** 3')>
>>> sigma_IAPWS(200*u.degR)
<Quantity(0.0897667127, 'newton / meter')>

>>> molecular_weight({'H': 12, 'C': 20, 'O': 5})
<Quantity(332.30628, 'gram / mole')>

Functions that do not return numbers are not converted into pint quantities, for example:

>>> atoms_to_Hill({'H': 5, 'C': 2, 'Br': 1})
'C2H5Br'

Functions that return dimensionless numbers are pint quantities.

>>> logP('67-56-1')
<Quantity(-0.74, 'dimensionless')>
>>> Stiel_polar_factor(Psat=169745*u.Pa, Pc=22048321.0*u.Pa, omega=0.344)
<Quantity(0.0232214674, 'dimensionless')>

It is also possible to use chemicals.units without the star import:

>>> import chemicals.units

When a function is used with inputs that should have units but they aren’t provided by the user, an error is raised.

>>> ideal_gas(298.15, 101325.)
Traceback (most recent call last):
TypeError: 298.15 has no quantity

For further information on this interface, please see the documentation of fluids.units which is built in the same way.

1.32 Vapor Pressure (chemicals.vapor_pressure)

This module contains various vapor pressure estimation routines, dataframes of fit coefficients, some compound-
specific equations, some analytical fitting routines, and sublimation pressure routines.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Fit Correlations

370 Chapter 1. Key Features & Capabilities

https://fluids.readthedocs.io/fluids.units.html
https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

• Fit Correlation Derivatives

• Jacobians (for fitting)

• Vapor Pressure Estimation Correlations

• Sublimation Pressure Estimation Correlations

• Correlations for Specific Substances

• Analytical Fit Equations

• Fit Coefficients

1.32.1 Fit Correlations

chemicals.vapor_pressure.Antoine(T, A, B, C, base=10.0)
Calculates vapor pressure of a chemical using the Antoine equation. Parameters A, B, and C are chemical-
dependent. Parameters can be found in numerous sources; however units of the coefficients used vary. Originally
proposed by Antoine (1888) [2].

logbase 𝑃
sat = 𝐴− 𝐵

𝑇 + 𝐶

Parameters
T [float] Temperature of fluid, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

base [float, optional] Optional base of logarithm; 10 by default

Returns
Psat [float] Vapor pressure calculated with coefficients [Pa]

Notes

Assumes coefficients are for calculating vapor pressure in Pascal. Coefficients should be consistent with input
temperatures in Kelvin; however, if both the given temperature and units are specific to degrees Celcius, the
result will still be correct.

Converting units in input coefficients:
• ln to log10: Divide A and B by ln(10)=2.302585 to change parameters for a ln equation to a log10 equation.

• log10 to ln: Multiply A and B by ln(10)=2.302585 to change parameters for a log equation to a ln equation.

• mmHg to Pa: Add log10(101325/760)= 2.1249 to A.

• kPa to Pa: Add log_{base}(1000)= 6.908 to A for log(base)

• bar to Pa: Add log_{base}(100000)= 11.5129254 to A for log(base)

• °C to K: Subtract 273.15 from C only!

Note that if C is negative and T is less than C, the predicted vapor pressure would be high and positive at those
temperatures under C; and a singularity would occur at T == C. This implementation is corrected to return zero
for the case of T + C < 0.0, which matches the intention of the Antoine equation.

1.32. Vapor Pressure (chemicals.vapor_pressure) 371

chemicals Documentation, Release 1.1.4

References

[1], [2], [3]

Examples

Methane, coefficients from [1], at 100 K:

>>> Antoine(100.0, 8.7687, 395.744, -6.469)
34478.367349639906

Tetrafluoromethane, coefficients from [1], at 180 K

>>> Antoine(180, A=8.95894, B=510.595, C=-15.95)
702271.0518579542

Oxygen at 94.91 K, with coefficients from [3] in units of °C, mmHg, log10, showing the conversion of coefficients
A (mmHg to Pa) and C (°C to K)

>>> Antoine(94.91, 6.83706+2.1249, 339.2095, 268.70-273.15)
162978.88655572367

n-hexane with Antoine coefficients from the NIST webbook in units of K and bar, calculating the vapor pressure
in Pa at 200 K:

>>> Antoine(T=200, A=3.45604+5, B=1044.038, C=-53.893)
20.4329803671

chemicals.vapor_pressure.Wagner(T, Tc, Pc, a, b, c, d)
Calculates vapor pressure using the Wagner equation (2.5, 5 form).

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

ln𝑃 𝑠𝑎𝑡 = ln𝑃𝑐 +
𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏2.5 + 𝑑𝜏5

𝑇𝑟

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
Psat [float] Vapor pressure at T [Pa]

372 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Warning: Pc is often treated as adjustable constant. This is also called the PPDS16 equation [3].

References

[1], [2], [3]

Examples

Methane, coefficients from [2], at 100 K.

>>> Wagner(100., 190.551, 4599200, -6.02242, 1.26652, -0.5707, -1.366)
34415.004762637

chemicals.vapor_pressure.Wagner_original(T, Tc, Pc, a, b, c, d)
Calculates vapor pressure using the Wagner equation (3, 6 form).

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

ln𝑃 𝑠𝑎𝑡 = ln𝑃𝑐 +
𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏3 + 𝑑𝜏6

𝑇𝑟

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
Psat [float] Vapor pressure at T [Pa]

Notes

Warning: Pc is often treated as adjustable constant. This is also called the PPDS1 equation [3].

References

[1], [2], [3]

1.32. Vapor Pressure (chemicals.vapor_pressure) 373

chemicals Documentation, Release 1.1.4

Examples

Methane, coefficients from [2], at 100 K.

>>> Wagner_original(100.0, 190.53, 4596420., a=-6.00435, b=1.1885,
... c=-0.834082, d=-1.22833)
34520.44601450499

chemicals.vapor_pressure.TRC_Antoine_extended(T, Tc, to, A, B, C, n, E, F)
Calculates vapor pressure of a chemical using the TRC Extended Antoine equation. Parameters are chemical
dependent, and said to be from the Thermodynamics Research Center (TRC) at Texas A&M. Coefficients for
various chemicals can be found in [1].

log10 𝑃
𝑠𝑎𝑡 = 𝐴− 𝐵

𝑇 + 𝐶
+ 0.43429𝑥𝑛 + 𝐸𝑥8 + 𝐹𝑥12

𝑥 = max

(︂
𝑇 − 𝑡𝑜 − 273.15

𝑇𝑐
, 0

)︂
Parameters

T [float] Temperature of fluid, [K]

Tc [float] Critical temperature of fluid, [K]

to [float] Fit temperature-transition parameter, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

n [float] Fit parameter, [-]

E [float] Fit parameter, [-]

F [float] Fit parameter, [-]

Returns
Psat [float] Vapor pressure calculated with coefficients [Pa]

Notes

Assumes coefficients are for calculating vapor pressure in Pascal. Coefficients should be consistent with input
temperatures in Kelvin;

References

[1]

374 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Tetrafluoromethane, coefficients from [1], at 180 K:

>>> TRC_Antoine_extended(T=180.0, Tc=227.51, to=-120., A=8.95894,
... B=510.595, C=-15.95, n=2.41377, E=-93.74, F=7425.9)
706317.0898414153

chemicals.vapor_pressure.Yaws_Psat(T, A, B, C, D, E)
Calculates vapor pressure of a chemical using the Yaws equation for vapor pressure. Parameters A, B, C, D, and
E are chemical-dependent. Parameters can be found in numerous sources; however units of the coefficients used
vary.

log10 𝑃
sat = 𝐴+

𝐵

𝑇
+ 𝐶 log10(𝑇) +𝐷𝑇 + 𝐸𝑇 2

Parameters
T [float] Temperature of fluid, [K]

A [float] A parameter, [-]

B [float] B parameter, [K]

C [float] C parameter, [-]

D [float] D parameter, [1/K]

E [float] E parameter, [1/K^2]

Returns
Psat [float] Vapor pressure calculated with coefficients [Pa]

Notes

Assumes coefficients are for calculating vapor pressure in Pascal. Coefficients should be consistent with input
temperatures in Kelvin;

Converting units in input coefficients:
• mmHg to Pa: Add log10(101325/760)= 2.1249 to A.

• kPa to Pa: Add log_{10}(1000)= 3 to A

• bar to Pa: Add log_{10}(100000)= 5 to A

References

[1], [2]

1.32. Vapor Pressure (chemicals.vapor_pressure) 375

chemicals Documentation, Release 1.1.4

Examples

Acetone, coefficients from [1], at 400 K and with the conversion of A to obtain a result in Pa:

>>> Yaws_Psat(T=400.0, A=28.588 + log10(101325/760), B=-2469, C=-7.351, D=2.8025E-
→˓10, E=2.7361E-6)
708657.089106

Coefficients for benzene from [2] at 400 K; that source outputs vapor pressure in kPa. That style of coefficients
can be converted to Pa by adding 3 to A.

>>> Yaws_Psat(T=400.0, A=39.7918+3, B=-2965.83, C=-12.073, D=0.0033269, E=1.58609e-
→˓6)
352443.191026

chemicals.vapor_pressure.TDE_PVExpansion(T, a1, a2, a3, a4=0.0, a5=0.0, a6=0.0, a7=0.0, a8=0.0)
Calculates vapor pressure or sublimation pressure of a chemical using the PVExpansion equation for vapor pres-
sure or sublimation pressure. Parameters a1, a2, a3, a4, a5, a6, a7, and a8 are chemical-dependent. Parameters
can be found in various sources; however units of the coefficients used vary.

log𝑃 sat = 𝑎1 +
𝑎2
𝑇

+ 𝑎3 ln(𝑇) + 𝑎4𝑇 + 𝑎5𝑇
2 +

𝑎6
𝑇 2

+ 𝑎7𝑇
6 +

𝑎8
𝑇 4

Parameters
T [float] Temperature of fluid, [K]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

a5 [float] Regression parameter, [-]

a6 [float] Regression parameter, [-]

a7 [float] Regression parameter, [-]

a8 [float] Regression parameter, [-]

Returns
Psat [float] Vapor pressure calculated with coefficients [Pa]

Notes

Coefficients in [1] produce a vapor pressure in kPa; add log(1000) to a1 to make them produce vapor pressure in
Pa.

376 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Coefficients for sublimation pressure from [1]:

>>> TDE_PVExpansion(T=273.16, a1=23.7969+log(1000), a2=-11422, a3=0.177978)
4.06220657398e-05

1.32.2 Fit Correlation Derivatives

chemicals.vapor_pressure.dAntoine_dT(T, A, B, C, base=10.0)
Calculates the first temperature derivative of vapor pressure of a chemical using the Antoine equation. Parameters
A, B, and C are chemical-dependent.

𝜕𝑃 sat

𝜕𝑇
=
𝐵base𝐴− 𝐵

𝐶+𝑇 log (base)

(𝐶 + 𝑇)
2

Parameters
T [float] Temperature of fluid, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

base [float, optional] Optional base of logarithm; 10 by default

Returns
dPsat_dT [float] First temperature derivative of vapor pressure calculated with coefficients

[Pa/K]

Examples

Methane at 100 K:

>>> dAntoine_dT(100.0, 8.7687, 395.744, -6.469)
3591.4147747481

chemicals.vapor_pressure.d2Antoine_dT2(T, A, B, C, base=10.0)
Calculates the second temperature derivative of vapor pressure of a chemical using the Antoine equation. Pa-
rameters A, B, and C are chemical-dependent.

𝜕2𝑃 sat

𝜕𝑇 2
=
𝐵base𝐴− 𝐵

𝐶+𝑇

(︁
𝐵 log (base)

𝐶+𝑇 − 2
)︁

log (base)

(𝐶 + 𝑇)
3

Parameters
T [float] Temperature of fluid, [K]

A [float] Antoine A parameter, [-]

1.32. Vapor Pressure (chemicals.vapor_pressure) 377

chemicals Documentation, Release 1.1.4

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

base [float, optional] Optional base of logarithm; 10 by default

Returns
d2Psat_dT2 [float] Second temperature derivative of vapor pressure calculated with coefficients

[Pa/K^2]

Examples

Methane at 100 K:

>>> d2Antoine_dT2(100.0, 8.7687, 395.744, -6.469)
297.30093799054

chemicals.vapor_pressure.dWagner_dT(T, Tc, Pc, a, b, c, d)
Calculates the first temperature derivative of vapor pressure using the Wagner equation (2.5, 5 form).

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

𝜕𝑃 sat

𝜕𝑇
= 𝑃𝑐

⎛⎝𝑇𝑐
(︁
− 𝑎

𝑇𝑐
− 1.5𝑏𝜏0.5

𝑇𝑐
− 2.5𝑐𝜏1.5

𝑇𝑐
− 5𝑑𝜏4

𝑇𝑐

)︁
𝑇

−
𝑇𝑐
(︀
𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏2.5 + 𝑑𝜏5

)︀
𝑇 2

⎞⎠ 𝑒
𝑇𝑐(𝑎𝜏+𝑏𝜏1.5+𝑐𝜏2.5+𝑑𝜏5)

𝑇

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
dPsat_dT [float] First temperature derivative of vapor pressure at T [Pa/K]

Examples

Methane at 100 K.

>>> dWagner_dT(100., 190.551, 4599200, -6.02242, 1.26652, -0.5707, -1.366)
3587.2910498076

chemicals.vapor_pressure.d2Wagner_dT2(T, Tc, Pc, a, b, c, d)
Calculates the second temperature derivative of vapor pressure using the Wagner equation (2.5, 5 form).

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

𝜕2𝑃 sat

𝜕𝑇 2
=

𝑃𝑐

⎛⎜⎝ 0.75𝑏
𝜏0.5 +3.75𝑐𝜏0.5+20𝑑𝜏3

𝑇𝑐
+

2(𝑎+1.5𝑏𝜏0.5+2.5𝑐𝜏1.5+5𝑑𝜏4)
𝑇 +

25

(︃
𝑎
5+0.3𝑏𝜏0.5+0.5𝑐𝜏1.5+𝑑𝜏4−

𝑇𝑐(−𝑎𝜏−𝑏𝜏1.5−𝑐𝜏2.5−𝑑𝜏5)
5𝑇

)︃2

𝑇 − 2𝑇𝑐(−𝑎𝜏−𝑏𝜏1.5−𝑐𝜏2.5−𝑑𝜏5)
𝑇 2

⎞⎟⎠ 𝑒−
𝑇𝑐(−𝑎𝜏−𝑏𝜏1.5−𝑐𝜏2.5−𝑑𝜏5)

𝑇

𝑇

378 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
d2Psat_dT2 [float] Second temperature derivative of vapor pressure at T [Pa/K^2]

Notes

This second derivative is infinity at T == Tc.

Examples

Methane at 100 K.

>>> d2Wagner_dT2(100., 190.551, 4599200, -6.02242, 1.26652, -0.5707, -1.366)
296.7091513877

chemicals.vapor_pressure.dWagner_original_dT(T, Tc, Pc, a, b, c, d)
Calculates first temperature derivative of vapor pressure using the Wagner equation (3, 6 form).

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

𝜕𝑃 sat

𝜕𝑇
= 𝑃𝑐

⎛⎝𝑇𝑐
(︁
− 𝑎

𝑇𝑐
− 1.5𝑏𝜏0.5

𝑇𝑐
− 3𝑐𝜏2

𝑇𝑐
− 6𝑑𝜏5

𝑇𝑐

)︁
𝑇

−
𝑇𝑐
(︀
𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏3 + 𝑑𝜏6

)︀
𝑇 2

⎞⎠ 𝑒
𝑇𝑐(𝑎𝜏+𝑏𝜏1.5+𝑐𝜏3+𝑑𝜏6)

𝑇

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
dPsat_dT [float] First temperature derivative of vapor pressure at T [Pa/K]

1.32. Vapor Pressure (chemicals.vapor_pressure) 379

chemicals Documentation, Release 1.1.4

Examples

Methane at 100 K.

>>> dWagner_original_dT(100.0, 190.53, 4596420., a=-6.00435, b=1.1885,
... c=-0.834082, d=-1.22833)
3593.70783283

chemicals.vapor_pressure.d2Wagner_original_dT2(T, Tc, Pc, a, b, c, d)
Calculates second temperature derivative of vapor pressure using the Wagner equation (3, 6 form).

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

𝜕2𝑃 sat

𝜕𝑇 2
=

𝑃𝑐

⎛⎜⎝ 0.75𝑏
𝜏0.5 +6𝑐𝜏+30𝑑𝜏4

𝑇𝑐
+

2(𝑎+1.5𝑏𝜏0.5+3𝑐𝜏2+6𝑑𝜏5)
𝑇 +

36

(︃
𝑎
6+0.25𝑏𝜏0.5+ 𝑐𝜏2

2 +𝑑𝜏5−
𝑇𝑐(−𝑎𝜏−𝑏𝜏1.5−𝑐𝜏3−𝑑𝜏6)

6𝑇

)︃2

𝑇 − 2𝑇𝑐(−𝑎𝜏−𝑏𝜏1.5−𝑐𝜏3−𝑑𝜏6)
𝑇 2

⎞⎟⎠ 𝑒−
𝑇𝑐(−𝑎𝜏−𝑏𝜏1.5−𝑐𝜏3−𝑑𝜏6)

𝑇

𝑇

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
d2Psat_dT2 [float] Second temperature derivative of vapor pressure at T [Pa/K^2]

Notes

This second derivative is infinity at T == Tc.

Examples

Methane at 100 K.

>>> d2Wagner_original_dT2(100.0, 190.53, 4596420., a=-6.00435, b=1.1885,
... c=-0.834082, d=-1.22833)
296.87593368224

chemicals.vapor_pressure.dTRC_Antoine_extended_dT(T, Tc, to, A, B, C, n, E, F)
Calculates the first temperature derivative of vapor pressure of a chemical using the TRC Extended Antoine
equation.

𝜕𝑃 sat

𝜕𝑇
= 10

𝐴− 𝐵
𝐶+𝑇 +

𝐸(𝑇−𝑇𝑟𝑒𝑓−𝑡𝑜)
8

𝑇8
𝑐

+
𝐹(𝑇−𝑇𝑟𝑒𝑓−𝑡𝑜)

12

𝑇12
𝑐

+𝑓
(︁

𝑇−𝑇𝑟𝑒𝑓−𝑡𝑜

𝑇𝑐

)︁𝑛

⎛⎝ 𝐵

(𝐶 + 𝑇)
2 +

8𝐸 (𝑇 − 𝑇𝑟𝑒𝑓 − 𝑡𝑜)
7

𝑇 8
𝑐

+
12𝐹 (𝑇 − 𝑇𝑟𝑒𝑓 − 𝑡𝑜)

11

𝑇 12
𝑐

+
𝑓𝑛
(︁

𝑇−𝑇𝑟𝑒𝑓−𝑡𝑜
𝑇𝑐

)︁𝑛
𝑇 − 𝑇𝑟𝑒𝑓 − 𝑡𝑜

⎞⎠ log (10)

𝑥 = max

(︂
𝑇 − 𝑡𝑜 − 273.15

𝑇𝑐
, 0

)︂

380 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝑇𝑟𝑒𝑓 = 273.15 K

𝑓 = 0.43429

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature of fluid, [K]

to [float] Fit temperature-transition parameter, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

n [float] Fit parameter, [-]

E [float] Fit parameter, [-]

F [float] Fit parameter, [-]

Returns
dPsat_dT [float] First temperature derivative of vapor pressure calculated with coefficients

[Pa/K]

Examples

Tetrafluoromethane at 180 K:

>>> dTRC_Antoine_extended_dT(T=180.0, Tc=227.51, to=-120., A=8.95894,
... B=510.595, C=-15.95, n=2.41377, E=-93.74, F=7425.9)
31219.6061263

chemicals.vapor_pressure.d2TRC_Antoine_extended_dT2(T, Tc, to, A, B, C, n, E, F)
Calculates the second temperature derivative of vapor pressure of a chemical using the TRC Extended Antoine
equation.

𝜕2𝑃 sat

𝜕𝑇 2
= 10

𝐴− 𝐵
𝐶+𝑇 +

𝐸(−𝑇+𝑇𝑟𝑒𝑓+𝑡𝑜)
8

𝑇8
𝑐

+
𝐹(−𝑇+𝑇𝑟𝑒𝑓+𝑡𝑜)

12

𝑇12
𝑐

+𝑓
(︁
−

−𝑇+𝑇𝑟𝑒𝑓+𝑡𝑜

𝑇𝑐

)︁𝑛

⎛⎜⎝− 2𝐵

(𝐶 + 𝑇)
3 +

56𝐸 (−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜)
6

𝑇 8
𝑐

+
132𝐹 (−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜)

10

𝑇 12
𝑐

+
𝑓𝑛2

(︁
−−𝑇+𝑇𝑟𝑒𝑓+𝑡𝑜

𝑇𝑐

)︁𝑛
(−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜)

2 −
𝑓𝑛
(︁
−−𝑇+𝑇𝑟𝑒𝑓+𝑡𝑜

𝑇𝑐

)︁𝑛
(−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜)

2 +

⎛⎝− 𝐵

(𝐶 + 𝑇)
2 +

8𝐸 (−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜)
7

𝑇 8
𝑐

+
12𝐹 (−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜)

11

𝑇 12
𝑐

+
𝑓𝑛
(︁
−−𝑇+𝑇𝑟𝑒𝑓+𝑡𝑜

𝑇𝑐

)︁𝑛
−𝑇 + 𝑇𝑟𝑒𝑓 + 𝑡𝑜

⎞⎠2

log (10)

⎞⎟⎠ log (10)

𝑥 = max

(︂
𝑇 − 𝑡𝑜 − 273.15

𝑇𝑐
, 0

)︂
𝑇𝑟𝑒𝑓 = 273.15 K

𝑓 = 0.43429

Parameters
T [float] Temperature of fluid, [K]

Tc [float] Critical temperature of fluid, [K]

to [float] Fit temperature-transition parameter, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

1.32. Vapor Pressure (chemicals.vapor_pressure) 381

chemicals Documentation, Release 1.1.4

C [float] Antoine C parameter, [K]

n [float] Fit parameter, [-]

E [float] Fit parameter, [-]

F [float] Fit parameter, [-]

Returns
d2Psat_dT2 [float] Second temperature derivative of vapor pressure calculated with coefficients

[Pa/K]

Examples

Tetrafluoromethane at 180 K:

>>> d2TRC_Antoine_extended_dT2(T=180.0, Tc=227.51, to=-120., A=8.95894,
... B=510.595, C=-15.95, n=2.41377, E=-93.74, F=7425.9)
1022.550368944

chemicals.vapor_pressure.dYaws_Psat_dT(T, A, B, C, D, E)
Calculates the first temperature derivative of vapor pressure of a chemical using the Yaws equation for vapor
pressure. Parameters A, B, C, D, and E are chemical-dependent. Parameters can be found in numerous sources;
however units of the coefficients used vary.

𝜕𝑃 sat

𝜕𝑇
= 10𝐴+𝐵

𝑇 +
𝐶 log (𝑇)
log (10)

+𝐷𝑇+𝐸𝑇 2
(︂
− 𝐵

𝑇 2
+

𝐶

𝑇 log (10)
+𝐷 + 2𝐸𝑇

)︂
log (10)

Parameters
T [float] Temperature of fluid, [K]

A [float] A parameter, [-]

B [float] B parameter, [K]

C [float] C parameter, [-]

D [float] D parameter, [1/K]

E [float] E parameter, [1/K^2]

Returns
dPsat_dT [float] First temperature derivative of vapor pressure calculated with coefficients

[Pa/K]

Examples

Benzene:

>>> dYaws_Psat_dT(T=400.0, A=42.7918, B=-2965.83, C=-12.073, D=0.0033269, E=1.
→˓58609e-6)
8134.87548930

chemicals.vapor_pressure.d2Yaws_Psat_dT2(T, A, B, C, D, E)
Calculates the second temperature derivative of vapor pressure of a chemical using the Yaws equation for vapor
pressure. Parameters A, B, C, D, and E are chemical-dependent. Parameters can be found in numerous sources;

382 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

however units of the coefficients used vary.

𝜕2𝑃 sat

𝜕𝑇 2
= 10𝐴+𝐵

𝑇 +
𝐶 log (𝑇)
log (10)

+𝐷𝑇+𝐸𝑇 2

(︃
2𝐵

𝑇 3
− 𝐶

𝑇 2 log (10)
+ 2𝐸 +

(︂
− 𝐵

𝑇 2
+

𝐶

𝑇 log (10)
+𝐷 + 2𝐸𝑇

)︂2

log (10)

)︃
log (10)

Parameters
T [float] Temperature of fluid, [K]

A [float] A parameter, [-]

B [float] B parameter, [K]

C [float] C parameter, [-]

D [float] D parameter, [1/K]

E [float] E parameter, [1/K^2]

Returns
d2Psat_dT2 [float] Second temperature derivative of vapor pressure calculated with coefficients

[Pa/K^2]

Examples

Benzene:

>>> d2Yaws_Psat_dT2(T=400.0, A=42.7918, B=-2965.83, C=-12.073, D=0.0033269, E=1.
→˓58609e-6)
141.7181045862

1.32.3 Jacobians (for fitting)

chemicals.vapor_pressure.Wagner_fitting_jacobian(Ts, Tc, Pc, a, b, c, d)
Calculates the jacobian of the Wagner (2.5, 5) vapor pressure equation for use in fitting these parameters when
experimental values are known.

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

Parameters
Ts [list[float]] Temperatures of fluid data points, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
jac [list[list[float, 4], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.vapor_pressure.Wagner_original_fitting_jacobian(Ts, Tc, Pc, a, b, c, d)
Calculates the jacobian of the Wagner (3, 6) vapor pressure equation for use in fitting these parameters when
experimental values are known.

Requires critical temperature and pressure as well as four coefficients specific to each chemical.

Parameters

1.32. Vapor Pressure (chemicals.vapor_pressure) 383

chemicals Documentation, Release 1.1.4

Ts [list[float]] Temperatures of fluid data points, [K]

Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

a, b, c, d [floats] Parameters for wagner equation. Specific to each chemical. [-]

Returns
jac [list[list[float, 4], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.vapor_pressure.Antoine_fitting_jacobian(Ts, A, B, C, base=10.0)
Calculates the jacobian of the Antoine vapor pressure equation for use in fitting these parameters when experi-
mental values are known.

Requires three coefficients specific to each chemical.

Parameters
Ts [list[float]] Temperatures of fluid data points, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

base [float, optional] Optional base of logarithm; 10 by default, [-]

Returns
jac [list[list[float, 3], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.vapor_pressure.Yaws_Psat_fitting_jacobian(Ts, A, B, C, D, E)
Compute and return the Jacobian of the property predicted by the Yaws vapor pressure equation with respect to
all the coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

A [float] A parameter, [-]

B [float] B parameter, [K]

C [float] C parameter, [-]

D [float] D parameter, [1/K]

E [float] E parameter, [1/K^2]

Returns
jac [list[list[float, 5], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

chemicals.vapor_pressure.TRC_Antoine_extended_fitting_jacobian(Ts, Tc, to, A, B, C, n, E, F)
Calculates the jacobian of the TRC Antoine extended vapor pressure equation for use in fitting these parameters
when experimental values are known.

Requires 7 coefficients specific to each chemical.

Parameters
Ts [list[float]] Temperatures of fluid data points, [K]

384 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Tc [float] Critical temperature of fluid, [K]

to [float] Fit temperature-transition parameter, [K]

A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

n [float] Fit parameter, [-]

E [float] Fit parameter, [-]

F [float] Fit parameter, [-]

Returns
jac [list[list[float, 7], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

1.32.4 Vapor Pressure Estimation Correlations

chemicals.vapor_pressure.Lee_Kesler(T, Tc, Pc, omega)
Calculates vapor pressure of a fluid at arbitrary temperatures using a CSP relationship by [1]; requires a chemi-
cal’s critical temperature and acentric factor.

The vapor pressure is given by:

ln𝑃 𝑠𝑎𝑡
𝑟 = 𝑓 (0) + 𝜔𝑓 (1)

𝑓 (0) = 5.92714 − 6.09648

𝑇𝑟
− 1.28862 ln𝑇𝑟 + 0.169347𝑇 6

𝑟

𝑓 (1) = 15.2518 − 15.6875

𝑇𝑟
− 13.4721 ln𝑇𝑟 + 0.43577𝑇 6

𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor [-]

Returns
Psat [float] Vapor pressure at T [Pa]

Notes

This equation appears in [1] in expanded form. The reduced pressure form of the equation ensures predicted
vapor pressure cannot surpass the critical pressure.

1.32. Vapor Pressure (chemicals.vapor_pressure) 385

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

Example from [2]; ethylbenzene at 347.2 K.

>>> Lee_Kesler(347.2, 617.1, 36E5, 0.299)
13078.694162949312

chemicals.vapor_pressure.Ambrose_Walton(T, Tc, Pc, omega)
Calculates vapor pressure of a fluid at arbitrary temperatures using a CSP relationship by [1]; requires a chemi-
cal’s critical temperature and acentric factor.

The vapor pressure is given by:

ln𝑃𝑟 = 𝑓 (0) + 𝜔𝑓 (1) + 𝜔2𝑓 (2)

𝑓 (0) =
−5.97616𝜏 + 1.29874𝜏1.5 − 0.60394𝜏2.5 − 1.06841𝜏5

𝑇𝑟

𝑓 (1) =
−5.03365𝜏 + 1.11505𝜏1.5 − 5.41217𝜏2.5 − 7.46628𝜏5

𝑇𝑟

𝑓 (2) =
−0.64771𝜏 + 2.41539𝜏1.5 − 4.26979𝜏2.5 + 3.25259𝜏5

𝑇𝑟

𝜏 = 1 − 𝑇𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor [-]

Returns
Psat [float] Vapor pressure at T [Pa]

Notes

Somewhat more accurate than the Lee_Kesler formulation.

References

[1], [2]

386 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Example from [2]; ethylbenzene at 347.25 K.

>>> Ambrose_Walton(347.25, 617.15, 36.09E5, 0.304)
13278.878504306222

chemicals.vapor_pressure.boiling_critical_relation(T, Tb, Tc, Pc)
Calculates vapor pressure of a fluid at arbitrary temperatures using a CSP relationship as in [1]; requires a
chemical’s critical temperature and pressure as well as boiling point.

The vapor pressure is given by:

ln𝑃 𝑠𝑎𝑡
𝑟 = ℎ

(︂
1 − 1

𝑇𝑟

)︂

ℎ = 𝑇𝑏𝑟
ln(𝑃𝑐/101325)

1 − 𝑇𝑏𝑟

Parameters
T [float] Temperature of fluid [K]

Tb [float] Boiling temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Returns
Psat [float] Vapor pressure at T [Pa]

Notes

Units are Pa. Formulation makes intuitive sense; a logarithmic form of interpolation.

References

[1]

Examples

Example as in [1] for ethylbenzene

>>> boiling_critical_relation(347.2, 409.3, 617.1, 36E5)
15209.467273093938

chemicals.vapor_pressure.Sanjari(T, Tc, Pc, omega)
Calculates vapor pressure of a fluid at arbitrary temperatures using a CSP relationship by [1]. Requires a chem-
ical’s critical temperature, pressure, and acentric factor. Although developed for refrigerants, this model should
have some general predictive ability.

The vapor pressure of a chemical at T is given by:

𝑃 𝑠𝑎𝑡 = 𝑃𝑐 exp(𝑓 (0) + 𝜔𝑓 (1) + 𝜔2𝑓 (2))

1.32. Vapor Pressure (chemicals.vapor_pressure) 387

chemicals Documentation, Release 1.1.4

𝑓 (0) = 𝑎1 +
𝑎2
𝑇𝑟

+ 𝑎3 ln𝑇𝑟 + 𝑎4𝑇
1.9
𝑟

𝑓 (1) = 𝑎5 +
𝑎6
𝑇𝑟

+ 𝑎7 ln𝑇𝑟 + 𝑎8𝑇
1.9
𝑟

𝑓 (2) = 𝑎9 +
𝑎10
𝑇𝑟

+ 𝑎11 ln𝑇𝑟 + 𝑎12𝑇
1.9
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor [-]

Returns
Psat [float] Vapor pressure, [Pa]

Notes

a[1-12] are as follows: 6.83377, -5.76051, 0.90654, -1.16906, 5.32034, -28.1460, -58.0352, 23.57466, 18.19967,
16.33839, 65.6995, -35.9739.

For a claimed fluid not included in the regression, R128, the claimed AARD was 0.428%. A re-calculation using
200 data points from 125.45 K to 343.90225 K evenly spaced by 1.09775 K as generated by NIST Webbook
April 2016 produced an AARD of 0.644%. It is likely that the author’s regression used more precision in its
coefficients than was shown here. Nevertheless, the function is reproduced as shown in [1].

For Tc=808 K, Pc=1100000 Pa, omega=1.1571, this function actually declines after 770 K.

References

[1]

Examples

>>> Sanjari(347.2, 617.1, 36E5, 0.299)
13651.916109552523

chemicals.vapor_pressure.Edalat(T, Tc, Pc, omega)
Calculates vapor pressure of a fluid at arbitrary temperatures using a CSP relationship by [1]. Requires a chem-
ical’s critical temperature, pressure, and acentric factor. Claimed to have a higher accuracy than the Lee-Kesler
CSP relationship.

The vapor pressure of a chemical at T is given by:

ln(𝑃 𝑠𝑎𝑡/𝑃𝑐) =
𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏3 + 𝑑𝜏6

1 − 𝜏

𝑎 = −6.1559 − 4.0855𝜔

𝑏 = 1.5737 − 1.0540𝜔 − 4.4365 × 10−3𝑑

𝑐 = −0.8747 − 7.8874𝜔

388 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝑑 =
1

−0.4893 − 0.9912𝜔 + 3.1551𝜔2

𝜏 = 1 − 𝑇

𝑇𝑐

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor [-]

Returns
Psat [float] Vapor pressure, [Pa]

Notes

[1] found an average error of 6.06% on 94 compounds and 1106 data points.

References

[1]

Examples

>>> Edalat(347.2, 617.1, 36E5, 0.299)
13461.273080743307

1.32.5 Sublimation Pressure Estimation Correlations

chemicals.vapor_pressure.Psub_Clapeyron(T, Tt, Pt, Hsub_t)
Calculates sublimation pressure of a solid at arbitrary temperatures using an approximate themodynamic identity
- the Clapeyron equation as described in [1] and [2]. Requires a chemical’s triple temperature, triple pressure,
and triple enthalpy of sublimation.

The sublimation pressure of a chemical at T is given by:

ln
𝑃

𝑃𝑡𝑝
= −∆𝐻𝑠𝑢𝑏

𝑅

(︂
1

𝑇
− 1

𝑇𝑡𝑝

)︂
Parameters

T [float] Temperature of solid [K]

Tt [float] Triple temperature of solid [K]

Pt [float] Truple pressure of solid [Pa]

Hsub_t [float] Enthalpy of fusion at the triple point of the chemical, [J/mol]

Returns
Psub [float] Sublimation pressure, [Pa]

1.32. Vapor Pressure (chemicals.vapor_pressure) 389

chemicals Documentation, Release 1.1.4

Notes

Does not seem to capture the decrease in sublimation pressure quickly enough.

References

[1], [2]

Examples

>>> Psub_Clapeyron(250, Tt=273.15, Pt=611.0, Hsub_t=51100.0)
76.06457150831804
>>> Psub_Clapeyron(300, Tt=273.15, Pt=611.0, Hsub_t=51100.0)
4577.282832876156

1.32.6 Correlations for Specific Substances

chemicals.vapor_pressure.Psat_IAPWS(T)
Calculates vapor pressure of water using the IAPWS explicit equation.

𝑃 𝑠𝑎𝑡 = 106
[︂

2𝐶

−𝐵 +
√
𝐵2 − 4𝐴𝐶

]︂4
𝐴 = 𝜈2 + 𝑛1𝜈 + 𝑛2

𝐵 = 𝑛3𝜈
2 + 𝑛4𝜈 + 𝑛5

𝐶 = 𝑛6𝜈
2 + 𝑛7𝜈 + 𝑛8

𝜈 = 𝑇 +
𝑛9

𝑇 − 𝑛10

Parameters
T [float] Temperature of water, [K]

Returns
Psat [float] Vapor pressure at T [Pa]

Notes

This formulation is quite efficient, and can also be solved backward. The range of validity of this equation is
273.15 K < T < 647.096 K, the IAPWS critical point.

Extrapolation to lower temperatures is very poor. The function continues to decrease until a pressure of 5.7
mPa is reached at 159.77353993926621 K; under that pressure the vapor pressure increases, which is obviously
wrong.

390 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Psat_IAPWS(300.)
3536.58941301301

chemicals.vapor_pressure.dPsat_IAPWS_dT(T)
Calculates the first temperature dervative of vapor pressure of water using the IAPWS explicit equation. This
was derived with SymPy, using the CSE method.

Parameters
T [float] Temperature of water, [K]

Returns
dPsat_dT [float] Temperature dervative of vapor pressure at T [Pa/K]

Notes

The derivative of this is useful when solving for water dew point.

References

[1]

Examples

>>> dPsat_IAPWS_dT(300.)
207.88388134164282

chemicals.vapor_pressure.Tsat_IAPWS(P)
Calculates the saturation temperature of water using the IAPWS explicit equation.

𝑇𝑠 =
𝑛10 +𝐷 −

[︀
(𝑛10 +𝐷)2 − 4(𝑛9 + 𝑛10𝐷)

]︀0.5
2

𝐸 = 𝛽2 + 𝑛3𝛽 + 𝑛6

𝐹 = 𝑛1𝛽
2 + 𝑛4𝛽 + 𝑛7

𝐺 = 𝑛2𝛽
2 + 𝑛5𝛽 + 𝑛8

𝛽 = (𝑃𝑠𝑎𝑡)
0.25

Parameters
Psat [float] Vapor pressure at T [Pa]

Returns
T [float] Temperature of water along the saturation curve at Psat, [K]

1.32. Vapor Pressure (chemicals.vapor_pressure) 391

chemicals Documentation, Release 1.1.4

Notes

The range of validity of this equation is 273.15 K < T < 647.096 K, the IAPWS critical point.

The coefficients n1 to n10 are (0.11670521452767E4, -0.72421316703206E6, -0.17073846940092E2,
0.12020824702470E5, -0.32325550322333E7, 0.14915108613530E2, -0.48232657361591E4,
0.40511340542057E6, -0.23855557567849, 0.65017534844798E3)

References

[1]

Examples

>>> Tsat_IAPWS(1E5)
372.75591861133773

1.32.7 Analytical Fit Equations

chemicals.vapor_pressure.Antoine_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2, base=10.0)
Calculates the antoine coefficients A, B, and C from a known vapor pressure and its first and second temperature
derivative.

Parameters
T [float] Temperature of fluid, [K]

Psat [float] Vapor pressure at specified T [Pa]

dPsat_dT [float] First temperature derivative of vapor pressure at specified T [Pa/K]

d2Psat_dT2 [float] Second temperature derivative of vapor pressure at specified T [Pa/K^2]

Base [float, optional] Base of logarithm; 10 by default

Returns
A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

C [float] Antoine C parameter, [K]

Notes

Coefficients are for calculating vapor pressure in Pascal. This is primarily useful for interconverting vapor pres-
sure models, not fitting experimental data.

Derived with SymPy as follows:

>>> from sympy import *
>>> base, A, B, C, T = symbols('base, A, B, C, T')
>>> v = base**(A - B/(T + C))
>>> d1, d2 = diff(v, T), diff(v, T, 2)
>>> vk, d1k, d2k = symbols('vk, d1k, d2k')
>>> solve([Eq(v, vk), Eq(d1, d1k), Eq(d2, d2k)], [A, B, C])

392 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Recalculate some coefficients from a calcualted value and its derivative:

>>> T = 178.01
>>> A, B, C = (24.0989474955895, 4346.793091137991, -18.96968471040141)
>>> Psat = Antoine(T, A, B, C, base=exp(1))
>>> dPsat_dT, d2Psat_dT2 = (0.006781441203850251, 0.0010801244983894853) #␣
→˓precomputed
>>> Antoine_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2, base=exp(1))
(24.098947495155, 4346.793090994, -18.969684713118)

chemicals.vapor_pressure.Antoine_AB_coeffs_from_point(T, Psat, dPsat_dT, base=10.0)
Calculates the antoine coefficients A, B, with C set to zero to improve low-temperature or high-temperature
extrapolation, from a known vapor pressure and its first temperature derivative.

Parameters
T [float] Temperature of fluid, [K]

Psat [float] Vapor pressure at specified T [Pa]

dPsat_dT [float] First temperature derivative of vapor pressure at specified T [Pa/K]

Base [float, optional] Base of logarithm; 10 by default

Returns
A [float] Antoine A parameter, [-]

B [float] Antoine B parameter, [K]

Notes

Coefficients are for calculating vapor pressure in Pascal. This is primarily useful for interconverting vapor pres-
sure models, not fitting experimental data.

Derived with SymPy as follows:

>>> from sympy import *
>>> base, A, B, T = symbols('base, A, B, T')
>>> v = base**(A - B/T)
>>> d1, d2 = diff(v, T), diff(v, T, 2)
>>> vk, d1k = symbols('vk, d1k')
>>> solve([Eq(v, vk), Eq(d1, d1k)], [A, B])

1.32. Vapor Pressure (chemicals.vapor_pressure) 393

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Recalculate some coefficients from a calcualted value and its derivative:

>>> T = 178.01
>>> A, B = (27.358925161569008, 5445.569591293226)
>>> Psat = Antoine(T, A, B, C=0, base=exp(1))
>>> dPsat_dT = B*exp(1)**(A - B/T)*log(exp(1))/T**2
>>> Antoine_AB_coeffs_from_point(T, Psat, dPsat_dT, base=exp(1))
(27.35892516156901, 5445.569591293226)

chemicals.vapor_pressure.DIPPR101_ABC_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2)
Calculates the first three DIPPR101 coefficients A, B, and C from a known vapor pressure and its first and second
temperature derivative.

If the second derivative is infinity as is the case in some vapor pressure models at the critical point, only the A
and C coefficients are fit, using the first derivative an the actual value of vapor pressure.

Parameters
T [float] Temperature of fluid, [K]

Psat [float] Vapor pressure at specified T [Pa]

dPsat_dT [float] First temperature derivative of vapor pressure at specified T [Pa/K]

d2Psat_dT2 [float] Second temperature derivative of vapor pressure at specified T [Pa/K^2]

Returns
A [float] DIPPR101 A parameter (same as Antoine A), [-]

B [float] DIPPR101 B parameter (same as Antoine B), [K]

C: float DIPPR101 C parameter (NOT same as Antoine C, multiplied by log(T)), [-]

Notes

Coefficients are for calculating vapor pressure in Pascal. This is primarily useful for interconverting vapor pres-
sure models, not fitting experimental data.

Derived with SymPy as follows:

>>> from sympy import *
>>> base, A, B, C, T = symbols('base, A, B, C, T')
>>> v = exp(A + B/T + C*log(T))
>>> d1, d2 = diff(v, T), diff(v, T, 2)
>>> vk, d1k, d2k = symbols('vk, d1k, d2k')
>>> solve([Eq(v, vk), Eq(d1, d1k), Eq(d2, d2k)], [A, B, C])

394 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

Calculate the coefficients:

>>> T = 178.01
>>> Psat, dPsat_dT, d2Psat_dT2 = (0.03946094565666715, 0.006781441203850251, 0.
→˓0010801244983894853)
>>> DIPPR101_ABC_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2)
(72.47169926642, -6744.620564969, -7.2976291987890)

1.32.8 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.vapor_pressure.Psat_data_WagnerMcGarry
Coefficients for the Wagner 3,6 original model equation documented in Wagner_original with data for 245
chemicals, from [1].

chemicals.vapor_pressure.Psat_data_WagnerPoling
Coefficients for the Wagner 2.5, 5 model equation documented in Wagner in [2], with data for 104 chemicals.

chemicals.vapor_pressure.Psat_data_AntoinePoling
Standard Antoine equation coefficients, as documented in the function Antoine and with data for 325 fluids
from [2]. Coefficients were altered to be in units of Pa and Celcius.

chemicals.vapor_pressure.Psat_data_AntoineExtended
Data for 97 chemicals in [2] for the TRC extended Antoine model TRC_Antoine_extended .

chemicals.vapor_pressure.Psat_data_Perrys2_8
A collection of 341 coefficient sets for thermo.dippr.EQ101 from the DIPPR database published openly in
[4].

chemicals.vapor_pressure.Psat_data_VDI_PPDS_3
Coefficients for the Wagner equation Wagner, published openly in [3].

chemicals.vapor_pressure.Psat_data_Alcock_elements
Coefficients for the DIPPR 101 equation chemicals.dippr.EQ101, published in [5] and converted to provide
base SI units (and use the natural logarithm).

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.vapor_pressure.Psat_data_WagnerMcGarry
Out[2]:

Name A ... Tc Tmin
CAS ...
50-00-0 formaldehyde -7.29343 ... 408.00 184.0
56-23-5 carbon tetrachloride -7.07139 ... 556.40 250.0
60-29-7 diethylether -7.29916 ... 466.74 250.0
62-53-3 aniline -7.65517 ... 699.00 376.0
64-17-5 ethanol -8.51838 ... 513.92 293.0
...
7732-18-5 water -7.76451 ... 647.35 275.0
7782-41-4 fluorine -6.18224 ... 144.31 64.0
7782-44-7 oxygen -6.28275 ... 154.70 54.0

(continues on next page)

1.32. Vapor Pressure (chemicals.vapor_pressure) 395

chemicals Documentation, Release 1.1.4

(continued from previous page)

16747-38-9 2,3,3,4-tetramethylpentane -7.65000 ... 607.60 332.0
16747-50-5 l-methyl-l-ethylcyclopentane -7.09092 ... 592.00 316.0

[245 rows x 8 columns]

In [3]: chemicals.vapor_pressure.Psat_data_WagnerPoling
Out[3]:

Name ... Tmax
CAS ...
60-29-7 diethyl ether ... 466.74
64-17-5 ethanol ... 513.92
64-18-6 methanoic acid ... 588.00
64-19-7 ethanoic acid ... 592.71
67-56-1 methanol ... 512.64
...
7727-37-9 nitrogen ... 126.20
7783-81-5 uranium hexafluoride ... 503.35
13838-16-9 2-chloro-1,1,2-trifluoroethyl difluoromethyl e... ... 475.03
26171-83-5 1,2-butandiol ... 506.40
26675-46-7 1-chloro-2,2,2-trifluoroethyl difluoromethyl e... ... 467.80

[104 rows x 9 columns]

In [4]: chemicals.vapor_pressure.Psat_data_AntoinePoling
Out[4]:

Chemical A ... Tmin Tmax
CAS ...
56-23-5 tetrachloromethane 9.10445 ... 259.00 373.76
60-29-7 diethyl ether 9.10962 ... 229.71 328.31
62-53-3 benzeneamine 9.40870 ... 349.86 484.81
64-17-5 ethanol 10.33675 ... 276.50 369.54
64-19-7 ethanoic acid 9.54456 ... 297.58 414.97
...
14762-55-1 helium-3 6.39750 ... 1.12 4.41
16747-38-9 2,3,3,4-tetramethylpentane 8.99105 ... 307.81 443.27
20291-95-6 2,2,5-trimethylheptane 9.00345 ... 318.00 452.00
800000-51-5 hydrogen, normal 7.94928 ... 13.33 22.94
800000-54-8 deuterium, normal 8.25315 ... 17.57 26.23

[325 rows x 6 columns]

In [5]: chemicals.vapor_pressure.Psat_data_AntoineExtended
Out[5]:

Chemical A ... Tmin Tmax
CAS ...
62-53-3 benzeneamine 9.40870 ... 488.15 673.15
74-85-1 ethene 8.91382 ... 188.15 273.15
74-89-5 methanamine 9.21300 ... 288.15 423.15
75-04-7 ethanamine 8.88560 ... 308.15 443.15
75-10-5 difluoromethane 9.29712 ... 238.15 338.15
...
1067-08-9 3-ethyl-3-methylpentane 8.98950 ... 408.15 543.15

(continues on next page)

396 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

1511-62-2 bromodifluoromethane 8.40030 ... 273.15 403.15
1640-89-7 ethylcyclopentane 9.00408 ... 408.15 569.52
1717-00-6 1,1-dichloro-1-fluoroethane 9.03117 ... 333.15 473.15
2837-89-0 1-chloro-1,2,2,2-tetrafluoroethane 8.98581 ... 283.15 383.15

[97 rows x 11 columns]

In [6]: chemicals.vapor_pressure.Psat_data_Perrys2_8
Out[6]:

Chemical C1 C2 ... C5 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 101.510 -4917.20 ... 1.0 181.15 408.00
55-21-0 Benzamide 85.474 -11932.00 ... 6.0 403.00 824.00
56-23-5 Carbon tetrachloride 78.441 -6128.10 ... 2.0 250.33 556.35
57-55-6 1,2-Propylene glycol 212.800 -15420.00 ... 2.0 213.15 626.00
60-29-7 Diethyl ether 136.900 -6954.30 ... 1.0 156.85 466.70
...
10028-15-6 Ozone 40.067 -2204.80 ... 6.0 80.15 261.00
10035-10-6 Hydrogen bromide 29.315 -2424.50 ... 6.0 185.15 363.15
10102-43-9 Nitric oxide 72.974 -2650.00 ... 6.0 109.50 180.15
13511-13-2 Propenylcyclohexene 64.268 -7298.90 ... 6.0 199.00 636.00
132259-10-0 Air 21.662 -692.39 ... 1.0 59.15 132.45

[340 rows x 8 columns]

In [7]: chemicals.vapor_pressure.Psat_data_VDI_PPDS_3
Out[7]:

Chemical Tm Tc ... B C D
CAS ...
50-00-0 Formaldehyde 181.15 408.05 ... 1.28290 -0.50464 -4.29089
56-23-5 Carbon tetrachloride 250.25 556.35 ... 1.96174 -2.05900 -3.26771
56-81-5 Glycerol 291.45 850.05 ... -0.33345 -5.98569 -1.33011
60-29-7 Diethyl ether 156.75 466.63 ... 2.15613 -3.02766 -2.37858
62-53-3 Aniline 267.15 699.05 ... 1.96206 -3.65571 -2.00622
...
10097-32-2 Bromine 265.85 584.15 ... 1.50339 -0.64097 -3.62166
10102-43-9 Nitric oxide 112.15 180.15 ... 0.85755 -3.11447 -8.98765
10102-44-0 Nitrogen dioxide 261.85 431.15 ... 2.37620 0.67820 -2.53997
10544-72-6 Dinitrogentetroxide 261.85 431.10 ... 3.10196 0.59704 -5.33648
132259-10-0 Air 63.05 132.53 ... -0.21537 0.93623 -3.02641

[275 rows x 8 columns]

In [8]: chemicals.vapor_pressure.Psat_data_Alcock_elements
Out[8]:

name A B ... E Tmin Tmax
CAS ...
7439-93-2 lithium 30.888526 -19157.507974 ... -3.0 453.6500 1000.0
7440-23-5 sodium 30.867803 -12972.764414 ... -3.0 370.9440 700.0
7440-09-7 potassium 30.483272 -10806.031841 ... -3.0 336.6500 600.0
7440-17-7 Rubidium 30.674386 -9843.551273 ... -3.0 312.4500 550.0
7440-46-2 Caesium 30.480969 -9353.100648 ... -3.0 301.6500 550.0

(continues on next page)

1.32. Vapor Pressure (chemicals.vapor_pressure) 397

chemicals Documentation, Release 1.1.4

(continued from previous page)

7429-90-5 Aluminium 35.882834 -39019.606986 ... -3.0 933.4730 1800.0
7440-55-3 gallium 19.870657 -31842.449251 ... -3.0 302.9146 1600.0
7440-74-6 Indium 34.365430 -28938.889449 ... -3.0 429.7500 1500.0
7440-28-0 Thallium 31.392793 -21605.155928 ... -3.0 577.1500 1100.0
7440-31-5 Tin 17.786817 -34785.153000 ... -3.0 505.0780 1850.0
7439-92-1 Lead 31.171744 -23239.991344 ... -3.0 600.6120 1200.0
7440-65-5 Yttrium 43.175121 -51151.927841 ... -3.0 1795.1500 2300.0
7439-91-0 Lanthanum 26.548154 -50603.912589 ... -3.0 1193.1500 2450.0
7440-32-6 Titanium 49.219406 -58091.919311 ... -3.0 1943.1500 2400.0
7440-67-7 Zirconium 15.173383 -66231.557615 ... -3.0 2127.1500 2500.0
7440-06-4 Platinum 60.472140 -71198.233660 ... -3.0 2041.3500 2500.0
7440-50-8 Copper 37.335765 -40127.150416 ... -3.0 1357.7700 1850.0
7440-57-5 Gold 35.238110 -43514.253087 ... -3.0 1337.3300 2050.0
7440-45-1 Cerium 25.394558 -48994.405609 ... -3.0 1072.1500 2450.0
7440-10-0 Praseodymium 38.965995 -43042.223143 ... -3.0 1204.1500 2200.0
7440-00-8 Neodymium 40.068933 -39717.290269 ... -3.0 1289.1500 2000.0
7440-54-2 Gadolinium 35.947306 -47214.507332 ... -3.0 1586.1500 2250.0
7440-27-9 Terbium 38.703500 -46171.436285 ... -3.0 1632.1500 2200.0
7439-94-3 Lutetium 54.932120 -54202.853089 ... -3.0 1936.1500 2350.0
7440-29-1 Thorium 148.700293 -85151.899324 ... -3.0 2023.1500 2500.0
7440-13-3 Protactinium 35.081534 -78331.642279 ... -3.0 1845.1500 2500.0
7439-99-8 Neptunium 48.979938 -55303.488764 ... -3.0 917.1500 2500.0
7440-07-5 Plutonium 41.441274 -40495.564030 ... -3.0 913.1500 2450.0
7440-51-9 Curium 56.511693 -49353.608883 ... -3.0 1618.1500 2200.0
7440-41-7 Beryllium 24.848846 -36221.966098 ... -3.0 1560.1500 1800.0
7440-39-3 Barium 20.752547 -18796.002114 ... -3.0 1000.1500 1200.0
7440-20-2 Scandium 24.869569 -40712.007029 ... -3.0 1814.1500 2000.0
7440-62-2 Vanadium 27.480701 -57589.955761 ... -3.0 2183.1500 2500.0
7439-89-6 Iron 26.140596 -45070.800610 ... -3.0 1811.1500 2100.0
7440-48-4 Cobalt 26.465261 -47382.596044 ... -3.0 1768.1500 2150.0
7440-02-0 Nickel 26.875121 -47813.179456 ... -3.0 1728.1500 2150.0
7440-05-3 Palladium 24.019915 -41213.970580 ... -3.0 1827.9500 2100.0
7440-22-4 Silver 24.770558 -31837.844081 ... -3.0 1234.9300 1600.0
7440-66-6 Zinc 23.909391 -14474.049895 ... -3.0 692.6770 750.0
7440-43-9 Cadmium 23.596240 -12415.538821 ... -3.0 594.2190 650.0
7439-97-6 Mercury 23.306114 -7345.246447 ... -3.0 298.0000 400.0
7440-52-0 Erbium 22.320607 -33111.173637 ... -3.0 1802.1500 1900.0
7440-61-1 Uranium 59.270190 -66259.188636 ... -3.0 1408.1500 2500.0

[43 rows x 8 columns]

1.33 Support for Numpy Arrays (chemicals.vectorized)

Basic module which wraps all chemicals functions with numpy’s np.vectorize function.

All other object - dicts, classes, etc - are not wrapped. Supports star imports; so the same objects exported when
importing from the main library will be imported from here.

>>> from chemicals.vectorized import *
>>> Antoine(np.linspace(100, 200, 5), A=8.95894, B=510.595, C=-15.95)

(continues on next page)

398 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

array([7.65674361e+02, 1.89116754e+04, 1.41237759e+05, 5.60609191e+05,
1.53010431e+06])

Inputs do not need to be numpy arrays; they can be any iterable:

>>> import chemicals.vectorized
>>> chemicals.vectorized.Tc(['108-88-3', '7732-18-5'])
array([591.75 , 647.096])

Warning: This module does not replace the functions in the chemicals module; it copies all the functions into the
chemicals.vectorized module and makes them vectorized there.

For example by importing chemicals.vectorized, chemicals.Antoine won’t become vectorized, but chemi-
cals.vectorized.Antoine will become available and is vectorized.

Warning: np.vectorize does not use NumPy to accelerate any computations; it is a convenience wrapper. If you are
working on a problem large enough for speed to be an issue and Numba is compatible with your version of Python,
an interface to that library is available at chemicals.numba which does accelerate NumPy array computations and
is normally faster than using numpy directly.

1.34 Virial Coefficients (chemicals.virial)

This module contains four estimation methods for second B virial coefficients, two utility covnersions for when only B
is considered, and two methods to calculate Z from higher order virial expansions.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Utilities

• Second Virial Correlations

• Third Virial Correlations

• Cross-Parameters

• Second Virial Correlations Dense Implementations

• Third Virial Correlations Dense Implementations

1.34.1 Utilities

chemicals.virial.B_to_Z(B, T, P)
Calculates the compressibility factor of a gas, given its second virial coefficient.

𝑍 =
𝑃𝑉

𝑅𝑇
= 1 +

𝐵𝑃

𝑅𝑇

Parameters
B [float] Second virial coefficient, [m^3/mol]

1.34. Virial Coefficients (chemicals.virial) 399

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

T [float] Temperature, [K]

P [float] Pressure [Pa]

Returns
Z [float] Compressibility factor, [-]

Notes

Other forms of the virial coefficient exist.

References

[1]

Examples

>>> B_to_Z(-0.0015, 300, 1E5)
0.939863822478637

chemicals.virial.B_from_Z(Z, T, P)
Calculates the second virial coefficient of a pure species, given the compressibility factor of the gas.

𝐵 =
𝑅𝑇 (𝑍 − 1)

𝑃

Parameters
Z [float] Compressibility factor, [-]

T [float] Temperature, [K]

P [float] Pressure [Pa]

Returns
B [float] Second virial coefficient, [m^3/mol]

Notes

Other forms of the virial coefficient exist.

References

[1]

400 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> B_from_Z(0.94, 300, 1E5)
-0.0014966032712675846

chemicals.virial.Z_from_virial_density_form(T, P, *args)
Calculates the compressibility factor of a gas given its temperature, pressure, and molar density-form virial
coefficients. Any number of coefficients is supported.

𝑍 =
𝑃𝑉

𝑅𝑇
= 1 +

𝐵

𝑉
+

𝐶

𝑉 2
+

𝐷

𝑉 3
+

𝐸

𝑉 4
. . .

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

B to Z [float, optional] Virial coefficients, [various]

Returns
Z [float] Compressibility factor at T, P, and with given virial coefficients, [-]

Notes

For use with B or with B and C or with B and C and D, optimized equations are used to obtain the compressibility
factor directly. If more coefficients are provided, uses numpy’s roots function to solve this equation. This takes
substantially longer as the solution is numerical.

If no virial coefficients are given, returns 1, as per the ideal gas law.

The units of each virial coefficient are as follows, where for B, n=1, and C, n=2, and so on.(︂
m3

mol

)︂𝑛

References

[1], [2]

Examples

>>> Z_from_virial_density_form(300, 122057.233762653, 1E-4, 1E-5, 1E-6, 1E-7)
1.28434940526

chemicals.virial.Z_from_virial_pressure_form(P, *args)
Calculates the compressibility factor of a gas given its pressure, and pressure-form virial coefficients. Any num-
ber of coefficients is supported.

𝑍 =
𝑃𝑣

𝑅𝑇
= 1 +𝐵′𝑃 + 𝐶 ′𝑃 2 +𝐷′𝑃 3 + 𝐸′𝑃 4 . . .

Parameters
P [float] Pressure, [Pa]

B to Z [float, optional] Pressure form Virial coefficients, [various]

1.34. Virial Coefficients (chemicals.virial) 401

chemicals Documentation, Release 1.1.4

Returns
Z [float] Compressibility factor at P, and with given virial coefficients, [-]

Notes

Note that although this function does not require a temperature input, it is still dependent on it because the
coefficients themselves normally are regressed in terms of temperature.

The use of this form is less common than the density form. Its coefficients are normally indicated with the “’”
suffix.

If no virial coefficients are given, returns 1, as per the ideal gas law.

The units of each virial coefficient are as follows, where for B, n=1, and C, n=2, and so on.(︂
1

Pa

)︂𝑛

References

[1], [2]

Examples

>>> Z_from_virial_pressure_form(102919.99946855308, 4.032286555169439e-09, 1.
→˓6197059494442215e-13, 6.483855042486911e-19)
1.00283753944

chemicals.virial.BVirial_mixture(zs, Bijs)
Calculate the B second virial coefficient from a matrix of virial cross-coefficients. The diagonal is virial coeffi-
cients of the pure components.

𝐵 =
∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗𝐵(𝑇)

Parameters
zs [list[float]] Mole fractions of each species, [-]

Bijs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

References

[1]

402 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05],␣
→˓[-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> BVirial_mixture(zs=zs, Bijs=Bijs)
-3.19884e-05

chemicals.virial.dBVirial_mixture_dzs(zs, Bijs, dB_dzs=None)
Calculate first mole fraction derivative of the B second virial coefficient from a matrix of virial cross-coefficients.

𝜕𝐵

𝜕𝑥𝑖
=
∑︁
𝑗

𝑧𝑗(𝐵𝑖,𝑗 +𝐵𝑗,𝑖)

Parameters
zs [list[float]] Mole fractions of each species, [-]

Bijs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dzs [list[float], optional] Array for first mole fraction derivatives of second virial coefficient
in density form [m^3/mol]

Returns
dB_dzs [list[float]] First mole fraction derivatives of second virial coefficient in density form

[m^3/mol]

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05],␣
→˓[-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> dBVirial_mixture_dzs(zs=zs, Bijs=Bijs)
[-3.4089e-05, -7.2301e-05, -0.00012621]

chemicals.virial.d2BVirial_mixture_dzizjs(zs, Bijs, d2B_dzizjs=None)
Calculate second mole fraction derivative of the B second virial coefficient from a matrix of virial cross-
coefficients.

𝜕2𝐵

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝐵𝑖,𝑗 +𝐵𝑗,𝑖

Parameters
zs [list[float]] Mole fractions of each species, [-]

Bijs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

d2B_dzizjs [list[list[float]], optional] Array for First mole fraction derivatives of second virial
coefficient in density form [m^3/mol]

Returns
d2B_dzizjs [list[list[float]]] First mole fraction derivatives of second virial coefficient in density

form [m^3/mol]

1.34. Virial Coefficients (chemicals.virial) 403

chemicals Documentation, Release 1.1.4

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05],␣
→˓[-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> d2BVirial_mixture_dzizjs(zs=zs, Bijs=Bijs)
[[-1.248e-05, -4.023e-05, -7.89e-05], [-4.023e-05, -8.782e-05, -0.0001292], [-7.89e-
→˓05, -0.0001292, -0.00024]]

chemicals.virial.d3BVirial_mixture_dzizjzks(zs, Bijs, d3B_dzizjzks=None)
Calculate third mole fraction derivative of the B third virial coefficient from a matrix of virial cross-coefficients.

𝜕3𝐵

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
= 0

Parameters
zs [list[float]] Mole fractions of each species, [-]

Bijs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

d3B_dzizjzks [list[list[list[float]]]] Array for third mole fraction derivatives of second virial co-
efficient in density form [m^3/mol]

Returns
d3B_dzizjzks [list[list[list[float]]]] Third mole fraction derivatives of second virial coefficient

in density form [m^3/mol]

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05],␣
→˓[-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> d3BVirial_mixture_dzizjzks(zs=zs, Bijs=Bijs)
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0,␣
→˓0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]

chemicals.virial.CVirial_mixture_Orentlicher_Prausnitz(zs, Cijs)
Calculate the C third virial coefficient from a matrix of virial cross-coefficients. The diagonal is virial coefficients
of the pure components.

𝐶 =
∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

𝑦𝑖𝑦𝑗𝑦𝑘𝐶𝑖𝑗𝑘(𝑇)

𝐶𝑖𝑗𝑘 = (𝐶𝑖𝑗𝐶𝑗𝑘𝐶𝑖𝑘)
1/3

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

Returns
C [float] Third virial coefficient in density form [m^6/mol^2]

404 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> CVirial_mixture_Orentlicher_Prausnitz(zs, Cijs)
2.0790440095e-09

chemicals.virial.dCVirial_mixture_dT_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs)
Calculate the first temperature derivative of the C third virial coefficient from matrices of virial cross-coefficients
and their first temperature derivatives.

𝜕𝐶

𝜕𝑇
=
∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

𝑧𝑖𝑧𝑗𝑧𝑘 3
√︀

Cij (𝑇) Cik (𝑇) Cjk (𝑇)
(︁

Cij (𝑇) Cik (𝑇) 𝑑
𝑑𝑇 Cjk (𝑇)

3 +
Cij (𝑇) Cjk (𝑇) 𝑑

𝑑𝑇 Cik (𝑇)

3 +
Cik (𝑇) Cjk (𝑇) 𝑑

𝑑𝑇 Cij (𝑇)

3

)︁
Cij (𝑇) Cik (𝑇) Cjk (𝑇)

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

dCij_dTs [list[list[float]]] First temperature derivative of third virial binary interaction coeffi-
cients in density form [m^6/mol^2/K]

Returns
dC_dT [float] First temperature derivative of third virial coefficient in density form

[m^6/mol^2/K]

References

[1]

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.
→˓809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> zs = [.5, .3, .2]
>>> dCVirial_mixture_dT_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs)
-7.2751517e-12

chemicals.virial.d2CVirial_mixture_dT2_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s)
Calculate the second temperature derivative of the C third virial coefficient from matrices of virial cross-
coefficients and their first and second temperature derivatives.

𝜕2𝐶

𝜕𝑇 2
=
∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

𝑧𝑖𝑧𝑗𝑧𝑘

3
√︀

Cij (𝑇) Cik (𝑇) Cjk (𝑇)

(︂
(Cij (𝑇) Cik (𝑇) 𝑑

𝑑𝑇 Cjk (𝑇)+Cij (𝑇) Cjk (𝑇) 𝑑
𝑑𝑇 Cik (𝑇)+Cik (𝑇) Cjk (𝑇) 𝑑

𝑑𝑇 Cij (𝑇))
2

Cij (𝑇) Cik (𝑇) Cjk (𝑇) − 3(Cij (𝑇) Cik (𝑇) 𝑑
𝑑𝑇 Cjk (𝑇)+Cij (𝑇) Cjk (𝑇) 𝑑

𝑑𝑇 Cik (𝑇)+Cik (𝑇) Cjk (𝑇) 𝑑
𝑑𝑇 Cij (𝑇)) 𝑑

𝑑𝑇 Cjk (𝑇)

Cjk (𝑇) − 3(Cij (𝑇) Cik (𝑇) 𝑑
𝑑𝑇 Cjk (𝑇)+Cij (𝑇) Cjk (𝑇) 𝑑

𝑑𝑇 Cik (𝑇)+Cik (𝑇) Cjk (𝑇) 𝑑
𝑑𝑇 Cij (𝑇)) 𝑑

𝑑𝑇 Cik (𝑇)

Cik (𝑇) − 3(Cij (𝑇) Cik (𝑇) 𝑑
𝑑𝑇 Cjk (𝑇)+Cij (𝑇) Cjk (𝑇) 𝑑

𝑑𝑇 Cik (𝑇)+Cik (𝑇) Cjk (𝑇) 𝑑
𝑑𝑇 Cij (𝑇)) 𝑑

𝑑𝑇 Cij (𝑇)

Cij (𝑇) + 3 Cij (𝑇) Cik (𝑇) 𝑑2

𝑑𝑇 2 Cjk (𝑇) + 3 Cij (𝑇) Cjk (𝑇) 𝑑2

𝑑𝑇 2 Cik (𝑇) + 6 Cij (𝑇) 𝑑
𝑑𝑇 Cik (𝑇) 𝑑

𝑑𝑇 Cjk (𝑇) + 3 Cik (𝑇) Cjk (𝑇) 𝑑2

𝑑𝑇 2 Cij (𝑇) + 6 Cik (𝑇) 𝑑
𝑑𝑇 Cij (𝑇) 𝑑

𝑑𝑇 Cjk (𝑇) + 6 Cjk (𝑇) 𝑑
𝑑𝑇 Cij (𝑇) 𝑑

𝑑𝑇 Cik (𝑇)

)︂
9 Cij (𝑇) Cik (𝑇) Cjk (𝑇)

1.34. Virial Coefficients (chemicals.virial) 405

chemicals Documentation, Release 1.1.4

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

dCij_dTs [list[list[float]]] First temperature derivative of third virial binary interaction coeffi-
cients in density form [m^6/mol^2/K]

d2Cij_dT2s [list[list[float]]] Second temperature derivative of third virial binary interaction co-
efficients in density form [m^6/mol^2/K^2]

Returns
d2C_dT2 [float] Second temperature derivative of third virial coefficient in density form

[m^6/mol^2/K^2]

References

[1]

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.
→˓809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> d2Cij_dT2s = [[2.6469e-14, 5.0512e-14, 1.1509e-13], [5.0512e-14, 9.3272e-
→˓14, 1.7836e-13], [1.1509e-13, 1.7836e-13, -1.4906e-13]]
>>> zs = [.5, .3, .2]
>>> d2CVirial_mixture_dT2_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s)
6.7237107787e-14

chemicals.virial.d3CVirial_mixture_dT3_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s,
d3Cij_dT3s)

Calculate the third temperature derivative of the C third virial coefficient from matrices of virial cross-coefficients
and their first, second, and third temperature derivatives.

The expression is quite lengthy and not shown here [1].

𝜕3𝐶

𝜕𝑇 3

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

dCij_dTs [list[list[float]]] First temperature derivative of third virial binary interaction coeffi-
cients in density form [m^6/mol^2/K]

d2Cij_dT2s [list[list[float]]] Second temperature derivative of third virial binary interaction co-
efficients in density form [m^6/mol^2/K^2]

d3Cij_dT3s [list[list[float]]] Third temperature derivative of third virial binary interaction co-
efficients in density form [m^6/mol^2/K^2^2]

Returns

406 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

d3C_dT3 [float] Third temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^3]

References

[1]

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.
→˓809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> d2Cij_dT2s = [[2.6469e-14, 5.0512e-14, 1.1509e-13], [5.0512e-14, 9.3272e-
→˓14, 1.7836e-13], [1.1509e-13, 1.7836e-13, -1.4906e-13]]
>>> d3Cij_dT3s = [[-4.2300e-16, -7.9727e-16, -1.6962e-15], [-7.9727e-16, -1.3826e-
→˓15, -1.4525e-15], [-1.6962e-15, -1.4525e-15, 1.9786e-14]]
>>> zs = [.5, .3, .2]
>>> d3CVirial_mixture_dT3_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s,␣
→˓d3Cij_dT3s)
-3.7358368e-16

chemicals.virial.dCVirial_mixture_Orentlicher_Prausnitz_dzs(zs, Cijs, dCs=None)
Calculate the first mole fraction derivatives of the C third virial coefficient from a matrix of virial cross-
coefficients.

𝜕𝐶

𝜕𝑧𝑚
=

∑︁
0≤𝑖≤𝑛𝑐
0≤𝑗≤𝑛𝑐
0≤𝑘≤𝑛𝑐

3
√︀
𝐶𝑠𝑖,𝑗𝐶𝑠𝑖,𝑘𝐶𝑠𝑗,𝑘 (𝛿𝑖𝑚𝑧𝑠𝑗𝑧𝑠𝑘 + 𝛿𝑗𝑚𝑧𝑠𝑖𝑧𝑠𝑘 + 𝛿𝑘𝑚𝑧𝑠𝑖𝑧𝑠𝑗)

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

dCs [list[float], optional] First derivatives of C with respect to mole fraction, [m^6/mol^2]

Returns
dC_dzs [list[float]] First derivatives of C with respect to mole fraction, [m^6/mol^2]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> i, j, k, m, n, o = symbols("i, j, k, m, n, o", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],
→˓[k,0,nc])

(continues on next page)

1.34. Virial Coefficients (chemicals.virial) 407

chemicals Documentation, Release 1.1.4

(continued from previous page)

>>> diff(C_expr, zs[m])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*KroneckerDelta(i, m)*zs[j]*zs[k] + (Cs[i,␣
→˓j]*Cs[i, k]*Cs[j, k])**(1/3)*KroneckerDelta(j, m)*zs[i]*zs[k] + (Cs[i, j]*Cs[i,␣
→˓k]*Cs[j, k])**(1/3)*KroneckerDelta(k, m)*zs[i]*zs[j], (i, 0, nc), (j, 0, nc), (k,␣
→˓0, nc))

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> dCVirial_mixture_Orentlicher_Prausnitz_dzs(zs, Cijs)
[5.44450470e-09, 6.54968776e-09, 7.74986672e-09]

chemicals.virial.d2CVirial_mixture_Orentlicher_Prausnitz_dzizjs(zs, Cijs, d2Cs=None)
Calculate the second mole fraction derivatives of the C third virial coefficient from a matrix of virial cross-
coefficients.

𝜕2𝐶

𝜕𝑧𝑚𝜕𝑧𝑛
=

∑︁
0≤𝑖≤𝑛𝑐
0≤𝑗≤𝑛𝑐
0≤𝑘≤𝑛𝑐

3
√︀
𝐶𝑠𝑖,𝑗𝐶𝑠𝑖,𝑘𝐶𝑠𝑗,𝑘 (𝛿𝑖𝑚𝛿𝑗𝑛𝑧𝑠𝑘 + 𝛿𝑖𝑚𝛿𝑘𝑛𝑧𝑠𝑗 + 𝛿𝑖𝑛𝛿𝑗𝑚𝑧𝑠𝑘 + 𝛿𝑖𝑛𝛿𝑘𝑚𝑧𝑠𝑗 + 𝛿𝑗𝑚𝛿𝑘𝑛𝑧𝑠𝑖 + 𝛿𝑗𝑛𝛿𝑘𝑚𝑧𝑠𝑖)

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

d2Cs [list[list[float]], optional] Second derivatives of C with respect to mole fraction,
[m^6/mol^2]

Returns
d2Cs [list[list[float]]] Second derivatives of C with respect to mole fraction, [m^6/mol^2]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> i, j, k, m, n, o = symbols("i, j, k, m, n, o", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],
→˓[k,0,nc])
>>> diff(C_expr, zs[m], zs[n])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(KroneckerDelta(i, m)*KroneckerDelta(j,␣
→˓n)*zs[k] + KroneckerDelta(i, m)*KroneckerDelta(k, n)*zs[j] + KroneckerDelta(i,␣
→˓n)*KroneckerDelta(j, m)*zs[k] + KroneckerDelta(i, n)*KroneckerDelta(k, m)*zs[j] +␣
→˓KroneckerDelta(j, m)*KroneckerDelta(k, n)*zs[i] + KroneckerDelta(j,␣
→˓n)*KroneckerDelta(k, m)*zs[i]), (i, 0, nc), (j, 0, nc), (k, 0, nc))

408 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> d2CVirial_mixture_Orentlicher_Prausnitz_dzizjs(zs, Cijs)
[[9.6827886655e-09, 1.1449146725e-08, 1.3064355337e-08], [1.1449146725e-08, 1.
→˓38557674294e-08, 1.60903596751e-08], [1.3064355337e-08, 1.60903596751e-08, 2.
→˓0702239403e-08]]

chemicals.virial.d3CVirial_mixture_Orentlicher_Prausnitz_dzizjzks(zs, Cijs, d3Cs=None)
Calculate the third mole fraction derivatives of the C third virial coefficient from a matrix of virial cross-
coefficients.

𝜕3𝐶

𝜕𝑧𝑚𝜕𝑧𝑛𝜕𝑧𝑜
=

∑︁
0≤𝑖≤𝑛𝑐
0≤𝑗≤𝑛𝑐
0≤𝑘≤𝑛𝑐

3
√︀
𝐶𝑠𝑖,𝑗𝐶𝑠𝑖,𝑘𝐶𝑠𝑗,𝑘 (𝛿𝑖𝑚𝛿𝑗𝑛𝛿𝑘𝑜 + 𝛿𝑖𝑚𝛿𝑗𝑜𝛿𝑘𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑚𝛿𝑘𝑜 + 𝛿𝑖𝑛𝛿𝑗𝑜𝛿𝑘𝑚 + 𝛿𝑖𝑜𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑖𝑜𝛿𝑗𝑛𝛿𝑘𝑚)

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

d3Cs [list[list[list[float]]], optional] Third derivatives of C with respect to mole fraction,
[m^6/mol^2]

Returns
d3Cs [list[list[list[float]]]] Third derivatives of C with respect to mole fraction, [m^6/mol^2]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> i, j, k, m, n, o = symbols("i, j, k, m, n, o", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],
→˓[k,0,nc])
>>> diff(C_expr, zs[m], zs[n], zs[o])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(KroneckerDelta(i, m)*KroneckerDelta(j,␣
→˓n)*KroneckerDelta(k, o) + KroneckerDelta(i, m)*KroneckerDelta(j,␣
→˓o)*KroneckerDelta(k, n) + KroneckerDelta(i, n)*KroneckerDelta(j,␣
→˓m)*KroneckerDelta(k, o) + KroneckerDelta(i, n)*KroneckerDelta(j,␣
→˓o)*KroneckerDelta(k, m) + KroneckerDelta(i, o)*KroneckerDelta(j,␣
→˓m)*KroneckerDelta(k, n) + KroneckerDelta(i, o)*KroneckerDelta(j,␣
→˓n)*KroneckerDelta(k, m)), (i, 0, nc), (j, 0, nc), (k, 0, nc))

1.34. Virial Coefficients (chemicals.virial) 409

chemicals Documentation, Release 1.1.4

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> d3CVirial_mixture_Orentlicher_Prausnitz_dzizjzks(zs, Cijs)
[[[8.760000000e-09, 1.0187346981e-08, 1.12329228549e-08], [1.01873469818e-08, 1.
→˓21223973593e-08, 1.35937701316e-08], [1.12329228549e-08, 1.35937701316e-08, 1.
→˓68488143533e-08]], [[1.01873469818e-08, 1.21223973593e-08, 1.35937701316e-08], [1.
→˓2122397359e-08, 1.47600000000e-08, 1.68328437491e-08], [1.35937701316e-08, 1.
→˓68328437491e-08, 2.12181074230e-08]], [[1.12329228549e-08, 1.35937701316e-08, 1.
→˓68488143533e-08], [1.35937701316e-08, 1.68328437491e-08, 2.12181074230e-08], [1.
→˓68488143533e-08, 2.12181074230e-08, 2.9562000000e-08]]]

chemicals.virial.d2CVirial_mixture_Orentlicher_Prausnitz_dTdzs(zs, Cijs, dCij_dTs,
d2C_dTdzs=None)

Calculate the first mole fraction derivatives of the C third virial coefficient from a matrix of virial cross-
coefficients.

𝜕2𝐶

𝜕𝑇𝜕𝑧𝑚

Parameters
zs [list[float]] Mole fractions of each species, [-]

Cijs [list[list[float]]] Third virial binary interaction coefficients in density form [m^6/mol^2]

dCij_dTs [list[list[float]]] First temperature derivative of third virial binary interaction coeffi-
cients in density form [m^6/mol^2/K]

d2C_dTdzs [list[float], optional] Array for second derivatives of C with respect to mole fraction
and temperature, [m^6/mol^2/K]

Returns
d2C_dTdzs [list[float]] Second derivatives of C with respect to mole fraction and temperature,

[m^6/mol^2/K]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> from sympy import *
>>> i, j, k, m, n, o, T = symbols("i, j, k, m, n, o, T", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> dC_dTs = IndexedBase('dC_dTs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]/3*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k])/(Cs[i,j]*Cs[i,
→˓k]*Cs[j,k])*(Cs[i,j]*Cs[i,k]*dC_dTs[j,k] + Cs[i,j]*dC_dTs[i,k]*Cs[j,k] + dC_dTs[i,
→˓j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],[k,0,nc])
>>> diff(C_expr, zs[m])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(Cs[i, j]*Cs[i, k]*dC_dTs[j, k] + Cs[i,␣
→˓j]*Cs[j, k]*dC_dTs[i, k] + Cs[i, k]*Cs[j, k]*dC_dTs[i, j])*KroneckerDelta(i,␣
→˓m)*zs[j]*zs[k]/(3*Cs[i, j]*Cs[i, k]*Cs[j, k]) + (Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/
→˓3)*(Cs[i, j]*Cs[i, k]*dC_dTs[j, k] + Cs[i, j]*Cs[j, k]*dC_dTs[i, k] + Cs[i,␣
→˓k]*Cs[j, k]*dC_dTs[i, j])*KroneckerDelta(j, m)*zs[i]*zs[k]/(3*Cs[i, j]*Cs[i,␣
→˓k]*Cs[j, k]) + (Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(Cs[i, j]*Cs[i, k]*dC_dTs[j,␣
→˓k] + Cs[i, j]*Cs[j, k]*dC_dTs[i, k] + Cs[i, k]*Cs[j, k]*dC_dTs[i,␣
→˓j])*KroneckerDelta(k, m)*zs[i]*zs[j]/(3*Cs[i, j]*Cs[i, k]*Cs[j, k]), (i, 0, nc),␣
→˓(j, 0, nc), (k, 0, nc))

(continues on next page)

410 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.
→˓12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.
→˓809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> zs = [.5, .3, .2]
>>> d2CVirial_mixture_Orentlicher_Prausnitz_dTdzs(zs, Cijs, dCij_dTs)
[-1.5740994103e-11, -2.27267309501e-11, -3.56846953115e-11]

chemicals.virial.dV_dzs_virial(B, C, V, dB_dzs, dC_dzs, dV_dzs=None)
Calculates first mole fraction derivative of volume for the virial equation of state.

𝜕𝑉

𝜕𝑧𝑖
=

𝑉 (𝑉 𝜕𝐵
𝜕𝑧𝑖

+ 𝜕𝐶
𝜕𝑧𝑖

)

2𝐵𝑉 + 3𝐶 + 𝑉 2

Parameters
B [float] Second virial coefficient in density form [m^3/mol]

C [float] Third virial coefficient in density form [m^6/mol^2]

V [float] Molar volume from virial equation, [m^3/mol]

dB_dzs [list[float]] First mole fraction derivatives of second virial coefficient in density form
[m^3/mol]

dC_dzs [list[float]] First derivatives of C with respect to mole fraction, [m^6/mol^2]

dV_dzs [list[float], optional] Array for first derivatives of molar volume with respect to mole
fraction, [m^3/mol]

Returns
dV_dzs [list[float]] First derivatives of molar volume with respect to mole fraction, [m^3/mol]

Notes

This expression was derived with SymPy as follows:

>>> from sympy import *
>>> Z, R, T, P, z1 = symbols('Z, R, T, P, z1')
>>> B, C, V = symbols('B, C, V', cls=Function)
>>> base =Eq(P*V(z1)/(R*T), 1 + B(z1)/V(z1) + C(z1)/V(z1)**2)
>>> P_sln = solve(base, P)[0]
>>> solve(diff(P_sln, z1), Derivative(V(z1), z1))
[(V(z1)*Derivative(B(z1), z1) + Derivative(C(z1), z1))*V(z1)/(2*B(z1)*V(z1) +␣
→˓3*C(z1) + V(z1)**2)]

1.34. Virial Coefficients (chemicals.virial) 411

chemicals Documentation, Release 1.1.4

Examples

>>> dV_dzs_virial(B=-5.130920247359858e-05, C=2.6627784284381213e-09, V=0.
→˓024892080086430797, dB_dzs=[-4.457911131778849e-05, -9.174964457681726e-05, -0.
→˓0001594258679841028], dC_dzs=[6.270599057032657e-09, 7.766612052069565e-09, 9.
→˓503031492910165e-09])
[-4.4510120473455416e-05, -9.181495962913208e-05, -0.00015970040988493522]

chemicals.virial.d2V_dzizjs_virial(B, C, V, dB_dzs, dC_dzs, dV_dzs, d2B_dzizjs, d2C_dzizjs,
d2V_dzizjs=None)

Calculates second mole fraction derivative of volume for the virial equation of state.

𝜕2𝑉

𝜕𝑧𝑖𝜕𝑧𝑗

Parameters
B [float] Second virial coefficient in density form [m^3/mol]

C [float] Third virial coefficient in density form [m^6/mol^2]

V [float] Molar volume from virial equation, [m^3/mol]

dB_dzs [list[float]] First mole fraction derivatives of second virial coefficient in density form
[m^3/mol]

dC_dzs [list[float]] First derivatives of C with respect to mole fraction, [m^6/mol^2]

dV_dzs [list[float]] First derivatives of molar volume with respect to mole fraction, [m^3/mol]

d2B_dzizjs [list[list[float]]] Second mole fraction derivatives of second virial coefficient in den-
sity form [m^3/mol]

d2C_dzizjs [list[list[float]]] Second derivatives of C with respect to mole fraction, [m^6/mol^2]

d2V_dzizjs [list[list[float]], optional] Array for second derivatives of molar volume with respect
to mole fraction, [m^3/mol]

Returns
d2V_dzizjs [list[list[float]]] Second derivatives of molar volume with respect to mole fraction,

[m^3/mol]

Notes

This expression was derived with SymPy as follows:

>>> from sympy import *
>>> Z, R, T, P, z1 = symbols('Z, R, T, P, z1')
>>> B, C, V = symbols('B, C, V', cls=Function)
>>> base =Eq(P*V(z1)/(R*T), 1 + B(z1)/V(z1) + C(z1)/V(z1)**2)
>>> P_sln = solve(base, P)[0]
>>> solve(diff(P_sln, z1), Derivative(V(z1), z1))
[(V(z1)*Derivative(B(z1), z1) + Derivative(C(z1), z1))*V(z1)/(2*B(z1)*V(z1) +␣
→˓3*C(z1) + V(z1)**2)]

412 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> d2C_dzizjs = [[1.0287075724127612e-08, 1.2388277824773021e-08, 1.
→˓4298813522844275e-08], [1.2388277824773021e-08, 1.514162073913238e-08, 1.
→˓8282527232061114e-08], [1.4298813522844275e-08, 1.8282527232061114e-08, 2.
→˓3350122217403063e-08]]
>>> d2B_dzizjs = [[-1.0639357784985337e-05, -3.966321845899801e-05, -7.
→˓53987684376414e-05], [-3.966321845899801e-05, -8.286257232134107e-05, -0.
→˓00014128571574782375], [-7.53987684376414e-05, -0.00014128571574782375, -0.
→˓00024567752140887547]]
>>> dB_dzs = [-4.457911131778849e-05, -9.174964457681726e-05, -0.
→˓0001594258679841028]
>>> dC_dzs = [6.270599057032657e-09, 7.766612052069565e-09, 9.503031492910165e-09]
>>> dV_dzs = [-4.4510120473455416e-05, -9.181495962913208e-05, -0.
→˓00015970040988493522]
>>> d2V_dzizjs_virial(B=-5.130920247359858e-05, C=2.6627784284381213e-09, V=0.
→˓024892080086430797, dB_dzs=dB_dzs, dC_dzs=dC_dzs, dV_dzs=dV_dzs, d2B_dzizjs=d2B_
→˓dzizjs, d2C_dzizjs=d2C_dzizjs)
[[-1.04268917389e-05, -3.9654694588e-05, -7.570310078e-05], [-3.9654694588e-05, -8.
→˓3270116767e-05, -0.0001423083584], [-7.5703100789e-05, -0.000142308358, -0.
→˓00024779788]]

1.34.2 Second Virial Correlations

chemicals.virial.BVirial_Pitzer_Curl(T, Tc, Pc, omega, order=0)
Calculates the second virial coefficient using the model in [1]. Designed for simple calculations.

𝐵𝑟 = 𝐵(0) + 𝜔𝐵(1)

𝐵(0) = 0.1445 − 0.33/𝑇𝑟 − 0.1385/𝑇 2
𝑟 − 0.0121/𝑇 3

𝑟

𝐵(1) = 0.073 + 0.46/𝑇𝑟 − 0.5/𝑇 2
𝑟 − 0.097/𝑇 3

𝑟 − 0.0073/𝑇 8
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

order [int, optional] Order of the calculation. 0 for the calculation of B itself; for 1/2/3, the
first/second/third derivative of B with respect to temperature; and for -1/-2, the first/second
indefinite integral of B with respect to temperature. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
B [float] Second virial coefficient in density form or its integral/derivative if specified, [m^3/mol

or m^3/mol/K^order]

1.34. Virial Coefficients (chemicals.virial) 413

chemicals Documentation, Release 1.1.4

Notes

Analytical models for derivatives and integrals are available for orders -2, -1, 1, 2, and 3, all obtained with SymPy.

For first temperature derivative of B:

𝑑𝐵(0)

𝑑𝑇
=

33𝑇𝑐

100𝑇 2
+

277𝑇𝑐2

1000𝑇 3
+

363𝑇𝑐3

10000𝑇 4

𝑑𝐵(1)

𝑑𝑇
= −23𝑇𝑐

50𝑇 2
+
𝑇𝑐2

𝑇 3
+

291𝑇𝑐3

1000𝑇 4
+

73𝑇𝑐8

1250𝑇 9

For the second temperature derivative of B:

𝑑2𝐵(0)

𝑑𝑇 2
= − 3𝑇𝑐

5000𝑇 3

(︂
1100 +

1385𝑇𝑐

𝑇
+

242𝑇𝑐2

𝑇 2

)︂
𝑑2𝐵(1)

𝑑𝑇 2
=
𝑇𝑐

𝑇 3

(︂
23

25
− 3𝑇𝑐

𝑇
− 291𝑇𝑐2

250𝑇 2
− 657𝑇𝑐7

1250𝑇 7

)︂
For the third temperature derivative of B:

𝑑3𝐵(0)

𝑑𝑇 3
=

3𝑇𝑐

500𝑇 4

(︂
330 +

554𝑇𝑐

𝑇
+

121𝑇𝑐2

𝑇 2

)︂
𝑑3𝐵(1)

𝑑𝑇 3
=

3𝑇𝑐

𝑇 4

(︂
−23

25
+

4𝑇𝑐

𝑇
+

97𝑇𝑐2

50𝑇 2
+

219𝑇𝑐7

125𝑇 7

)︂
For the first indefinite integral of B:∫︁

𝐵(0)𝑑𝑇 =
289𝑇

2000
− 33𝑇𝑐

100
ln (𝑇) +

1

20000𝑇 2

(︀
2770𝑇𝑇𝑐2 + 121𝑇𝑐3

)︀
∫︁
𝐵(1)𝑑𝑇 =

73𝑇

1000
+

23𝑇𝑐

50
ln (𝑇) +

1

70000𝑇 7

(︀
35000𝑇 6𝑇𝑐2 + 3395𝑇 5𝑇𝑐3 + 73𝑇𝑐8

)︀
For the second indefinite integral of B:∫︁ ∫︁

𝐵(0)𝑑𝑇𝑑𝑇 =
289𝑇 2

4000
− 33𝑇

100
𝑇𝑐 ln (𝑇) +

33𝑇

100
𝑇𝑐+

277𝑇𝑐2

2000
ln (𝑇) − 121𝑇𝑐3

20000𝑇∫︁ ∫︁
𝐵(1)𝑑𝑇𝑑𝑇 =

73𝑇 2

2000
+

23𝑇

50
𝑇𝑐 ln (𝑇) − 23𝑇

50
𝑇𝑐+

𝑇𝑐2

2
ln (𝑇) − 1

420000𝑇 6

(︀
20370𝑇 5𝑇𝑐3 + 73𝑇𝑐8

)︀
References

[1]

Examples

Example matching that in BVirial_Abbott, for isobutane.

>>> BVirial_Pitzer_Curl(510., 425.2, 38E5, 0.193)
-0.00020845362479301725

414 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.virial.BVirial_Abbott(T, Tc, Pc, omega, order=0)
Calculates the second virial coefficient using the model in [1]. Simple fit to the Lee-Kesler equation.

𝐵𝑟 = 𝐵(0) + 𝜔𝐵(1)

𝐵(0) = 0.083 +
0.422

𝑇 1.6
𝑟

𝐵(1) = 0.139 − 0.172

𝑇 4.2
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

order [int, optional] Order of the calculation. 0 for the calculation of B itself; for 1/2/3, the
first/second/third derivative of B with respect to temperature; and for -1/-2, the first/second
indefinite integral of B with respect to temperature. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
B [float] Second virial coefficient in density form or its integral/derivative if specified, [m^3/mol

or m^3/mol/K^order]

Notes

Analytical models for derivatives and integrals are available for orders -2, -1, 1, 2, and 3, all obtained with SymPy.

For first temperature derivative of B:

𝑑𝐵(0)

𝑑𝑇
=

0.6752

𝑇
(︀

𝑇
𝑇𝑐

)︀1.6
𝑑𝐵(1)

𝑑𝑇
=

0.7224

𝑇
(︀

𝑇
𝑇𝑐

)︀4.2
For the second temperature derivative of B:

𝑑2𝐵(0)

𝑑𝑇 2
= − 1.75552

𝑇 2
(︀

𝑇
𝑇𝑐

)︀1.6
𝑑2𝐵(1)

𝑑𝑇 2
= − 3.75648

𝑇 2
(︀

𝑇
𝑇𝑐

)︀4.2
For the third temperature derivative of B:

𝑑3𝐵(0)

𝑑𝑇 3
=

6.319872

𝑇 3
(︀

𝑇
𝑇𝑐

)︀1.6
𝑑3𝐵(1)

𝑑𝑇 3
=

23.290176

𝑇 3
(︀

𝑇
𝑇𝑐

)︀4.2
1.34. Virial Coefficients (chemicals.virial) 415

chemicals Documentation, Release 1.1.4

For the first indefinite integral of B: ∫︁
𝐵(0)𝑑𝑇 = 0.083𝑇 +

211
300𝑇𝑐(︀
𝑇
𝑇𝑐

)︀0.6
∫︁
𝐵(1)𝑑𝑇 = 0.139𝑇 +

0.05375𝑇𝑐(︀
𝑇
𝑇𝑐

)︀3.2
For the second indefinite integral of B:∫︁ ∫︁

𝐵(0)𝑑𝑇𝑑𝑇 = 0.0415𝑇 2 +
211

120
𝑇𝑐2

(︂
𝑇

𝑇𝑐

)︂0.4

∫︁ ∫︁
𝐵(1)𝑑𝑇𝑑𝑇 = 0.0695𝑇 2 −

43
1760𝑇𝑐

2(︀
𝑇
𝑇𝑐

)︀2.2
References

[1]

Examples

Example is from [1], p. 93, and matches the result exactly, for isobutane.

>>> BVirial_Abbott(510., 425.2, 38E5, 0.193)
-0.000205701850095

chemicals.virial.BVirial_Tsonopoulos(T, Tc, Pc, omega, order=0)
Calculates the second virial coefficient using the model in [1].

𝐵𝑟 = 𝐵(0) + 𝜔𝐵(1)

𝐵(0) = 0.1445 − 0.330/𝑇𝑟 − 0.1385/𝑇 2
𝑟 − 0.0121/𝑇 3

𝑟 − 0.000607/𝑇 8
𝑟

𝐵(1) = 0.0637 + 0.331/𝑇 2
𝑟 − 0.423/𝑇 3

𝑟 − 0.423/𝑇 3
𝑟 − 0.008/𝑇 8

𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

order [int, optional] Order of the calculation. 0 for the calculation of B itself; for 1/2/3, the
first/second/third derivative of B with respect to temperature; and for -1/-2, the first/second
indefinite integral of B with respect to temperature. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
B [float] Second virial coefficient in density form or its integral/derivative if specified, [m^3/mol

or m^3/mol/K^order]

416 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

A more complete expression is also available, in BVirial_Tsonopoulos_extended.

Analytical models for derivatives and integrals are available for orders -2, -1, 1, 2, and 3, all obtained with SymPy.

For first temperature derivative of B:

𝑑𝐵(0)

𝑑𝑇
=

33𝑇𝑐

100𝑇 2
+

277𝑇𝑐2

1000𝑇 3
+

363𝑇𝑐3

10000𝑇 4
+

607𝑇𝑐8

125000𝑇 9

𝑑𝐵(1)

𝑑𝑇
= −331𝑇𝑐2

500𝑇 3
+

1269𝑇𝑐3

1000𝑇 4
+

8𝑇𝑐8

125𝑇 9

For the second temperature derivative of B:

𝑑2𝐵(0)

𝑑𝑇 2
= − 3𝑇𝑐

125000𝑇 3

(︂
27500 +

34625𝑇𝑐

𝑇
+

6050𝑇𝑐2

𝑇 2
+

1821𝑇𝑐7

𝑇 7

)︂
𝑑2𝐵(1)

𝑑𝑇 2
=

3𝑇𝑐2

500𝑇 4

(︂
331 − 846𝑇𝑐

𝑇
− 96𝑇𝑐6

𝑇 6

)︂
For the third temperature derivative of B:

𝑑3𝐵(0)

𝑑𝑇 3
=

3𝑇𝑐

12500𝑇 4

(︂
8250 +

13850𝑇𝑐

𝑇
+

3025𝑇𝑐2

𝑇 2
+

1821𝑇𝑐7

𝑇 7

)︂
𝑑3𝐵(1)

𝑑𝑇 3
=

3𝑇𝑐2

250𝑇 5

(︂
−662 +

2115𝑇𝑐

𝑇
+

480𝑇𝑐6

𝑇 6

)︂
For the first indefinite integral of B:∫︁

𝐵(0)𝑑𝑇 =
289𝑇

2000
− 33𝑇𝑐

100
ln (𝑇) +

1

7000000𝑇 7

(︀
969500𝑇 6𝑇𝑐2 + 42350𝑇 5𝑇𝑐3 + 607𝑇𝑐8

)︀
∫︁
𝐵(1)𝑑𝑇 =

637𝑇

10000
− 1

70000𝑇 7

(︀
23170𝑇 6𝑇𝑐2 − 14805𝑇 5𝑇𝑐3 − 80𝑇𝑐8

)︀
For the second indefinite integral of B:∫︁ ∫︁

𝐵(0)𝑑𝑇𝑑𝑇 =
289𝑇 2

4000
− 33𝑇

100
𝑇𝑐 ln (𝑇) +

33𝑇

100
𝑇𝑐+

277𝑇𝑐2

2000
ln (𝑇) − 1

42000000𝑇 6

(︀
254100𝑇 5𝑇𝑐3 + 607𝑇𝑐8

)︀
∫︁ ∫︁

𝐵(1)𝑑𝑇𝑑𝑇 =
637𝑇 2

20000
− 331𝑇𝑐2

1000
ln (𝑇) − 1

210000𝑇 6

(︀
44415𝑇 5𝑇𝑐3 + 40𝑇𝑐8

)︀
References

[1]

Examples

Example matching that in BVirial_Abbott, for isobutane.

>>> BVirial_Tsonopoulos(510., 425.2, 38E5, 0.193)
-0.0002093529540

1.34. Virial Coefficients (chemicals.virial) 417

chemicals Documentation, Release 1.1.4

chemicals.virial.BVirial_Tsonopoulos_extended(T, Tc, Pc, omega, a=0, b=0, species_type='', dipole=0,
order=0)

Calculates the second virial coefficient using the comprehensive model in [1]. See the notes for the calculation
of a and b.

𝐵𝑃𝑐

𝑅𝑇𝑐
= 𝐵(0) + 𝜔𝐵(1) + 𝑎𝐵(2) + 𝑏𝐵(3)

𝐵(0) = 0.1445 − 0.33/𝑇𝑟 − 0.1385/𝑇 2
𝑟 − 0.0121/𝑇 3

𝑟

𝐵(1) = 0.0637 + 0.331/𝑇 2
𝑟 − 0.423/𝑇 3

𝑟 − 0.423/𝑇 3
𝑟 − 0.008/𝑇 8

𝑟

𝐵(2) = 1/𝑇 6
𝑟

𝐵(3) = −1/𝑇 8
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

a [float, optional] Fit parameter, calculated based on species_type if a is not given and
species_type matches on of the supported chemical classes.

b [float, optional] Fit parameter, calculated based on species_type if a is not given and
species_type matches on of the supported chemical classes.

species_type [str, optional] One of .

dipole [float] dipole moment, optional, [Debye]

order [int, optional] Order of the calculation. 0 for the calculation of B itself; for 1/2/3, the
first/second/third derivative of B with respect to temperature; and for -1/-2, the first/second
indefinite integral of B with respect to temperature. No other integrals or derivatives are
implemented, and an exception will be raised if any other order is given.

Returns
B [float] Second virial coefficient in density form or its integral/derivative if specified, [m^3/mol

or m^3/mol/K^order]

Notes

Analytical models for derivatives and integrals are available for orders -2, -1, 1, 2, and 3, all obtained with SymPy.

To calculate a or b, the following rules are used:

For ‘simple’ or ‘normal’ fluids:

𝑎 = 0

𝑏 = 0

For ‘ketone’, ‘aldehyde’, ‘alkyl nitrile’, ‘ether’, ‘carboxylic acid’, or ‘ester’ types of chemicals:

𝑎 = −2.14 × 10−4𝜇𝑟 − 4.308 × 10−21(𝜇𝑟)8

𝑏 = 0

418 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

For ‘alkyl halide’, ‘mercaptan’, ‘sulfide’, or ‘disulfide’ types of chemicals:

𝑎 = −2.188 × 10−4(𝜇𝑟)4 − 7.831 × 10−21(𝜇𝑟)8

𝑏 = 0

For ‘alkanol’ types of chemicals (except methanol):

𝑎 = 0.0878

𝑏 = 0.00908 + 0.0006957𝜇𝑟

For methanol:

𝑎 = 0.0878

𝑏 = 0.0525

For water:

𝑎 = −0.0109

𝑏 = 0

If required, the form of dipole moment used in the calculation of some types of a and b values is as follows:

𝜇𝑟 = 100000
𝜇2(𝑃𝑐/101325.0)

𝑇𝑐2

For first temperature derivative of B:

𝑑𝐵(0)

𝑑𝑇
=

33𝑇𝑐

100𝑇 2
+

277𝑇𝑐2

1000𝑇 3
+

363𝑇𝑐3

10000𝑇 4
+

607𝑇𝑐8

125000𝑇 9

𝑑𝐵(1)

𝑑𝑇
= −331𝑇𝑐2

500𝑇 3
+

1269𝑇𝑐3

1000𝑇 4
+

8𝑇𝑐8

125𝑇 9

𝑑𝐵(2)

𝑑𝑇
= −6𝑇𝑐6

𝑇 7

𝑑𝐵(3)

𝑑𝑇
=

8𝑇𝑐8

𝑇 9

For the second temperature derivative of B:

𝑑2𝐵(0)

𝑑𝑇 2
= − 3𝑇𝑐

125000𝑇 3

(︂
27500 +

34625𝑇𝑐

𝑇
+

6050𝑇𝑐2

𝑇 2
+

1821𝑇𝑐7

𝑇 7

)︂
𝑑2𝐵(1)

𝑑𝑇 2
=

3𝑇𝑐2

500𝑇 4

(︂
331 − 846𝑇𝑐

𝑇
− 96𝑇𝑐6

𝑇 6

)︂
𝑑2𝐵(2)

𝑑𝑇 2
=

42𝑇𝑐6

𝑇 8

𝑑2𝐵(3)

𝑑𝑇 2
= −72𝑇𝑐8

𝑇 10

For the third temperature derivative of B:

𝑑3𝐵(0)

𝑑𝑇 3
=

3𝑇𝑐

12500𝑇 4

(︂
8250 +

13850𝑇𝑐

𝑇
+

3025𝑇𝑐2

𝑇 2
+

1821𝑇𝑐7

𝑇 7

)︂

1.34. Virial Coefficients (chemicals.virial) 419

chemicals Documentation, Release 1.1.4

𝑑3𝐵(1)

𝑑𝑇 3
=

3𝑇𝑐2

250𝑇 5

(︂
−662 +

2115𝑇𝑐

𝑇
+

480𝑇𝑐6

𝑇 6

)︂
𝑑3𝐵(2)

𝑑𝑇 3
= −336𝑇𝑐6

𝑇 9

𝑑3𝐵(3)

𝑑𝑇 3
=

720𝑇𝑐8

𝑇 11

For the first indefinite integral of B:∫︁
𝐵(0)𝑑𝑇 =

289𝑇

2000
− 33𝑇𝑐

100
ln (𝑇) +

1

7000000𝑇 7

(︀
969500𝑇 6𝑇𝑐2 + 42350𝑇 5𝑇𝑐3 + 607𝑇𝑐8

)︀
∫︁
𝐵(1)𝑑𝑇 =

637𝑇

10000
− 1

70000𝑇 7

(︀
23170𝑇 6𝑇𝑐2 − 14805𝑇 5𝑇𝑐3 − 80𝑇𝑐8

)︀
∫︁
𝐵(2)𝑑𝑇 = −𝑇𝑐

6

5𝑇 5∫︁
𝐵(3)𝑑𝑇 =

𝑇𝑐8

7𝑇 7

For the second indefinite integral of B:∫︁ ∫︁
𝐵(0)𝑑𝑇𝑑𝑇 =

289𝑇 2

4000
− 33𝑇

100
𝑇𝑐 ln (𝑇) +

33𝑇

100
𝑇𝑐+

277𝑇𝑐2

2000
ln (𝑇) − 1

42000000𝑇 6

(︀
254100𝑇 5𝑇𝑐3 + 607𝑇𝑐8

)︀
∫︁ ∫︁

𝐵(1)𝑑𝑇𝑑𝑇 =
637𝑇 2

20000
− 331𝑇𝑐2

1000
ln (𝑇) − 1

210000𝑇 6

(︀
44415𝑇 5𝑇𝑐3 + 40𝑇𝑐8

)︀
∫︁ ∫︁

𝐵(2)𝑑𝑇𝑑𝑇 =
𝑇𝑐6

20𝑇 4∫︁ ∫︁
𝐵(3)𝑑𝑇𝑑𝑇 = − 𝑇𝑐8

42𝑇 6

References

[1], [2]

Examples

Example from Perry’s Handbook, 8E, p2-499. Matches to a decimal place.

>>> BVirial_Tsonopoulos_extended(430., 405.65, 11.28E6, 0.252608, a=0, b=0, species_
→˓type='ketone', dipole=1.469)
-9.679718337596e-05

New implementations, returning the derivatives as well

chemicals.virial.BVirial_Pitzer_Curl_fast(T, Tc, Pc, omega)
Implementation of BVirial_Pitzer_Curl in the interface which calculates virial coefficients and their deriva-
tives at the same time.

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

420 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

Examples

>>> BVirial_Pitzer_Curl_fast(510., 425.2, 38E5, 0.193)
(-0.000208453624, 1.065377516e-06, -5.7957101e-09, 4.513533043e-11)

chemicals.virial.BVirial_Abbott_fast(T, Tc, Pc, omega)
Implementation of BVirial_Abbott in the interface which calculates virial coefficients and their derivatives at
the same time.

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

Examples

>>> BVirial_Abbott_fast(510., 425.2, 38E5, 0.193)
(-0.0002057018500, 1.039249294e-06, -5.902233639e-09, 4.78222764e-11)

chemicals.virial.BVirial_Tsonopoulos_fast(T, Tc, Pc, omega)
Implementation of BVirial_Tsonopoulos in the interface which calculates virial coefficients and their deriva-
tives at the same time.

Parameters
T [float] Temperature of fluid [K]

1.34. Virial Coefficients (chemicals.virial) 421

chemicals Documentation, Release 1.1.4

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

Examples

>>> BVirial_Tsonopoulos_fast(510., 425.2, 38E5, 0.193)
(-0.0002093529540, 9.95742355e-07, -5.54234465e-09, 4.57035160e-11)

chemicals.virial.BVirial_Tsonopoulos_extended_fast(T, Tc, Pc, omega, a=0.0, b=0.0)
Implementation of BVirial_Tsonopoulos_extended in the interface which calculates virial coefficients and
their derivatives at the same time.

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

a [float, optional] Fit parameter [-]

b [float, optional] Fit parameter [-]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

422 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> BVirial_Tsonopoulos_extended_fast(510., 425.2, 38E5, 0.193)
(-0.0002093529540, 9.9574235e-07, -5.54234465e-09, 4.5703516e-11)

chemicals.virial.BVirial_Oconnell_Prausnitz(T, Tc, Pc, omega)
Calculates the second virial coefficient using the model in [1].

𝐵𝑟 = 𝐵(0) + 𝜔𝐵(1)

𝐵(0) = 𝑐0 +
𝑐1

𝑇𝑟
+
𝑐2

𝑇 2
𝑟

+
𝑐3

𝑇 3
𝑟

𝐵(1) = 𝑑0 +
𝑑1

𝑇 2
𝑟

+
𝑑2

𝑇 3
𝑟

+
𝑑3

𝑇 8
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

Notes

The coefficients are as follows:

c0 = 0.1445 c1 = -0.330 c2 = -0.1385 c3 = -0.0121

d0 = 0.073 d1 = 0.46 d2 = -0.50 d3 = -0.097 d4 = -0.0073

References

[1]

1.34. Virial Coefficients (chemicals.virial) 423

chemicals Documentation, Release 1.1.4

Examples

>>> BVirial_Oconnell_Prausnitz(510., 425.2, 38E5, 0.193)
(-0.000203193781, 1.036185972e-06, -6.53679132e-09, 6.59478287e-11)

chemicals.virial.BVirial_Xiang(T, Tc, Pc, Vc, omega)
Calculates the second virial coefficient using the model in [1].

𝐵 =

(︁
−𝑏0𝑇−3/4

𝑟 exp(𝑏1𝑇
−3
𝑟) + 𝑏2𝑇

−1/2
𝑟)

)︁
𝑉 𝑐

𝑏0 = 𝑏00 + 𝑏01𝜔 + 𝑏02𝜃

𝑏1 = 𝑏10 + 𝑏11𝜔 + 𝑏12𝜃

𝑏2 = 𝑏20 + 𝑏21𝜔 + 𝑏22𝜃

𝜃 = (𝑍𝑐 − 0.29)2

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

Vc [float] Critical volume of the fluid [m^3/mol]

omega [float] Acentric factor for fluid, [-]

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

References

[1]

Examples

>>> BVirial_Xiang(388.26, 647.1, 22050000.0, 5.543076e-05, 0.344)
(-0.0004799570, 4.6778266e-06, -7.0157656e-08, 1.4137862e-09)

chemicals.virial.BVirial_Meng(T, Tc, Pc, Vc, omega, a=0.0)
Calculates the second virial coefficient using the model in [1].

𝐵 =
𝑅𝑇𝑐
𝑃𝑐

(𝑓0 + 𝜔𝑓1 + 𝑓2)

424 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝑓0 = 𝑐0 + 𝑐1/𝑇𝑟 + 𝑐2/𝑇
2
𝑟 + 𝑐3/𝑇

3
𝑟 + 𝑐4/𝑇

8
𝑟

𝑓1 = 𝑑0 + 𝑑1/𝑇𝑟 + 𝑑2/𝑇
2
𝑟 + 𝑑3/𝑇

3
𝑟 + 𝑑4/𝑇

8
𝑟

𝑓2 =
𝑎

𝑇 6
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

Vc [float] Critical volume of the fluid [m^3/mol]

omega [float] Acentric factor for fluid, [-]

a [float] Polar parameter that can be estimated by chemicals.virial.Meng_virial_a

Returns
B [float] Second virial coefficient in density form [m^3/mol]

dB_dT [float] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2 [float] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3 [float] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

References

[1]

Examples

>>> BVirial_Meng(388.26, 647.1, 22050000.0, 5.543076e-05, 0.344)
(-0.00032436028, 2.47004e-06, -3.132e-08, 5.8e-10)

chemicals.virial.Meng_virial_a(Tc, Pc, dipole=0.0, haloalkane=False)
Calculate the a parameter which is used in the Meng B second virial coefficient for polar components. There are
two correlations implemented - one for haloalkanes, and another for other polar molecules. If the dipole moment
is not provided, a value of 0.0 will be returned.

If the compound is a haloalkane

𝑎 = −1.1524 × 10−6𝜇2
𝑟 + 7.2238 × 10−11𝜇4

𝑟 − 1.8701 × 10−15𝜇6
𝑟

Otherwise

𝑎 = −3.0309 × 10−6𝜇2
𝑟 + 9.503 × 10−11𝜇4

𝑟 − 1.2469 × 10−15𝜇6
𝑟

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

1.34. Virial Coefficients (chemicals.virial) 425

chemicals Documentation, Release 1.1.4

dipole [float] Dipole moment, [debye]

haloalkane [bool] Whether or not the compound is a haloalkane, [-]

Returns
a [float] Coefficient [-]

References

[1]

Examples

Ethanol

>>> Meng_virial_a(514.0, 6137000.0, 1.44, haloalkane=False)
-0.00637841

R-41 Fluoromethane

>>> Meng_virial_a(317.4, 5870000.0, 1.85, haloalkane=True)
-0.04493829

1.34.3 Third Virial Correlations

chemicals.virial.CVirial_Orbey_Vera(T, Tc, Pc, omega)
Calculates the third virial coefficient using the model in [1].

𝐶 = (𝑅𝑇𝑐/𝑃𝑐)
2(𝑓𝐶

(0)
𝑇𝑟 + 𝜔𝑓𝐶

(1)
𝑇𝑟)

𝑓𝐶
(0)
𝑇𝑟 = 0.01407 + 0.02432𝑇−2.8

𝑟 − 0.00313𝑇−10.5
𝑟

𝑓𝐶
(1)
𝑇𝑟 = −0.02676 + 0.01770𝑇−2.8

𝑟 + 0.040𝑇−3
𝑟 − 0.003𝑇−6

𝑟 − 0.00228𝑇−10.5
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
C [float] Third virial coefficient in density form [m^6/mol^2]

dC_dT [float] First temperature derivative of third virial coefficient in density form
[m^6/mol^2/K]

d2C_dT2 [float] Second temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^2]

d3C_dT3 [float] Third temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^3]

426 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

n-octane

>>> CVirial_Orbey_Vera(T=300, Tc=568.7, Pc=2490000.0, omega=0.394)
(-1.1107124e-05, 4.1326808e-07, -1.6041435e-08, 6.7035158e-10)

chemicals.virial.CVirial_Liu_Xiang(T, Tc, Pc, Vc, omega)
Calculates the third virial coefficient using the model in [1].

𝐶 = 𝑉 2
𝑐 (𝑓

(0)
𝑇𝑟

+ 𝜔𝑓
(1)
𝑇𝑟

+ 𝜃𝑓
(2)
𝑇𝑟

)

𝑓
(0)
𝑇𝑟

= 𝑎00 + 𝑎10𝑇
−3
𝑟 + 𝑎20𝑇

−6
𝑟 + 𝑎30𝑇

−11
𝑟

𝑓
(1)
𝑇𝑟

= 𝑎01 + 𝑎11𝑇
−3
𝑟 + 𝑎21𝑇

−6
𝑟 + 𝑎31𝑇

−11
𝑟

𝑓
(2)
𝑇𝑟

= 𝑎02 + 𝑎12𝑇
−3
𝑟 + 𝑎22𝑇

−6
𝑟 + 𝑎32𝑇

−11
𝑟

𝜃 = (𝑍𝑐 − 0.29)2

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

Vc [float] Critical volume of the fluid [m^3/mol]

omega [float] Acentric factor for fluid, [-]

Returns
C [float] Third virial coefficient in density form [m^6/mol^2]

dC_dT [float] First temperature derivative of third virial coefficient in density form
[m^6/mol^2/K]

d2C_dT2 [float] Second temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^2]

d3C_dT3 [float] Third temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^3]

References

[1]

1.34. Virial Coefficients (chemicals.virial) 427

chemicals Documentation, Release 1.1.4

Examples

Water at Tr = 0.6

>>> CVirial_Liu_Xiang(388.26, 647.1, 22050000.0, 5.543076923076923e-05, 0.344)
(-1.4779977e-07, 4.9949901e-09, -1.652899e-10, 5.720067e-12)

1.34.4 Cross-Parameters

chemicals.virial.Tarakad_Danner_virial_CSP_kijs(Vcs)
Calculates a binary interaction parameter for the calculation of Bij binary virial coefficient as shown in [1] and
[2].

This equation for kij is:

𝑘𝑖𝑗 = 1 −
8
√
𝑣𝑐𝑖𝑣𝑐𝑗

(𝑉
1/3
𝑐𝑖 + 𝑉

1/3
𝑐𝑖)3

The equation this kij is used in is

𝑇𝑐𝑖𝑗 =
√︀
𝑇𝑐𝑖𝑇𝑐𝑗(1 − 𝑘𝑖𝑗)

Parameters
Vcs [list[float]] Critical volumes for each species, [m^3/mol]

Returns
kijs [list[list[float]]] Binary interaction parameters, [-]

References

[1], [2]

Examples

>>> Tarakad_Danner_virial_CSP_kijs(Vcs=[0.000168, 0.000316])
[[0.0, 0.01646332091], [0.0164633209, 0.0]]

chemicals.virial.Tarakad_Danner_virial_CSP_Tcijs(Tcs, kijs)
Calculates the corresponding states critical temperature for the calculation of Bij binary virial coefficient as
shown in [1] and [2].

𝑇𝑐𝑖𝑗 =
√︀
𝑇𝑐𝑖𝑇𝑐𝑗(1 − 𝑘𝑖𝑗)

Parameters
Tcs [list[float]] Critical temperatures for each species, [K]

kijs [list[list[float]]] Binary interaction parameters, [-]

Returns
Tcijs [list[list[float]]] CSP Critical temperatures for each pair of species, [K]

428 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> kijs = Tarakad_Danner_virial_CSP_kijs(Vcs=[0.000168, 0.000316])
>>> Tarakad_Danner_virial_CSP_Tcijs(Tcs=[514.0, 591.75], kijs=kijs)
[[514.0, 542.42694], [542.42694, 591.75000]]

chemicals.virial.Tarakad_Danner_virial_CSP_Pcijs(Tcs, Pcs, Vcs, Tcijs)
Calculates the corresponding states critical pressure for the calculation of Bij binary virial coefficient as shown
in [1] and [2].

𝑃𝑐𝑖𝑗 =
4𝑇𝑐𝑖𝑗

(︁
𝑃𝑐𝑖𝑉𝑐𝑖

𝑇𝑐𝑖
+

𝑃𝑐𝑗𝑉𝑐𝑗

𝑇𝑐𝑗

)︁
(𝑉

1/3
𝑐𝑖 + 𝑉

1/3
𝑐𝑖)3

Parameters
Tcs [list[float]] Critical temperatures for each species, [K]

Pcs [list[float]] Critical pressures for each species, [Pa]

Vcs [list[float]] Critical volumes for each species, [m^3/mol]

Tcijs [list[list[float]]] CSP Critical temperatures for each pair of species, [K]

Returns
Pcijs [list[list[float]]] CSP Critical pressures for each pair of species, [Pa]

References

[1], [2]

Examples

>>> kijs = Tarakad_Danner_virial_CSP_kijs(Vcs=[0.000168, 0.000316])
>>> Tcijs = Tarakad_Danner_virial_CSP_Tcijs(Tcs=[514.0, 591.75], kijs=kijs)
>>> Tarakad_Danner_virial_CSP_Pcijs(Tcs=[514.0, 591.75], Pcs=[6137000.0, 4108000.0],
→˓ Vcs=[0.000168, 0.000316], Tcijs=Tcijs)
[[6136999.9, 4861936.4], [4861936.4, 4107999.9]]

chemicals.virial.Tarakad_Danner_virial_CSP_omegaijs(omegas)
Calculates the corresponding states acentric factor for the calculation of Bij binary virial coefficient as shown in
[1] and [2].

𝜔𝑖𝑗 = 0.5(𝜔𝑖 + 𝜔𝑗)

Parameters
omegas [list[float]] Acentric factor for each species, [-]

Returns
omegaijs [list[list[float]]] CSP acentric factors for each pair of species, [-]

1.34. Virial Coefficients (chemicals.virial) 429

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> Tarakad_Danner_virial_CSP_omegaijs([0.635, 0.257])
[[0.635, 0.446], [0.446, 0.257]]

chemicals.virial.Lee_Kesler_virial_CSP_Vcijs(Vcs)
Calculates the corresponding states critical volumes for the calculation of Vcijs binary virial coefficient as shown
in [1] and [2].

𝑉𝑐𝑖𝑗 =
1

8

(︁
𝑉

1/3
𝑐,𝑖 + 𝑉

1/3
𝑐,𝑗

)︁3
Parameters

Vcs [list[float]] Critical volume of the fluids [m^3/mol]

Returns
Vcijs [list[list[float]]] CSP critical volumes for each pair of species, [m^3/mol]

Notes

[1] cites this as Lee-Kesler rules.

References

[1], [2]

Examples

>>> Lee_Kesler_virial_CSP_Vcijs(Vcs=[0.000168, 0.000316])
[[0.000168, 0.00023426], [0.000234265, 0.000316]]

chemicals.virial.Meng_Duan_2005_virial_CSP_kijs(CASs, atomss)
Calculates a binary interaction parameter for the calculation of Bij binary virial coefficient as shown in [1]. This
implements a correlation of alkane-alkane, CO2-alkane, and N2-alkane.

The equation this kij is used in is

𝑇𝑐𝑖𝑗 =
√︀
𝑇𝑐𝑖𝑇𝑐𝑗(1 − 𝑘𝑖𝑗)

Parameters
CASs [list[str]] CAS registration numbers for each component, [-]

atomss [list[dict]] Breakdown of each component into its elements and their counts, as a dict,
[-]

Returns
kijs [list[list[float]]] Binary interaction parameters, [-]

430 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> CASs = ['74-82-8', '74-84-0', '124-38-9', '7727-37-9', '7439-89-6']
>>> atomss = [{'C': 1, 'H': 4}, {'C': 2, 'H': 6}, {'C': 1, 'O': 2}, {'N': 2}, {'Fe':
→˓ 1}]
>>> kijs = Meng_Duan_2005_virial_CSP_kijs(CASs=CASs, atomss=atomss)

1.34.5 Second Virial Correlations Dense Implementations

chemicals.virial.BVirial_Xiang_vec(T, Tcs, Pcs, Vcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None,
d3B_dT3s=None)

Perform a vectorized calculation of the Xiang B virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

Vcs [list[float]] Critical volume of the fluids [m^3/mol]

omegas [list[float]] Acentric factor for fluids, [-]

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Xiang_mat(T, Tcs, Pcs, Vcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None,
d3B_dT3s=None)

Perform a matrix calculation of the Xiang B virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

1.34. Virial Coefficients (chemicals.virial) 431

chemicals Documentation, Release 1.1.4

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

Vcs [list[list[float]]] Critical volume of the fluids [m^3/mol]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

chemicals.virial.BVirial_Pitzer_Curl_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a vectorized calculation of the Pitzer-Curl B virial coefficient model and its first three temperature deriva-
tives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

omegas [list[float]] Acentric factor for fluids, [-]

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

432 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Pitzer_Curl_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a matrix calculation of the Pitzer-Curl B virial coefficient model and its first three temperature deriva-
tives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

chemicals.virial.BVirial_Abbott_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None,
d3B_dT3s=None)

Perform a vectorized calculation of the Abbott B virial coefficient model and its first three temperature deriva-
tives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

omegas [list[float]] Acentric factor for fluids, [-]

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

1.34. Virial Coefficients (chemicals.virial) 433

chemicals Documentation, Release 1.1.4

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Abbott_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None,
d3B_dT3s=None)

Perform a matrix calculation of the Abbott B virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

chemicals.virial.BVirial_Tsonopoulos_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a vectorized calculation of the Tsonopoulos B virial coefficient model and its first three temperature
derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

434 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

omegas [list[float]] Acentric factor for fluids, [-]

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Tsonopoulos_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a matrix calculation of the Tsonopoulos B virial coefficient model and its first three temperature deriva-
tives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

1.34. Virial Coefficients (chemicals.virial) 435

chemicals Documentation, Release 1.1.4

chemicals.virial.BVirial_Meng_vec(T, Tcs, Pcs, Vcs, omegas, ais, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a vectorized calculation of the Meng B virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

Vcs [list[float]] Critical volume of the fluids [m^3/mol]

omegas [list[float]] Acentric factor for fluids, [-]

ais [list[float]] Polar parameters that can be estimated by chemicals.virial.
Meng_virial_a

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Meng_mat(T, Tcs, Pcs, Vcs, omegas, ais, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a matrix calculation of the Meng B virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

Vcs [list[list[float]]] Critical volume of the fluids [m^3/mol]

omegas [list[list[float]]] Acentric factor for fluids, [-]

ais [list[float]] Polar parameters that can be estimated as the average of the pure component
values predicted by chemicals.virial.Meng_virial_a

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

436 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

chemicals.virial.BVirial_Oconnell_Prausnitz_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a vectorized calculation of the O’connell Prausnitz B virial coefficient model and its first three temper-
ature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

omegas [list[float]] Acentric factor for fluids, [-]

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Oconnell_Prausnitz_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None,
d2B_dT2s=None, d3B_dT3s=None)

Perform a matrix calculation of the Oconnell_Prausnitz B virial coefficient model and its first three temperature
derivatives.

Parameters
T [float] Temperature of fluid [K]

1.34. Virial Coefficients (chemicals.virial) 437

chemicals Documentation, Release 1.1.4

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

chemicals.virial.BVirial_Tsonopoulos_extended_vec(T, Tcs, Pcs, omegas, ais, bs, Bs=None,
dB_dTs=None, d2B_dT2s=None,
d3B_dT3s=None)

Perform a vectorized calculation of the Tsonopoulos (extended) B virial coefficient model and its first three
temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

omegas [list[float]] Acentric factor for fluids, [-]

ais [list[float]] Fit parameters, [-]

bs [list[float]] Fit parameters, [-]

Bs [list[float], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float], optional] First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

d2B_dT2s [list[float], optional] Second temperature derivative of second virial coefficient in
density form [m^3/mol/K^2]

d3B_dT3s [list[float], optional] Third temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K^3]

Returns
Bs [list[float]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[float]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

438 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

d2B_dT2s [list[float]] Second temperature derivative of second virial coefficient in density form
[m^3/mol/K^2]

d3B_dT3s [list[float]] Third temperature derivative of second virial coefficient in density form
[m^3/mol/K^3]

chemicals.virial.BVirial_Tsonopoulos_extended_mat(T, Tcs, Pcs, omegas, ais, bs, Bs=None,
dB_dTs=None, d2B_dT2s=None,
d3B_dT3s=None)

Perform a matrix calculation of the Tsonopoulos (extended) B virial coefficient model and its first three temper-
ature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

omegas [list[list[float]]] Acentric factor for fluids, [-]

ais [list[list[float]]] Fit parameters, [-]

bs [list[list[float]]] Fit parameters, [-]

Bs [list[list[float]], optional] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]], optional] First temperature derivative of second virial coefficient in den-
sity form [m^3/mol/K]

d2B_dT2s [list[list[float]], optional] Second temperature derivative of second virial coefficient
in density form [m^3/mol/K^2]

d3B_dT3s [list[list[float]], optional] Third temperature derivative of second virial coefficient in
density form [m^3/mol/K^3]

Returns
Bs [list[list[float]]] Second virial coefficient in density form [m^3/mol]

dB_dTs [list[list[float]]] First temperature derivative of second virial coefficient in density form
[m^3/mol/K]

d2B_dT2s [list[list[float]]] Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

d3B_dT3s [list[list[float]]] Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

1.34.6 Third Virial Correlations Dense Implementations

chemicals.virial.CVirial_Liu_Xiang_vec(T, Tcs, Pcs, Vcs, omegas, Cs=None, dC_dTs=None,
d2C_dT2s=None, d3C_dT3s=None)

Perform a vectorized calculation of the Xiang C virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

Vcs [list[float]] Critical volume of the fluids [m^3/mol]

1.34. Virial Coefficients (chemicals.virial) 439

chemicals Documentation, Release 1.1.4

omegas [list[float]] Acentric factor for fluids, [-]

Cs [list[float], optional] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[float], optional] First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

d2C_dT2s [list[float], optional] Second temperature derivative of third virial coefficient in den-
sity form [m^6/mol^2/K^2]

d3C_dT3s [list[float], optional] Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

Returns
Cs [list[float]] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[float]] First temperature derivative of third virial coefficient in density form
[m^6/mol^2/K]

d2C_dT2s [list[float]] Second temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^2]

d3C_dT3s [list[float]] Third temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^3]

chemicals.virial.CVirial_Orbey_Vera_vec(T, Tcs, Pcs, omegas, Cs=None, dC_dTs=None,
d2C_dT2s=None, d3C_dT3s=None)

Perform a vectorized calculation of the Orbey-Vera C virial coefficient model and its first three temperature
derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[float]] Critical temperature of fluids [K]

Pcs [list[float]] Critical pressure of the fluids [Pa]

omegas [list[float]] Acentric factor for fluids, [-]

Cs [list[float], optional] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[float], optional] First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

d2C_dT2s [list[float], optional] Second temperature derivative of third virial coefficient in den-
sity form [m^6/mol^2/K^2]

d3C_dT3s [list[float], optional] Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

Returns
Cs [list[float]] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[float]] First temperature derivative of third virial coefficient in density form
[m^6/mol^2/K]

d2C_dT2s [list[float]] Second temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^2]

d3C_dT3s [list[float]] Third temperature derivative of third virial coefficient in density form
[m^6/mol^2/K^3]

440 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.virial.CVirial_Liu_Xiang_mat(T, Tcs, Pcs, Vcs, omegas, Cs=None, dC_dTs=None,
d2C_dT2s=None, d3C_dT3s=None)

Perform a matrix calculation of the Xiang C virial coefficient model and its first three temperature derivatives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

Vcs [list[list[float]]] Critical volume of the fluids [m^3/mol]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Cs [list[list[float]], optional] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[list[float]], optional] First temperature derivative of third virial coefficient in den-
sity form [m^6/mol^2/K]

d2C_dT2s [list[list[float]], optional] Second temperature derivative of third virial coefficient in
density form [m^6/mol^2/K^2]

d3C_dT3s [list[list[float]], optional] Third temperature derivative of third virial coefficient in
density form [m^6/mol^2/K^3]

Returns
Cs [list[list[float]]] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[list[float]]] First temperature derivative of third virial coefficient in density form
[m^6/mol^2/K]

d2C_dT2s [list[list[float]]] Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

d3C_dT3s [list[list[float]]] Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

chemicals.virial.CVirial_Orbey_Vera_mat(T, Tcs, Pcs, omegas, Cs=None, dC_dTs=None,
d2C_dT2s=None, d3C_dT3s=None)

Perform a matrix calculation of the Orbey-Vera C virial coefficient model and its first three temperature deriva-
tives.

Parameters
T [float] Temperature of fluid [K]

Tcs [list[list[float]]] Critical temperature of fluids [K]

Pcs [list[list[float]]] Critical pressure of the fluids [Pa]

omegas [list[list[float]]] Acentric factor for fluids, [-]

Cs [list[list[float]], optional] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[list[float]], optional] First temperature derivative of third virial coefficient in den-
sity form [m^6/mol^2/K]

d2C_dT2s [list[list[float]], optional] Second temperature derivative of third virial coefficient in
density form [m^6/mol^2/K^2]

d3C_dT3s [list[list[float]], optional] Third temperature derivative of third virial coefficient in
density form [m^6/mol^2/K^3]

Returns

1.34. Virial Coefficients (chemicals.virial) 441

chemicals Documentation, Release 1.1.4

Cs [list[list[float]]] Third virial coefficient in density form [m^6/mol^2]

dC_dTs [list[list[float]]] First temperature derivative of third virial coefficient in density form
[m^6/mol^2/K]

d2C_dT2s [list[list[float]]] Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

d3C_dT3s [list[list[float]]] Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

1.35 Viscosity (chemicals.viscosity)

This module contains various viscosity estimation routines, dataframes of fit coefficients, and mixing rules.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Low Pressure Liquid Correlations

• Pure High Pressure Liquid Correlations

• Liquid Mixing Rules

• Pure Low Pressure Gas Correlations

• Pure High Pressure Gas Correlations

• Gas Mixing Rules

• Correlations for Specific Substances

• Petroleum Correlations

• Fit Correlations

• Conversion functions

• Fit Coefficients

1.35.1 Pure Low Pressure Liquid Correlations

chemicals.viscosity.Letsou_Stiel(T, MW, Tc, Pc, omega)
Calculates the viscosity of a liquid using an emperical model developed in [1]. However. the fitting parameters
for tabulated values in the original article are found in ChemSep.

𝜉 =
2173.424𝑇

1/6
𝑐√

𝑀𝑊𝑃
2/3
𝑐

𝜉(0) = (1.5174 − 2.135𝑇𝑟 + 0.75𝑇 2
𝑟) · 10−5

𝜉(1) = (4.2552 − 7.674𝑇𝑟 + 3.4𝑇 2
𝑟) · 10−5

𝜇 = (𝜉(0) + 𝜔𝜉(1))/𝜉

Parameters
T [float] Temperature of fluid [K]

MW [float] Molwcular weight of fluid [g/mol]

442 Chapter 1. Key Features & Capabilities

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor of compound

Returns
mu_l [float] Viscosity of liquid, [Pa*s]

Notes

The form of this equation is a polynomial fit to tabulated data. The fitting was performed by the DIPPR. This
is DIPPR Procedure 8G: Method for the viscosity of pure, nonhydrocarbon liquids at high temperatures internal
units are SI standard. [1]’s units were different. DIPPR test value for ethanol is used.

Average error 34%. Range of applicability is 0.76 < Tr < 0.98.

References

[1]

Examples

>>> Letsou_Stiel(400., 46.07, 516.25, 6.383E6, 0.6371)
0.0002036150875308

chemicals.viscosity.Przedziecki_Sridhar(T, Tm, Tc, Pc, Vc, Vm, omega, MW)
Calculates the viscosity of a liquid using an emperical formula developed in [1].

𝜇 =
𝑉𝑜

𝐸(𝑉 − 𝑉𝑜)

𝐸 = −1.12 +
𝑉𝑐

12.94 + 0.10𝑀𝑊 − 0.23𝑃𝑐 + 0.0424𝑇𝑚 − 11.58(𝑇𝑚/𝑇𝑐)

𝑉𝑜 = 0.0085𝜔𝑇𝑐 − 2.02 +
𝑉𝑚

0.342(𝑇𝑚/𝑇𝑐) + 0.894

Parameters
T [float] Temperature of the fluid [K]

Tm [float] Melting point of fluid [K]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

Vc [float] Critical volume of the fluid [m^3/mol]

Vm [float] Molar volume of the fluid at temperature [K]

omega [float] Acentric factor of compound

MW [float] Molwcular weight of fluid [g/mol]

Returns
mu_l [float] Viscosity of liquid, [Pa*s]

1.35. Viscosity (chemicals.viscosity) 443

chemicals Documentation, Release 1.1.4

Notes

A test by Reid (1983) is used, but only mostly correct. This function is not recommended. Internal units are bar
and mL/mol.

References

[1]

Examples

>>> Przedziecki_Sridhar(383., 178., 591.8, 41E5, 316E-6, 95E-6, .263, 92.14)
0.00021981479956033846

1.35.2 Pure High Pressure Liquid Correlations

chemicals.viscosity.Lucas(T, P, Tc, Pc, omega, Psat, mu_l)
Adjustes for pressure the viscosity of a liquid using an emperical formula developed in [1], but as discussed in
[2] as the original source is in German.

𝜇

𝜇𝑠𝑎𝑡
=

1 +𝐷(∆𝑃𝑟/2.118)𝐴

1 + 𝐶𝜔∆𝑃𝑟

∆𝑃𝑟 =
𝑃 − 𝑃 𝑠𝑎𝑡

𝑃𝑐

𝐴 = 0.9991 − 4.674 × 10−4

1.0523𝑇−0.03877
𝑟 − 1.0513

𝐷 =
0.3257

(1.0039 − 𝑇 2.573
𝑟)0.2906

− 0.2086

𝐶 = −0.07921 + 2.1616𝑇𝑟 − 13.4040𝑇 2
𝑟 + 44.1706𝑇 3

𝑟 − 84.8291𝑇 4
𝑟 + 96.1209𝑇 5

𝑟 − 59.8127𝑇 6
𝑟 + 15.6719𝑇 7

𝑟

Parameters
T [float] Temperature of fluid [K]

P [float] Pressure of fluid [Pa]

Tc: float Critical point of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

omega [float] Acentric factor of compound

Psat [float] Saturation pressure of the fluid [Pa]

mu_l [float] Viscosity of liquid at 1 atm or saturation, [Pa*s]

Returns
mu_l_dense [float] Viscosity of liquid, [Pa*s]

444 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This equation is entirely dimensionless; all dimensions cancel. The example is from Reid (1987); all results
agree. Above several thousand bar, this equation does not represent true behavior. If Psat is larger than P, the
fluid may not be liquid; dPr is set to 0.

References

[1], [2]

Examples

>>> Lucas(300., 500E5, 572.2, 34.7E5, 0.236, 0, 0.00068) # methylcyclohexane
0.0010683738499316494

1.35.3 Liquid Mixing Rules

No specific correlations are implemented but chemicals.utils.mixing_logarithmic with weight fractions is the
recommended form.

1.35.4 Pure Low Pressure Gas Correlations

chemicals.viscosity.Yoon_Thodos(T, Tc, Pc, MW)
Calculates the viscosity of a gas using an emperical formula developed in [1].

𝜂𝜉 × 108 = 46.10𝑇 0.618
𝑟 − 20.40 exp(−0.449𝑇𝑟) + 19.40 exp(−4.058𝑇𝑟) + 1

𝜉 = 2173.424𝑇 1/6
𝑐 𝑀𝑊−1/2𝑃−2/3

𝑐

Parameters
T [float] Temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

MW [float] Molwcular weight of fluid [g/mol]

Returns
mu_g [float] Viscosity of gas, [Pa*s]

Notes

This equation has been tested. The equation uses SI units only internally. The constant 2173.424 is an adjustment
factor for units. Average deviation within 3% for most compounds. Greatest accuracy with dipole moments close
to 0. Hydrogen and helium have different coefficients, not implemented. This is DIPPR Procedure 8B: Method
for the Viscosity of Pure, non hydrocarbon, nonpolar gases at low pressures

1.35. Viscosity (chemicals.viscosity) 445

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Yoon_Thodos(300., 556.35, 4.5596E6, 153.8)
1.019488572777e-05

chemicals.viscosity.Stiel_Thodos(T, Tc, Pc, MW)
Calculates the viscosity of a gas using an emperical formula developed in [1].

if 𝑇𝑟 > 1.5:

𝜇𝑔 = 17.78 × 10−5(4.58𝑇𝑟 − 1.67)0.625/𝜉

else:

𝜇𝑔 = 34 × 10−5𝑇 0.94
𝑟 /𝜉

𝜉 =
𝑇

(1/6)
𝑐√

𝑀𝑊𝑃
2/3
𝑐

Parameters
T [float] Temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

MW [float] Molwcular weight of fluid [g/mol]

Returns
mu_g [float] Viscosity of gas, [Pa*s]

Notes

Claimed applicability from 0.2 to 5 atm. Developed with data from 52 nonpolar, and 53 polar gases. internal
units are poise and atm. Seems to give reasonable results.

References

[1]

Examples

>>> Stiel_Thodos(300., 556.35, 4.5596E6, 153.8) #CCl4
1.040892622360e-05

446 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.viscosity.Lucas_gas(T, Tc, Pc, Zc, MW, dipole=0.0, CASRN=None)
Estimate the viscosity of a gas using an emperical formula developed in several sources, but as discussed in [1]
as the original sources are in German or merely personal communications with the authors of [1].

𝜂 =
[︀
0.807𝑇 0.618

𝑟 − 0.357 exp(−0.449𝑇𝑟) + 0.340 exp(−4.058𝑇𝑟) + 0.018
]︀
𝐹 ∘
𝑝𝐹

∘
𝑄/𝜉

𝐹 ∘
𝑝 = 1, 0 ≤ 𝜇𝑟 < 0.022

𝐹 ∘
𝑝 = 1 + 30.55(0.292 − 𝑍𝑐)

1.72, 0.022 ≤ 𝜇𝑟 < 0.075

𝐹 ∘
𝑝 = 1 + 30.55(0.292 − 𝑍𝑐)

1.72|0.96 + 0.1(𝑇𝑟 − 0.7)|0.075 < 𝜇𝑟

𝐹 ∘
𝑄 = 1.22𝑄0.15

{︁
1 + 0.00385[(𝑇𝑟 − 12)2]1/𝑀 sign(𝑇𝑟 − 12)

}︁
𝜇𝑟 = 52.46

𝜇2𝑃𝑐

𝑇 2
𝑐

𝜉 = 0.176

(︂
𝑇𝑐

𝑀𝑊 3𝑃 4
𝑐

)︂1/6

Parameters
T [float] Temperature of fluid [K]

Tc: float Critical point of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

Zc [float] Critical compressibility of the fluid [Pa]

dipole [float] Dipole moment of fluid [debye]

CASRN [str, optional] CAS of the fluid

Returns
mu_g [float] Viscosity of gas, [Pa*s]

Notes

The example is from [1]; all results agree. Viscosity is calculated in micropoise, and converted to SI internally
(1E-7). Q for He = 1.38; Q for H2 = 0.76; Q for D2 = 0.52.

References

[1]

Examples

>>> Lucas_gas(T=550., Tc=512.6, Pc=80.9E5, Zc=0.224, MW=32.042, dipole=1.7)
1.7822676912698925e-05

chemicals.viscosity.viscosity_gas_Gharagheizi(T, Tc, Pc, MW)
Calculates the viscosity of a gas using an emperical formula developed in [1].

𝜇 = 10−7|10−5𝑃𝑐𝑇𝑟 +

(︂
0.091 − 0.477

𝑀

)︂
𝑇 +𝑀

(︂
10−5𝑃𝑐 −

8𝑀2

𝑇 2

)︂(︂
10.7639

𝑇𝑐
− 4.1929

𝑇

)︂
|

1.35. Viscosity (chemicals.viscosity) 447

chemicals Documentation, Release 1.1.4

Parameters
T [float] Temperature of the fluid [K]

Tc [float] Critical temperature of the fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

MW [float] Molwcular weight of fluid [g/mol]

Returns
mu_g [float] Viscosity of gas, [Pa*s]

Notes

Example is first point in supporting information of article, for methane. This is the prefered function for gas
viscosity. 7% average relative deviation. Deviation should never be above 30%. Developed with the DIPPR
database. It is believed theoretically predicted values are included in the correlation.

Under 0.2Tc, this correlation has been modified to provide values at the limit.

References

[1]

Examples

>>> viscosity_gas_Gharagheizi(120., 190.564, 45.99E5, 16.04246)
5.215761625399613e-06

1.35.5 Pure High Pressure Gas Correlations

No correlations are implemented yet.

1.35.6 Gas Mixing Rules

chemicals.viscosity.Herning_Zipperer(zs, mus, MWs, MW_roots=None)
Calculates viscosity of a gas mixture according to mixing rules in [1].

𝜇 =

∑︀
𝑥𝑖𝜇𝑖

√
𝑀𝑊𝑖∑︀

𝑥𝑖
√
𝑀𝑊𝑖

Parameters
zs [float] Mole fractions of components, [-]

mus [float] Gas viscosities of all components, [Pa*s]

MWs [float] Molecular weights of all components, [g/mol]

MW_roots [float, optional] Square roots of molecular weights of all components,
[g^0.5/mol^0.5]

Returns
mug [float] Viscosity of gas mixture, [Pa*s]

448 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

This equation is entirely dimensionless; all dimensions cancel. The original source has not been reviewed.

Adding the square roots can speed up the calculation.

References

[1]

Examples

>>> Herning_Zipperer([0.5, 0.25, 0.25], [1.78e-05, 1.12e-05, 9.35e-06], [28.0134,␣
→˓16.043, 30.07])
1.4174908599465168e-05

chemicals.viscosity.Brokaw(T, ys, mus, MWs, molecular_diameters, Stockmayers)
Calculates viscosity of a gas mixture according to mixing rules in [1].

𝜂𝑚𝑖𝑥 =

𝑛∑︁
𝑖=1

𝑦𝑖𝜂𝑖∑︀𝑛
𝑗=1 𝑦𝑗𝜑𝑖𝑗

𝜑𝑖𝑗 =

(︂
𝜂𝑖
𝜂𝑗

)︂0.5

𝑆𝑖𝑗𝐴𝑖𝑗

𝐴𝑖𝑗 = 𝑚𝑖𝑗𝑀
−0.5
𝑖𝑗

⎡⎣1 +
𝑀𝑖𝑗 −𝑀0.45

𝑖𝑗

2(1 +𝑀𝑖𝑗) +
(1+𝑀0.45

𝑖𝑗)𝑚−0.5
𝑖𝑗

1+𝑚𝑖𝑗

⎤⎦
𝑚𝑖𝑗 =

[︃
4

(1 +𝑀−1
𝑖𝑗)(1 +𝑀𝑖𝑗)

]︃0.25

𝑀𝑖𝑗 =
𝑀𝑖

𝑀𝑗

𝑆𝑖𝑗 =
1 + (𝑇 *

𝑖 𝑇
*
𝑗)0.5 + (𝛿𝑖𝛿𝑗/4)

[1 + 𝑇 *
𝑖 + (𝛿2𝑖 /4)]0.5[1 + 𝑇 *

𝑗 + (𝛿2𝑗 /4)]0.5

𝑇 * = 𝑘𝑇/𝜖

Parameters
T [float] Temperature of fluid, [K]

ys [float] Mole fractions of gas components, [-]

mus [float] Gas viscosities of all components, [Pa*s]

MWs [float] Molecular weights of all components, [g/mol]

molecular_diameters [float] L-J molecular diameter of all components, [angstroms]

Stockmayers [float] L-J Stockmayer energy parameters of all components, []

Returns
mug [float] Viscosity of gas mixture, [Pa*s]

1.35. Viscosity (chemicals.viscosity) 449

chemicals Documentation, Release 1.1.4

Notes

This equation is entirely dimensionless; all dimensions cancel. The original source has not been reviewed.

This is DIPPR Procedure 8D: Method for the Viscosity of Nonhydrocarbon Vapor Mixtures at Low Pressure
(Polar and Nonpolar)

References

[1], [2], [3]

Examples

>>> Brokaw(308.2, [0.05, 0.95], [1.34E-5, 9.5029E-6], [64.06, 46.07], [0.42, 0.19],␣
→˓[347, 432])
9.699085099801568e-06

chemicals.viscosity.Wilke(ys, mus, MWs)
Calculates viscosity of a gas mixture according to mixing rules in [1].

𝜂𝑚𝑖𝑥 =

𝑛∑︁
𝑖=1

𝑦𝑖𝜂𝑖∑︀𝑛
𝑗=1 𝑦𝑗𝜑𝑖𝑗

𝜑𝑖𝑗 =
(1 +

√︀
𝜂𝑖/𝜂𝑗(𝑀𝑊𝑗/𝑀𝑊𝑖)

0.25)2√︀
8(1 +𝑀𝑊𝑖/𝑀𝑊𝑗)

Parameters
ys [float] Mole fractions of gas components, [-]

mus [float] Gas viscosities of all components, [Pa*s]

MWs [float] Molecular weights of all components, [g/mol]

Returns
mug [float] Viscosity of gas mixture, [Pa*s]

See also:

Wilke_prefactors

Wilke_prefactored

Wilke_large

Notes

This equation is entirely dimensionless; all dimensions cancel. The original source has not been reviewed or
found.

450 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> Wilke([0.05, 0.95], [1.34E-5, 9.5029E-6], [64.06, 46.07])
9.701614885866193e-06

chemicals.viscosity.Wilke_prefactors(MWs)
The Wilke gas viscosity method can be sped up by precomputing several matrices. The memory used is propor-
tional to N^2, so it can be significant, but is still a substantial performance increase even when they are so large
they cannot fit into cached memory. These matrices are functions of molecular weights only. These are used by
the Wilke_prefactored function.

𝑡0𝑖,𝑗 =

√︁
𝑀𝑊𝑗

𝑀𝑊𝑖√︁
8𝑀𝑊𝑖

𝑀𝑊𝑗
+ 8

𝑡1𝑖,𝑗 =
2 4

√︁
𝑀𝑊𝑗

𝑀𝑊𝑖√︁
8𝑀𝑊𝑖

𝑀𝑊𝑗
+ 8

𝑡2𝑖,𝑗 =
1√︁

8𝑀𝑊𝑖

𝑀𝑊𝑗
+ 8

Parameters
MWs [list[float]] Molecular weights of all components, [g/mol]

Returns
t0s [list[list[float]]] First terms, [-]

t1s [list[list[float]]] Second terms, [-]

t2s [list[list[float]]] Third terms, [-]

Notes

These terms are derived as follows using SymPy. The viscosity terms are not known before hand so they are not
included in the factors, but otherwise these parameters simplify the computation of the 𝜑𝑖𝑗 term to the following:

𝜑𝑖𝑗 =
𝜇𝑖

𝜇𝑗
𝑡0𝑖,𝑗 +

√︂
𝜇𝑖

𝜇𝑗
𝑡1𝑖,𝑗 + 𝑡2𝑖,𝑗

>>> from sympy import *
>>> MWi, MWj, mui, muj = symbols('MW_i, MW_j, mu_i, mu_j')
>>> f = (1 + sqrt(mui/muj)*(MWj/MWi)**Rational(1,4))**2
>>> denom = sqrt(8*(1+MWi/MWj))
>>> (expand(simplify(expand(f))/denom))
mu_i*sqrt(MW_j/MW_i)/(mu_j*sqrt(8*MW_i/MW_j + 8)) + 2*(MW_j/MW_i)**(1/4)*sqrt(mu_i/
→˓mu_j)/sqrt(8*MW_i/MW_j + 8) + 1/sqrt(8*MW_i/MW_j + 8)

1.35. Viscosity (chemicals.viscosity) 451

chemicals Documentation, Release 1.1.4

Examples

>>> Wilke_prefactors([64.06, 46.07])
([[0.25, 0.19392193320396522], [0.3179655106303118, 0.25]], [[0.5, 0.
→˓421161930934918], [0.5856226024677849, 0.5]], [[0.25, 0.22867110638055677], [0.
→˓2696470380083788, 0.25]])
>>> Wilke_prefactored([0.05, 0.95], [1.34E-5, 9.5029E-6], *Wilke_prefactors([64.06,␣
→˓46.07]))
9.701614885866193e-06

chemicals.viscosity.Wilke_prefactored(ys, mus, t0s, t1s, t2s)
Calculates viscosity of a gas mixture according to mixing rules in [1], using precomputed parameters.

𝜂𝑚𝑖𝑥 =

𝑛∑︁
𝑖=1

𝑦𝑖𝜂𝑖∑︀𝑛
𝑗=1 𝑦𝑗𝜑𝑖𝑗

𝜑𝑖𝑗 =
𝜇𝑖

𝜇𝑗
𝑡0𝑖,𝑗 +

√︂
𝜇𝑖

𝜇𝑗
𝑡1𝑖,𝑗 + 𝑡2𝑖,𝑗

Parameters
ys [float] Mole fractions of gas components, [-]

mus [float] Gas viscosities of all components, [Pa*s]

t0s [list[list[float]]] First terms, [-]

t1s [list[list[float]]] Second terms, [-]

t2s [list[list[float]]] Third terms, [-]

Returns
mug [float] Viscosity of gas mixture, [Pa*s]

See also:

Wilke_prefactors

Wilke

Wilke_large

Notes

This equation is entirely dimensionless; all dimensions cancel.

References

[1]

452 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Examples

>>> Wilke_prefactored([0.05, 0.95], [1.34E-5, 9.5029E-6], *Wilke_prefactors([64.06,␣
→˓46.07]))
9.701614885866193e-06

chemicals.viscosity.Wilke_large(ys, mus, MWs)
Calculates viscosity of a gas mixture according to mixing rules in [1].

This function is a slightly faster version of Wilke. It achieves its extra speed by avoiding some checks, some
powers, and by allocating less memory during the computation. For very large component vectors, this function
should be called instead.

Parameters
ys [float] Mole fractions of gas components, [-]

mus [float] Gas viscosities of all components, [Pa*s]

MWs [float] Molecular weights of all components, [g/mol]

Returns
mug [float] Viscosity of gas mixture, [Pa*s]

See also:

Wilke_prefactors

Wilke_prefactored

Wilke

References

[1]

Examples

>>> Wilke_large([0.05, 0.95], [1.34E-5, 9.5029E-6], [64.06, 46.07])
9.701614885866193e-06

1.35.7 Correlations for Specific Substances

chemicals.viscosity.mu_IAPWS(T, rho, drho_dP=None, drho_dP_Tr=None)
Calculates and returns the viscosity of water according to the IAPWS (2008) release.

Viscosity is calculated as a function of three terms; the first is the dilute-gas limit; the second is the contribution
due to finite density; and the third and most complex is a critical enhancement term.

𝜇 = 𝜇0 · 𝜇1(𝑇, 𝜌) · 𝜇2(𝑇, 𝜌)

𝜇0(𝑇) =
100

√
𝑇∑︀3

𝑖=0
𝐻𝑖

𝑇 𝑖

1.35. Viscosity (chemicals.viscosity) 453

chemicals Documentation, Release 1.1.4

𝜇1(𝑇, 𝜌) = exp

⎡⎣𝜌 5∑︁
𝑖=0

⎛⎝(︂ 1

𝑇
− 1

)︂𝑖 6∑︁
𝑗=0

𝐻𝑖𝑗(𝜌− 1)𝑗

⎞⎠⎤⎦
if 𝜉 < 0.3817016416 nm:

𝑌 = 0.2𝑞𝑐𝜉(𝑞𝐷𝜉)
5

(︂
1 − 𝑞𝑐𝜉 + (𝑞𝑐𝜉)

2 − 765

504
(𝑞𝐷𝜉)

2

)︂
else:

𝑌 =
1

12
sin(3𝜓𝐷) − 1

4𝑞𝑐𝜉
sin(2𝜓𝐷) +

1

(𝑞𝑐𝜉)2
[︀
1 − 1.25(𝑞𝑐𝜉)

2
]︀

sin(𝜓𝐷) − 1

(𝑞𝑐𝜉)3

{︁[︀
1 − 1.5(𝑞𝑐𝜉)

2
]︀
𝜓𝐷 −

⃒⃒
(𝑞𝑐𝜉)

2 − 1
⃒⃒1.5

𝐿(𝑤)
}︁

𝑤 =

⃒⃒⃒⃒
𝑞𝑐𝜉 − 1

𝑞𝑐𝜉 + 1

⃒⃒⃒⃒0.5
tan

(︂
𝜓𝐷

2

)︂
𝐿(𝑤) = ln

1 + 𝑤

1 − 𝑤
if 𝑞𝑐𝜉 > 1

𝐿(𝑤) = 2 arctan |𝑤| if 𝑞𝑐𝜉 ≤ 1

𝜓𝐷 = arccos
[︁(︀

1 + 𝑞2𝐷𝜉
2
)︀−0.5

]︁
∆�̄�(𝑇 , 𝜌) = 𝜌

[︂
𝜁(𝑇 , 𝜌) − 𝜁(𝑇𝑅, 𝜌)

𝑇𝑅
𝑇

]︂

𝜉 = 𝜉0

(︂
∆�̄�

Γ0

)︂𝜈/𝛾

𝜁 =

(︂
𝜕𝜌

𝜕𝑝

)︂
𝑇

Parameters
T [float] Temperature of water [K]

rho [float] Density of water [kg/m^3]

drho_dP [float, optional] Partial derivative of density with respect to pressure at constant tem-
perature (at the temperature and density of water), [kg/m^3/Pa]

drho_dP_Tr [float, optional] Partial derivative of density with respect to pressure at constant
temperature (at the reference temperature (970.644 K) and the actual density of water),
[kg/m^3/Pa]

Returns
mu [float] Viscosity, [Pa*s]

Notes

There are three ways to use this formulation.

1) Compute the Industrial formulation value which does not include the critical enhacement, by leaving
drho_dP and drho_dP_Tr None.

2) Compute the Scientific formulation value by accurately computing and providing drho_dP and drho_dP_Tr,
both with IAPWS-95.

3) Get a non-standard but 8 decimal place matching result by providing drho_dP computed with either
IAPWS-95 or IAPWS-97, but not providing drho_dP_Tr; which is calculated internally. There is a for-
mulation for that term in the thermal conductivity IAPWS equation which is used.

454 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

xmu = 0.068

qc = (1.9E-9)**-1

qd = (1.1E-9)**-1

nu = 0.630

gamma = 1.239

xi0 = 0.13E-9

Gamma0 = 0.06

TRC = 1.5

This forulation is highly optimized, spending most of its time in the logarithm, power, and square root.

References

[1]

Examples

>>> mu_IAPWS(298.15, 998.)
0.000889735100149808

>>> mu_IAPWS(1173.15, 400.)
6.415460784836147e-05

Point 4 of formulation, compared with MPEI and IAPWS, matches.

>>> mu_IAPWS(T=647.35, rho=322., drho_dP=1.213641949033E-2)
4.2961578738287e-05

Full scientific calculation:

>>> from chemicals.iapws import iapws95_properties, iapws95_P, iapws95_Tc
>>> T, P = 298.15, 1e5
>>> rho, _, _, _, _, _, _, _, _, _, drho_dP = iapws95_properties(T, P)
>>> P_ref = iapws95_P(1.5*iapws95_Tc, rho)
>>> _, _, _, _, _, _, _, _, _, _, drho_dP_Tr = iapws95_properties(1.5*iapws95_Tc, P_
→˓ref)
>>> mu_IAPWS(T, rho, drho_dP, drho_dP_Tr)
0.00089002267377

chemicals.viscosity.mu_air_lemmon(T, rho)
Calculates and returns the viscosity of air according to Lemmon and Jacobsen (2003) [1].

Viscosity is calculated as a function of two terms; the first is the dilute-gas limit; the second is the contribution
due to finite density.

𝜇 = 𝜇0(𝑇) + 𝜇𝑟(𝑇, 𝜌)

𝜇0(𝑇) =
0.9266958

√
𝑀𝑇

𝜎2Ω(𝑇 *)

1.35. Viscosity (chemicals.viscosity) 455

chemicals Documentation, Release 1.1.4

Ω(𝑇 *) = exp

(︃
4∑︁

𝑖=0

𝑏𝑖[ln(𝑇 *)]𝑖

)︃

𝜇𝑟 =

𝑛∑︁
𝑖=1

𝑁𝑖𝜏
𝑡𝑖𝛿𝑑𝑖 exp

(︀
−𝛾𝑖𝛿𝑙𝑖

)︀
Parameters

T [float] Temperature of air [K]

rho [float] Molar density of air [mol/m^3]

Returns
mu [float] Viscosity of air, [Pa*s]

Notes

The coefficients are:

Ni = [10.72, 1.122, 0.002019, -8.876, -0.02916]

ti = [0.2, 0.05, 2.4, 0.6, 3.6]

di = [1, 4, 9, 1, 8]

gammai = Ii = [0, 0, 0, 1, 1]

bi = [.431, -0.4623, 0.08406, 0.005341, -0.00331]

The reducing parameters are 𝑇𝑐 = 132.6312 K and 𝜌𝑐 = 10447.7 mol/m^3. Additional parameters used are
𝜎 = 0.36 nm, 𝑀 = 28.9586 g/mol and 𝑒

𝑘 = 103.3 K.

This is an implementation optimized for speed, spending its time in the calclulation of 1 log; 2 exp; 1 power; and
2 divisions.

References

[1]

Examples

Viscosity at 300 K and 1 bar:

>>> mu_air_lemmon(300.0, 40.10292351061862)
1.85371518556e-05

Calculate the density in-place:

>>> from chemicals.air import lemmon2000_rho
>>> mu_air_lemmon(300.0, lemmon2000_rho(300.0, 1e5))
1.85371518556e-05

456 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.35.8 Petroleum Correlations

chemicals.viscosity.Twu_1985(T, Tb, rho)
Calculate the viscosity of a petroleum liquid using the Twu (1985) correlation developed in [1]. Based on a fit
to n-alkanes that used as a reference. Requires the boiling point and density of the system.

Parameters
T [float] Temperature of fluid [K]

Tb [float] Normal boiling point, [K]

rho [float] Liquid density liquid as measured at 60 deg F, [kg/m^3]

Returns
mu [float] Liquid viscosity, [Pa*s]

Notes

The formulas are as follows:

𝑇 ∘
𝑐 = 𝑇𝑏

(︀
0.533272 + 0.191017 × 10−3𝑇𝑏 + 0.779681 × 10−7𝑇 2

𝑏 − 0.284376 × 10−10𝑇 3
𝑏 + 0.959468 × 1028/𝑇 13

𝑏

)︀−1

𝛼 = 1 − 𝑇𝑏/𝑇
∘
𝑐

ln (𝜈∘2 + 1.5) = 4.73227 − 27.0975𝛼+ 49.4491𝛼2 − 50.4706𝛼4

ln (𝜈∘1) = 0.801621 + 1.37179 ln (𝜈∘2)

𝑆𝐺∘ = 0.843593 − 0.128624𝛼− 3.36159𝛼3 − 13749.5𝛼12

∆𝑆𝐺 = 𝑆𝐺− 𝑆𝐺∘

|𝑥| =
⃒⃒⃒
1.99873 − 56.7394/

√︀
𝑇𝑏

⃒⃒⃒
𝑓1 = 1.33932|𝑥|∆𝑆𝐺− 21.1141∆𝑆𝐺2/

√︀
𝑇𝑏

𝑓2 = |𝑥|∆𝑆𝐺− 21.1141∆𝑆𝐺2/
√︀
𝑇𝑏

ln

(︂
𝜈1 +

450

𝑇𝑏

)︂
= ln

(︂
𝜈∘1 +

450

𝑇𝑏

)︂(︂
1 + 2𝑓1
1 − 2𝑓1

)︂2

ln

(︂
𝜈2 +

450

𝑇𝑏

)︂
= ln

(︂
𝜈∘2 +

450

𝑇𝑏

)︂(︂
1 + 2𝑓2
1 − 2𝑓2

)︂2

𝑍 = 𝜈 + 0.7 + exp
(︀
−1.47 − 1.84𝜈 − 0.51𝜈2

)︀
𝐵 =

ln ln𝑍1 − ln ln𝑍2

ln𝑇1 − ln𝑇2

ln ln𝑍 = ln ln𝑍1 +𝐵(ln𝑇 − ln𝑇1)

𝜈 = (𝑍 − 0.7) − exp
(︀
−0.7487 − 3.295𝑍 − 0.7) + 0.6119𝑍 − 0.7)2 − 0.3193𝑍 − 0.7)3

)︀

1.35. Viscosity (chemicals.viscosity) 457

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Sample point from article:

>>> Twu_1985(T=338.7055, Tb=672.3166, rho=895.5189)
0.008235009644854494

chemicals.viscosity.Lorentz_Bray_Clarke(T, P, Vm, zs, MWs, Tcs, Pcs, Vcs)
Calculates the viscosity of a gas or a liquid using the method of Lorentz, Bray, and Clarke [1]. This method is
not quite the same as the original, but rather the form commonly presented and used today. The original had a
different formula for pressure correction for gases which was tabular and not presented entirely in [1]. However
using that distinction introduces a discontinuity between the liquid and gas viscosity, so it is not normally used.

𝜇[centipoise] = 𝜇P low, Stiel-hThodos[centipoise] +
poly4 − 0.0001

𝜉

poly = (0.1023 + 0.023364𝜌𝑟 + 0.058533𝜌2𝑟 − 0.040758𝜌3𝑟 + 0.0093724𝜌4𝑟)

𝜉 = 𝑇 1/6
𝑐 𝑀𝑊−1/2(𝑃𝑐[atm])−2/3

Parameters
T [float] Temperature of the fluid [K]

P [float] Pressure of the fluid [Pa]

Vm [float] Molar volume of the fluid at the actual conditions, [m^3/mol]

zs [list[float]] Mole fractions of chemicals in the fluid, [-]

MWs [list[float]] Molwcular weights of chemicals in the fluid [g/mol]

Tcs [float] Critical temperatures of chemicals in the fluid [K]

Pcs [float] Critical pressures of chemicals in the fluid [Pa]

Vcs [float] Critical molar volumes of chemicals in the fluid; these are often used as tuning pa-
rameters, fit to match a pure component experimental viscosity value [m^3/mol]

Returns
mu [float] Viscosity of phase at actual conditions , [Pa*s]

Notes

An example from [2] was implemented and checked for validation. Somewhat different rounding is used in [2].

The mixing of the pure component Stiel-Thodos viscosities happens with the Herning-Zipperer mixing rule:

𝜇 =

∑︀
𝑥𝑖𝜇𝑖

√
𝑀𝑊𝑖∑︀

𝑥𝑖
√
𝑀𝑊𝑖

458 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1], [2]

Examples

>>> Lorentz_Bray_Clarke(T=300.0, P=1e6, Vm=0.0023025, zs=[.4, .3, .3],
... MWs=[16.04246, 30.06904, 44.09562], Tcs=[190.564, 305.32, 369.83],
... Pcs=[4599000.0, 4872000.0, 4248000.0], Vcs=[9.86e-05, 0.0001455, 0.0002])
9.925488160761484e-06

1.35.9 Fit Correlations

chemicals.viscosity.PPDS9(T, A, B, C, D, E)
Calculate the viscosity of a liquid using the 5-term exponential power fit developed by the PPDS and named
PPDS equation 9.

𝜇 = 𝐸 exp

[︃
𝐴

(︂
𝐶 − 𝑇

𝑇 −𝐷

)︂1/3

+𝐵

(︂
𝐶 − 𝑇

𝑇 −𝐷

)︂4/3
]︃

Parameters
T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [-]

C [float] Coefficient, [K]

D [float] Coefficient, [K]

E [float] Coefficient, [Pa*s]

Returns
mu [float] Liquid viscosity, [Pa*s]

Notes

No other source for these coefficients has been found.

There can be a singularity in this equation when T approaches C or D; it may be helpful to take as a limit to this
equation D + 5 K.

References

[1]

1.35. Viscosity (chemicals.viscosity) 459

chemicals Documentation, Release 1.1.4

Examples

>>> PPDS9(400.0, 1.74793, 1.33728, 482.347, 41.78, 9.963e-05)
0.00035091137378230684

chemicals.viscosity.dPPDS9_dT(T, A, B, C, D, E)
Calculate the temperature derivative of viscosity of a liquid using the 5-term exponential power fit developed by
the PPDS and named PPDS equation 9.

Normally, the temperature derivative is:

𝜕𝜇

𝜕𝑇
= 𝐸

⎛⎝𝐴 3

√︁
𝐶−𝑇
−𝐷+𝑇 (−𝐷 + 𝑇)

(︁
− 𝐶−𝑇

3(−𝐷+𝑇)2
− 1

3(−𝐷+𝑇)

)︁
𝐶 − 𝑇

−
𝐵 3

√︁
𝐶−𝑇
−𝐷+𝑇 (𝐶 − 𝑇)

(−𝐷 + 𝑇)
2 +𝐵 3

√︂
𝐶 − 𝑇

−𝐷 + 𝑇

(︃
− 𝐶 − 𝑇

3 (−𝐷 + 𝑇)
2 − 1

3 (−𝐷 + 𝑇)

)︃
−
𝐵 3

√︁
𝐶−𝑇
−𝐷+𝑇

−𝐷 + 𝑇

⎞⎠ 𝑒
𝐴 3
√︁

𝐶−𝑇
−𝐷+𝑇 +

𝐵 3
√

𝐶−𝑇
−𝐷+𝑇

(𝐶−𝑇)

−𝐷+𝑇

For the low-temperature region:

𝜕𝜇

𝜕𝑇
= 𝐸

⎛⎝−
𝐴 3

√︁
−𝐶+𝑇
−𝐷+𝑇 (−𝐷 + 𝑇)

(︁
− −𝐶+𝑇

3(−𝐷+𝑇)2
+ 1

3(−𝐷+𝑇)

)︁
−𝐶 + 𝑇

+
𝐵 3

√︁
−𝐶+𝑇
−𝐷+𝑇 (𝐶 − 𝑇)

(−𝐷 + 𝑇)
2 +

𝐵 3

√︁
−𝐶+𝑇
−𝐷+𝑇

−𝐷 + 𝑇
−
𝐵 3

√︁
−𝐶+𝑇
−𝐷+𝑇 (𝐶 − 𝑇)

(︁
− −𝐶+𝑇

3(−𝐷+𝑇)2
+ 1

3(−𝐷+𝑇)

)︁
−𝐶 + 𝑇

⎞⎠ 𝑒
−𝐴 3

√︁
−𝐶+𝑇
−𝐷+𝑇 −

𝐵 3
√

−𝐶+𝑇
−𝐷+𝑇

(𝐶−𝑇)

−𝐷+𝑇

Parameters
T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [-]

C [float] Coefficient, [K]

D [float] Coefficient, [K]

E [float] Coefficient, [Pa*s]

Returns
dmu_dT [float] First temperature derivative of liquid viscosity, [Pa*s]

mu [float] Liquid viscosity, [Pa*s]

References

[1]

Examples

>>> dPPDS9_dT(400.0, 1.74793, 1.33728, 482.347, 41.78, 9.963e-05)
(-3.186540635882627e-06, 0.00035091137378230684)

chemicals.viscosity.PPDS5(T, Tc, a0, a1, a2)
Calculate the viscosity of a low-pressure gas using the 3-term exponential power fit developed by the PPDS and
named PPDS equation 5.

𝜇 =
𝑎0𝑇𝑟

(1 + 𝑎1𝑇
𝑎2
𝑟 (𝑇𝑟 − 1))

1/6

Parameters

460 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a0 [float] Coefficient, [-]

a1 [float] Coefficient, [-]

a2 [float] Coefficient, [-]

Returns
mu [float] Low pressure gas viscosity, [Pa*s]

References

[1]

Examples

Sample coefficients for n-pentane in [1], at 350 K:

>>> PPDS5(T=350.0, Tc=470.008, a0=1.08003e-5, a1=0.19583, a2=0.811897)
8.096643275836e-06

chemicals.viscosity.Viswanath_Natarajan_2(T, A, B)
Calculate the viscosity of a liquid using the 2-term form representation developed in [1]. Requires input coeffi-
cients. The A coefficient is assumed to yield coefficients in Pa*s; if it yields values in 1E-3 Pa*s, remove log(100)
for A.

𝜇 = exp

(︂
𝐴+

𝐵

𝑇

)︂
Parameters

T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [K]

Returns
mu [float] Liquid viscosity, [Pa*s]

Notes

No other source for these coefficients than [1] has been found.

1.35. Viscosity (chemicals.viscosity) 461

chemicals Documentation, Release 1.1.4

References

[1]

Examples

DDBST has 0.0004580 as a value at this temperature for 1-Butanol.

>>> Viswanath_Natarajan_2(348.15, -5.9719-log(100), 1007.0)
0.000459836869568295

chemicals.viscosity.Viswanath_Natarajan_2_exponential(T, C, D)
Calculate the viscosity of a liquid using the 2-term exponential form representation developed in [1]. Requires
input coefficients. The A coefficient is assumed to yield coefficients in Pa*s, as all coefficients found so far have
been.

𝜇 = 𝐶𝑇𝐷

Parameters
T [float] Temperature of fluid [K]

C [float] Linear coefficient, [Pa*s]

D [float] Exponential coefficient, [-]

Returns
mu [float] Liquid viscosity, [Pa*s]

Notes

No other source for these coefficients has been found.

References

[1]

Examples

>>> Ts = [283.15, 288.15, 303.15, 349.65]
>>> mus = [2.2173, 2.1530, 1.741, 1.0091] # in cP
>>> Viswanath_Natarajan_2_exponential(288.15, 4900800, -3.8075)
0.002114798866203873

Calculation of the AARD of the fit (1% is the value stated in [1].:

>>> mu_calc = [Viswanath_Natarajan_2_exponential(T, 4900800, -3.8075) for T in Ts]
>>> np.mean([abs((mu - mu_i*1000)/mu) for mu, mu_i in zip(mus, mu_calc)])
0.010467928813061298

462 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.viscosity.Viswanath_Natarajan_3(T, A, B, C)
Calculate the viscosity of a liquid using the 3-term Antoine form representation developed in [1]. Requires input
coefficients. If the coefficients do not yield viscosity in Pa*s, but rather cP, remove log10(1000) from A.

log10 𝜇 = 𝐴+𝐵/(𝑇 + 𝐶)

Parameters
T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [K]

C [float] Coefficient, [K]

Returns
mu [float] Liquid viscosity, [Pa*s]

Notes

No other source for these coefficients has been found.

References

[1]

Examples

>>> from math import log10
>>> Viswanath_Natarajan_3(298.15, -2.7173-log10(1000), -1071.18, -129.51)
0.0006129806445142113

chemicals.viscosity.mu_Yaws(T, A, B, C=0.0, D=0.0)
Calculate the viscosity of a liquid using the 4-term Yaws polynomial form. Requires input coefficients. If the
coefficients do not yield viscosity in Pa*s, but rather cP, remove log10(1000) from A; this is required for the
coefficients in [1].

log10 𝜇 = 𝐴+𝐵/𝑇 + 𝐶𝑇 +𝐷𝑇 2

Parameters
T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [K]

C [float] Coefficient, [1/K]

D [float] Coefficient, [1/K^2]

Returns
mu [float] Liquid viscosity, [Pa*s]

1.35. Viscosity (chemicals.viscosity) 463

chemicals Documentation, Release 1.1.4

References

[1]

Examples

>>> from math import log10
>>> mu_Yaws(300.0, -6.4406-log10(1000), 1117.6, 0.0137, -0.000015465)
0.0010066612081

chemicals.viscosity.dmu_Yaws_dT(T, A, B, C=0.0, D=0.0)
Calculate the temperature derivative of the viscosity of a liquid using the 4-term Yaws polynomial form. Requires
input coefficients.

𝜕𝜇

𝜕𝑇
= 10𝐴+𝐵

𝑇 +𝑇 (𝐶+𝐷𝑇)

(︂
− 𝐵

𝑇 2
+ 𝐶 + 2𝐷𝑇

)︂
log (10)

Parameters
T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [K]

C [float] Coefficient, [1/K]

D [float] Coefficient, [1/K^2]

Returns
dmu_dT [float] First temperature derivative of liquid viscosity, [Pa*s/K]

Examples

>>> dmu_Yaws_dT(300.0, -9.4406, 1117.6, 0.0137, -0.000015465)
-1.853591586963e-05

chemicals.viscosity.mu_Yaws_fitting_jacobian(Ts, A, B, C, D)
Compute and return the Jacobian of the property predicted by the Yaws viscosity equation with respect to all the
coefficients. This is used in fitting parameters for chemicals.

Parameters
Ts [list[float]] Temperatures of the experimental data points, [K]

A [float] Coefficient, [-]

B [float] Coefficient, [K]

C [float] Coefficient, [1/K]

D [float] Coefficient, [1/K^2]

Returns
jac [list[list[float, 4], len(Ts)]] Matrix of derivatives of the equation with respect to the fitting

parameters, [various]

464 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.viscosity.mu_TDE(T, A, B, C, D)
Calculate the viscosity of a liquid using the 4-term exponential inverse-temperature fit equation used in NIST’s
TDE.

𝜇 = exp

[︂
𝐴+

𝐵

𝑇
+

𝐶

𝑇 2
+
𝐷

𝑇 3

]︂
Parameters

T [float] Temperature of fluid [K]

A [float] Coefficient, [-]

B [float] Coefficient, [K]

C [float] Coefficient, [K^2]

D [float] Coefficient, [K^3]

Returns
mu [float] Liquid viscosity, [Pa*s]

References

[1]

Examples

Coefficients for isooctane at 400 K, as shown in [1].

>>> mu_TDE(400.0, -14.0878, 3500.26, -678132.0, 6.17706e7)
0.0001822175281438

1.35.10 Conversion functions

chemicals.viscosity.viscosity_converter(val, old_scale, new_scale, extrapolate=False)
Converts kinematic viscosity values from different scales which have historically been used. Though they may
not be in use much, some standards still specify values in these scales.

Parameters
val [float] Viscosity value in the specified scale; [m^2/s] if ‘kinematic viscosity’; [degrees] if

Engler or Barbey; [s] for the other scales.

old_scale [str] String representing the scale that val is in originally.

new_scale [str] String representing the scale that val should be converted to.

extrapolate [bool] If True, a conversion will be performed even if outside the limits of either
scale; if False, and either value is outside a limit, an exception will be raised.

Returns
result [float] Viscosity value in the specified scale; [m^2/s] if ‘kinematic viscosity’; [degrees]

if Engler or Barbey; [s] for the other scales

1.35. Viscosity (chemicals.viscosity) 465

chemicals Documentation, Release 1.1.4

Notes

The valid scales for this function are any of the following:

[‘a&w b’, ‘a&w crucible’, ‘american can’, ‘astm 0.07’, ‘astm 0.10’, ‘astm 0.15’, ‘astm 0.20’, ‘astm 0.25’, ‘barbey’,
‘caspers tin plate’, ‘continental can’, ‘crown cork and seal’, ‘demmier #1’, ‘demmier #10’, ‘engler’, ‘ford cup #3’,
‘ford cup #4’, ‘kinematic viscosity’, ‘mac michael’, ‘murphy varnish’, ‘parlin cup #10’, ‘parlin cup #15’, ‘parlin
cup #20’, ‘parlin cup #25’, ‘parlin cup #30’, ‘parlin cup #7’, ‘pratt lambert a’, ‘pratt lambert b’, ‘pratt lambert c’,
‘pratt lambert d’, ‘pratt lambert e’, ‘pratt lambert f’, ‘pratt lambert g’, ‘pratt lambert h’, ‘pratt lambert i’, ‘redwood
admiralty’, ‘redwood standard’, ‘saybolt furol’, ‘saybolt universal’, ‘scott’, ‘stormer 100g load’, ‘westinghouse’,
‘zahn cup #1’, ‘zahn cup #2’, ‘zahn cup #3’, ‘zahn cup #4’, ‘zahn cup #5’]

Some of those scales are converted linearly; the rest use tabulated data and splines.

Because the conversion is performed by spline functions, a re-conversion of a value will not yield exactly the
original value. However, it is quite close.

The method ‘Saybolt universal’ has a special formula implemented for its conversion, from [4]. It is designed
for maximum backwards compatibility with prior experimental data. It is solved by newton’s method when
kinematic viscosity is desired as an output.

𝑆𝑈𝑆𝑒𝑞 = 4.6324𝜈𝑡 +
[1.0 + 0.03264𝜈𝑡]

[(3930.2 + 262.7𝜈𝑡 + 23.97𝜈2𝑡 + 1.646𝜈3𝑡) × 10−5)]

References

[1], [2], [3], [4], [5]

Examples

>>> viscosity_converter(8.79, 'engler', 'parlin cup #7')
52.5
>>> viscosity_converter(700, 'Saybolt Universal Seconds', 'kinematic viscosity')
0.00015108914751515542

chemicals.viscosity.viscosity_index(nu_40, nu_100, rounding=False)
Calculates the viscosity index of a liquid. Requires dynamic viscosity of a liquid at 40°C and 100°C. Value may
either be returned with or without rounding. Rounding is performed per the standard.

if nu_100 < 70:

𝐿,𝐻 = interp(𝑛𝑢100)

else:

𝐿 = 0.8353𝜈2100 + 14.67𝜈100 − 216

𝐻 = 0.1684𝜈2100 + 11.85𝜈100 − 97

if nu_40 > H:

𝑉 𝐼 =
𝐿− 𝑛𝑢40
𝐿−𝐻

· 100

else:

𝑁 =
ln(𝐻) − ln(𝜈40)

ln(𝜈100)

466 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝑉 𝐼 =
10𝑁 − 1

0.00715
+ 100

Parameters
nu_40 [float] Dynamic viscosity of fluid at 40°C, [m^2/s]

nu_100 [float] Dynamic viscosity of fluid at 100°C, [m^2/s]

rounding [bool, optional] Whether to round the value or not.

Returns
VI: float Viscosity index [-]

Notes

VI is undefined for nu_100 under 2 mm^2/s. None is returned if this is the case. Internal units are mm^2/s.
Higher values of viscosity index suggest a lesser decrease in kinematic viscosity as temperature increases.

Note that viscosity is a pressure-dependent property, and that the viscosity index is defined for a fluid at whatever
pressure it is at. The viscosity index is thus also a function of pressure.

References

[1]

Examples

>>> viscosity_index(73.3E-6, 8.86E-6, rounding=True)
92

1.35.11 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.viscosity.mu_data_Dutt_Prasad
Coefficient sfor chemicals.viscosity.Viswanath_Natarajan_3 from [1] for 100 fluids.

chemicals.viscosity.mu_data_VN3
Coefficients for chemicals.viscosity.Viswanath_Natarajan_3 from [1] with data for 432 fluids.

chemicals.viscosity.mu_data_VN2
Coefficients for chemicals.viscosity.Viswanath_Natarajan_2 from [1] with data for 135 fluids.

chemicals.viscosity.mu_data_VN2E
Coefficients for chemicals.viscosity.Viswanath_Natarajan_2_exponential from [1] with data for 14
fluids.

chemicals.viscosity.mu_data_Perrys_8E_2_313
A collection of 337 coefficient sets for chemicals.dippr.EQ101 from the DIPPR database published openly
in [3].

chemicals.viscosity.mu_data_Perrys_8E_2_312
A collection of 345 coefficient sets for chemicals.dippr.EQ102 from the DIPPR database published openly
in [3].

1.35. Viscosity (chemicals.viscosity) 467

chemicals Documentation, Release 1.1.4

chemicals.viscosity.mu_data_VDI_PPDS_7
Coefficients for the model equation PPDS9, published openly in [2]. Provides no temperature limits, but has been
designed for extrapolation. Extrapolated to low temperatures it provides a smooth exponential increase. However,
for some chemicals such as glycerol, extrapolated to higher temperatures viscosity is predicted to increase above
a certain point.

chemicals.viscosity.mu_data_VDI_PPDS_8
Coefficients for a tempereture polynomial (T in Kelvin) developed by the PPDS, published openly in [2]. 𝜇 =
𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.viscosity.mu_data_Dutt_Prasad
Out[2]:

Chemical A B C Tmin Tmax
CAS
56-23-5 Carbon tetrachloride -1.4708 -324.45 71.19 273.0 373.0
60-29-7 Ethyl ether -4.4735 -3623.26 -648.55 273.0 373.0
62-53-3 Aniline -1.1835 -224.31 170.82 268.0 393.0
64-17-5 Ethyl alcohol -2.8857 -1032.53 -55.95 248.0 348.0
64-18-6 Formic acid -1.4150 -297.43 114.74 281.0 373.0
...
629-59-4 Tetra decane -1.4424 -350.81 100.18 283.0 373.0
629-62-9 Penta decane -1.4073 -348.84 105.48 293.0 373.0
629-78-7 Hepta decane -1.7847 -577.32 51.72 303.0 553.0
693-02-7 1 - Hexyne -3.0941 -1404.92 -233.99 293.0 333.0
3744-21-6 2,2 - Dimethyl propane -0.9128 -30.15 202.98 258.0 283.0

[100 rows x 6 columns]

In [3]: chemicals.viscosity.mu_data_VN3
Out[3]:

Name ... Tmax
CAS ...
57-10-3 Palmitic acid ... 370.0
57-50-1 Sucrose ... 330.0
60-12-8 Phenethyl alcohol ... 380.0
60-35-5 Acetamide ... 500.0
62-53-3 Aniline ... 460.0
...
66538-96-3 1,2,3,4 - Tetrahydro -6 - butyl -hexyl naphtha... ... 380.0
87077-20-1 2-Methyl - 7 -heptanol ... 380.0
99332-99-7 Hexyl thiohexanoate ... 370.0
101433-18-5 Ethyl tetra decanol ... 380.0
109309-32-2 2,2-Di - p - toly butane ... 480.0

[432 rows x 7 columns]

In [4]: chemicals.viscosity.mu_data_VN2
Out[4]:

Name Formula ... Tmin Tmax
CAS ...

(continues on next page)

468 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

71-36-3 1-Butanol C4 H10O ... 220.0 390.0
74-87-3 Methyl chloride CH3Cl ... 250.0 310.0
74-88-4 Iodo methane CH3I ... 270.0 320.0
75-08-1 Ethane thiol C2H6S ... 270.0 300.0
75-18-3 Methyl sulfide C2 H6S ... 270.0 310.0
...
12200-64-5 Sodium hydroxide hydrate NaOH. H2O ... 330.0 360.0
13478-00-7 Nickle - nitrate hexa hydrate Ni(NO3)2. 6H2O ... 330.0 350.0
18358-66-2 3 - n - Propyl - 4 - methyl sydnone C6 H10N2 O2 ... 290.0 320.0
29136-19-4 Nona decyl benzene C25H44 ... 300.0 350.0
31304-44-6 Sodium acetate hydrate CH3COONa. 3H2O ... 330.0 360.0

[135 rows x 6 columns]

In [5]: chemicals.viscosity.mu_data_VN2E
Out[5]:

Substance Formula ... Tmin Tmax
CAS ...
60-29-7 Ether C4H10O ... 270.0 410.0
64-19-7 Acetic acid C2H4O2 ... 270.0 390.0
75-07-0 Acetaldehyde C2H4O2 ... 270.0 300.0
75-25-2 Bromoform CHBr3 ... 280.0 350.0
78-93-3 Methylketone ethyl C4H8O ... 240.0 360.0
109-73-9 Butyl amine C4H11N ... 270.0 360.0
110-58-7 Amyl amine C5H13N ... 270.0 360.0
111-26-2 n-Hexyl amine C6H15N ... 270.0 380.0
764-49-8 Allyl thiocynate C4H5NS ... 290.0 400.0
2307-17-7 Hexyl thio myrisate C20H40OS ... 300.0 370.0
10034-85-2 Hydrogen iodide HI ... 220.0 240.0
10035-10-6 Hydrogen bromide HBr ... 180.0 200.0
28488-34-8 Methylacetate C3H6O2 ... 270.0 420.0
37340-18-4 Perfluoro-1- isopropoxy hexane C9F20O ... 290.0 320.0

[14 rows x 6 columns]

In [6]: chemicals.viscosity.mu_data_Perrys_8E_2_313
Out[6]:

Chemical C1 C2 ... C5 Tmin Tmax
CAS ...
50-00-0 Formaldehyde -11.2400 751.69 ... 0.0 181.15 254.05
55-21-0 Benzamide -12.6320 2668.20 ... 0.0 403.00 563.15
56-23-5 Carbon tetrachloride -8.0738 1121.10 ... 0.0 250.00 455.00
57-55-6 1,2-Propylene glycol -804.5400 30487.00 ... 1.0 213.15 500.80
60-29-7 Diethyl ether 10.1970 -63.80 ... 0.0 200.00 373.15
...
10028-15-6 Ozone -10.9400 415.96 ... 0.0 77.55 208.80
10035-10-6 Hydrogen bromide -11.6330 316.38 ... 0.0 185.15 206.45
10102-43-9 Nitric oxide -246.6500 3150.30 ... 1.0 109.50 180.05
13511-13-2 Propenylcyclohexene -11.2080 1079.80 ... 0.0 199.00 508.80
132259-10-0 Air -20.0770 285.15 ... 10.0 59.15 130.00

[337 rows x 8 columns]

(continues on next page)

1.35. Viscosity (chemicals.viscosity) 469

chemicals Documentation, Release 1.1.4

(continued from previous page)

In [7]: chemicals.viscosity.mu_data_Perrys_8E_2_312
Out[7]:

Chemical C1 C2 ... C4 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 4.758000e-07 0.64050 ... 0.0 181.15 1000.0
55-21-0 Benzamide 2.508200e-08 0.96663 ... 0.0 403.00 1000.0
56-23-5 Carbon tetrachloride 3.137000e-06 0.37420 ... 0.0 250.33 1000.0
57-55-6 1,2-Propylene glycol 4.543000e-08 0.91730 ... 0.0 213.15 1000.0
60-29-7 Diethyl ether 1.948000e-06 0.41000 ... 0.0 156.85 1000.0
...
10028-15-6 Ozone 1.196000e-07 0.84797 ... 0.0 80.15 1000.0
10035-10-6 Hydrogen bromide 9.170000e-08 0.92730 ... 0.0 206.45 800.0
10102-43-9 Nitric oxide 1.467000e-06 0.51230 ... 0.0 110.00 1500.0
13511-13-2 Propenylcyclohexene 5.474900e-07 0.53893 ... 0.0 199.00 1000.0
132259-10-0 Air 1.425000e-06 0.50390 ... 0.0 80.00 2000.0

[345 rows x 7 columns]

In [8]: chemicals.viscosity.mu_data_VDI_PPDS_7
Out[8]:

Chemical Formula A ... C D E
CAS ...
50-00-0 Formaldehyde CH2O 0.69796 ... 549.921 -44.110 0.000036
56-23-5 Carbon tetrachloride CC4l 0.83033 ... 562.119 -73.328 0.000099
56-81-5 Glycerol C3H8O3 -3.91153 ... 582.480 73.885 0.007996
60-29-7 Diethyl ether C4H10O 2.19245 ... 520.594 -370.873 0.000020
62-53-3 Aniline C6H7N 0.85750 ... 462.011 136.981 0.000282
...
10097-32-2 Bromine B2r 3.19074 ... 499.481 -209.817 0.000058
10102-43-9 Nitric oxide NO 7.22569 ... 202.500 -106.123 0.000002
10102-44-0 Nitrogen dioxide NO2 6.86768 ... 423.463 -446.706 0.000009
10544-72-6 Dinitrogentetroxide N2O4 -0.03739 ... 615.987 11.286 0.000139
132259-10-0 Air NaN 2.22755 ... 132.897 4.000 0.000016

[271 rows x 7 columns]

In [9]: chemicals.viscosity.mu_data_VDI_PPDS_8
Out[9]:

Chemical A ... D E
CAS ...
50-00-0 Formaldehyde -8.285000e-07 ... 0.000000e+00 0.000000e+00
56-23-5 Carbon tetrachloride -7.132000e-07 ... 0.000000e+00 0.000000e+00
56-81-5 Glycerol -1.460000e-08 ... 0.000000e+00 0.000000e+00
60-29-7 Diethyl ether -8.933000e-07 ... 0.000000e+00 0.000000e+00
62-53-3 Aniline -9.488000e-07 ... 0.000000e+00 0.000000e+00
...
10097-32-2 Bromine 1.948300e-06 ... 0.000000e+00 0.000000e+00
10102-43-9 Nitric oxide -9.105000e-07 ... 4.240000e-14 -1.020000e-17
10102-44-0 Nitrogen dioxide -2.285050e-05 ... 1.713400e-13 -4.920000e-17
10544-72-6 Dinitrogentetroxide -8.683000e-07 ... 0.000000e+00 0.000000e+00
132259-10-0 Air -1.702000e-07 ... 4.960000e-14 -1.388000e-17

(continues on next page)

470 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

[274 rows x 6 columns]

1.36 Density/Volume (chemicals.volume)

This module contains various volume/density estimation routines, dataframes of fit coefficients, and mixing rules.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Low Pressure Liquid Correlations

• Pure High Pressure Liquid Correlations

• Liquid Mixing Rules

• Gas Correlations

• Pure Solid Correlations

• Pure Component Liquid Fit Correlations

• Pure Component Solid Fit Correlations

• Fit Coefficients

1.36.1 Pure Low Pressure Liquid Correlations

chemicals.volume.Rackett(T, Tc, Pc, Zc)
Calculates saturation liquid volume, using Rackett CSP method and critical properties.

The molar volume of a liquid is given by:

𝑉𝑠 =
𝑅𝑇𝑐
𝑃𝑐

𝑍𝑐
[1+(1−𝑇/𝑇𝑐)

2/7]

Units are all currently in m^3/mol - this can be changed to kg/m^3

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

Zc [float] Critical compressibility of fluid, [-]

Returns
Vs [float] Saturation liquid volume, [m^3/mol]

1.36. Density/Volume (chemicals.volume) 471

https://github.com/CalebBell/chemicals/

chemicals Documentation, Release 1.1.4

Notes

According to Reid et. al, underpredicts volume for compounds with Zc < 0.22

References

[1]

Examples

Propane, example from the API Handbook

>>> from chemicals.utils import Vm_to_rho
>>> Vm_to_rho(Rackett(272.03889, 369.83, 4248000.0, 0.2763), 44.09562)
531.3221411755724

chemicals.volume.COSTALD(T, Tc, Vc, omega)
Calculate saturation liquid density using the COSTALD CSP method.

A popular and accurate estimation method. If possible, fit parameters are used; alternatively critical properties
work well.

The density of a liquid is given by:

𝑉𝑠 = 𝑉 *𝑉 (0)[1 − 𝜔𝑆𝑅𝐾𝑉
(𝛿)]

𝑉 (0) = 1 − 1.52816(1 − 𝑇𝑟)1/3 + 1.43907(1 − 𝑇𝑟)2/3 − 0.81446(1 − 𝑇𝑟) + 0.190454(1 − 𝑇𝑟)4/3

𝑉 (𝛿) =
−0.296123 + 0.386914𝑇𝑟 − 0.0427258𝑇 2

𝑟 − 0.0480645𝑇 3
𝑟

𝑇𝑟 − 1.00001

Units are that of critical or fit constant volume.

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Vc [float] Critical volume of fluid [m^3/mol]. This parameter is alternatively a fit parameter

omega [float] (ideally SRK) Acentric factor for fluid, [-] This parameter is alternatively a fit
parameter.

Returns
Vs [float] Saturation liquid volume

Notes

196 constants are fit to this function in [1]. Range: 0.25 < Tr < 0.95, often said to be to 1.0

This function has been checked with the API handbook example problem.

472 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Propane, from an example in the API Handbook:

>>> from chemicals.utils import Vm_to_rho
>>> Vm_to_rho(COSTALD(272.03889, 369.83333, 0.20008161E-3, 0.1532), 44.097)
530.3009967969844

chemicals.volume.Yen_Woods_saturation(T, Tc, Vc, Zc)
Calculates saturation liquid volume, using the Yen and Woods [1] CSP method and a chemical’s critical proper-
ties.

The molar volume of a liquid is given by:

𝑉 𝑐/𝑉 𝑠 = 1 +𝐴(1 − 𝑇𝑟)1/3 +𝐵(1 − 𝑇𝑟)2/3 +𝐷(1 − 𝑇𝑟)4/3

𝐷 = 0.93 −𝐵

𝐴 = 17.4425 − 214.578𝑍𝑐 + 989.625𝑍2
𝑐 − 1522.06𝑍3

𝑐

𝐵 = −3.28257 + 13.6377𝑍𝑐 + 107.4844𝑍2
𝑐 − 384.211𝑍3

𝑐 if 𝑍𝑐 ≤ 0.26

𝐵 = 60.2091 − 402.063𝑍𝑐 + 501.0𝑍2
𝑐 + 641.0𝑍3

𝑐 if 𝑍𝑐 ≥ 0.26

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Vc [float] Critical volume of fluid [m^3/mol]

Zc [float] Critical compressibility of fluid, [-]

Returns
Vs [float] Saturation liquid volume, [m^3/mol]

Notes

Original equation was in terms of density, but it is converted here.

No example has been found, nor are there points in the article. However, it is believed correct. For compressed
liquids with the Yen-Woods method, see the YenWoods_compressed function.

References

[1]

1.36. Density/Volume (chemicals.volume) 473

chemicals Documentation, Release 1.1.4

Examples

>>> Yen_Woods_saturation(300, 647.14, 55.45E-6, 0.245)
1.769533076529574e-05

chemicals.volume.Yamada_Gunn(T, Tc, Pc, omega)
Calculates saturation liquid volume, using Yamada and Gunn CSP method and a chemical’s critical properties
and acentric factor.

The molar volume of a liquid is given by:

𝑉𝑠 =
𝑅𝑇𝑐
𝑃𝑐

(0.29056 − 0.08775𝜔)
[1+(1−𝑇/𝑇𝑐)

2/7]

Units are in m^3/mol.

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
Vs [float] saturation liquid volume, [m^3/mol]

Notes

This equation is an improvement on the Rackett equation. This is often presented as the Rackett equation. The
acentric factor is used here, instead of the critical compressibility A variant using a reference fluid also exists

References

[1], [2]

Examples

>>> Yamada_Gunn(300, 647.14, 22048320.0, 0.245)
2.188284384699659e-05

chemicals.volume.Townsend_Hales(T, Tc, Vc, omega)
Calculates saturation liquid density, using the Townsend and Hales CSP method as modified from the original
Riedel equation. Uses chemical critical volume and temperature, as well as acentric factor

The density of a liquid is given by:

𝑉 𝑠 = 𝑉𝑐/
(︁

1 + 0.85(1 − 𝑇𝑟) + (1.692 + 0.986𝜔)(1 − 𝑇𝑟)1/3
)︁

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

474 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Vc [float] Critical volume of fluid [m^3/mol]

omega [float] Acentric factor for fluid, [-]

Returns
Vs [float] Saturation liquid volume, [m^3/mol]

Notes

The requirement for critical volume and acentric factor requires all data.

References

[1]

Examples

>>> Townsend_Hales(300, 647.14, 55.95E-6, 0.3449)
1.8007361992619923e-05

chemicals.volume.Bhirud_normal(T, Tc, Pc, omega)
Calculates saturation liquid density using the Bhirud [1] CSP method. Uses Critical temperature and pressure
and acentric factor.

The density of a liquid is given by:

ln
𝑃𝑐

𝜌𝑅𝑇
= ln𝑈 (0) + 𝜔 ln𝑈 (1)

ln𝑈 (0) = 1.39644 − 24.076𝑇𝑟 + 102.615𝑇 2
𝑟 − 255.719𝑇 3

𝑟 + 355.805𝑇 4
𝑟 − 256.671𝑇 5

𝑟 + 75.1088𝑇 6
𝑟

ln𝑈 (1) = 13.4412 − 135.7437𝑇𝑟 + 533.380𝑇 2
𝑟 − 1091.453𝑇 3

𝑟 + 1231.43𝑇 4
𝑟 − 728.227𝑇 5

𝑟 + 176.737𝑇 6
𝑟

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] Acentric factor for fluid, [-]

Returns
Vm [float] Saturated liquid molar volume, [mol/m^3]

Notes

Claimed inadequate by others.

An interpolation table for ln U values are used from Tr = 0.98 - 1.000. Has terrible behavior at low reduced
temperatures.

1.36. Density/Volume (chemicals.volume) 475

chemicals Documentation, Release 1.1.4

References

[1]

Examples

Pentane

>>> Bhirud_normal(280.0, 469.7, 33.7E5, 0.252)
0.00011249657842514176

chemicals.volume.Campbell_Thodos(T, Tb, Tc, Pc, MW, dipole=0.0, has_hydroxyl=False)
Calculate saturation liquid density using the Campbell-Thodos [1] CSP method.

An old and uncommon estimation method.

𝑉𝑠 =
𝑅𝑇𝑐
𝑃𝑐

𝑍𝑅𝐴
[1+(1−𝑇𝑟)

2/7]

𝑍𝑅𝐴 = 𝛼+ 𝛽(1 − 𝑇𝑟)

𝛼 = 0.3883 − 0.0179𝑠

𝑠 = 𝑇𝑏𝑟
ln𝑃𝑐

(1 − 𝑇𝑏𝑟)

𝛽 = 0.00318𝑠− 0.0211 + 0.625Λ1.35

Λ =
𝑃

1/3
𝑐

𝑀𝑊 1/2𝑇
5/6
𝑐

For polar compounds:

𝜃 = 𝑃𝑐𝜇
2/𝑇 2

𝑐

𝛼 = 0.3883 − 0.0179𝑠− 130540𝜃2.41

𝛽 = 0.00318𝑠− 0.0211 + 0.625Λ1.35 + 9.74 × 106𝜃3.38

Polar Combounds with hydroxyl groups (water, alcohols)

𝛼 =

[︂
0.690𝑇𝑏𝑟 − 0.3342 +

5.79 × 10−10

𝑇 32.75
𝑏𝑟

]︂
𝑃 0.145
𝑐

𝛽 = 0.00318𝑠− 0.0211 + 0.625Λ1.35 + 5.90Θ0.835

Parameters
T [float] Temperature of fluid [K]

Tb [float] Boiling temperature of the fluid [K]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

MW [float] Molecular weight of the fluid [g/mol]

dipole [float, optional] Dipole moment of the fluid [debye]

has_hydroxyl [bool, optional] Swith to use the hydroxyl variant for polar fluids

Returns
Vs [float] Saturation liquid volume, [m^3/mol]

476 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

If a dipole is provided, the polar chemical method is used. The paper is an excellent read. Pc is internally
converted to atm.

References

[1]

Examples

Ammonia, from [1].

>>> Campbell_Thodos(T=405.45, Tb=239.82, Tc=405.45, Pc=111.7*101325, MW=17.03,␣
→˓dipole=1.47)
7.347366126245e-05

chemicals.volume.SNM0(T, Tc, Vc, omega, delta_SRK=None)
Calculates saturated liquid density using the Mchaweh, Moshfeghian model [1]. Designed for simple calcula-
tions.

𝑉𝑠 = 𝑉𝑐/(1 + 1.169𝜏1/3 + 1.818𝜏2/3 − 2.658𝜏 + 2.161𝜏4/3

𝜏 = 1 − (𝑇/𝑇𝑐)

𝛼𝑆𝑅𝐾

𝛼𝑆𝑅𝐾 = [1 +𝑚(1 −
√︀
𝑇/𝑇𝐶]2

𝑚 = 0.480 + 1.574𝜔 − 0.176𝜔2

If the fit parameter delta_SRK is provided, the following is used:

𝑉𝑠 = 𝑉𝐶/(1 + 1.169𝜏1/3 + 1.818𝜏2/3 − 2.658𝜏 + 2.161𝜏4/3)/
[︁
1 + 𝛿𝑆𝑅𝐾(𝛼𝑆𝑅𝐾 − 1)1/3

]︁
Parameters

T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

Vc [float] Critical volume of fluid [m^3/mol]

omega [float] Acentric factor for fluid, [-]

delta_SRK [float, optional] Fitting parameter [-]

Returns
Vs [float] Saturation liquid volume, [m^3/mol]

1.36. Density/Volume (chemicals.volume) 477

chemicals Documentation, Release 1.1.4

Notes

73 fit parameters have been gathered from the article.

References

[1]

Examples

Argon, without the fit parameter and with it. Tabulated result in Perry’s is 3.4613e-05. The fit increases the error
on this occasion.

>>> SNM0(121, 150.8, 7.49e-05, -0.004)
3.440225640273e-05
>>> SNM0(121, 150.8, 7.49e-05, -0.004, -0.03259620)
3.493288100008e-05

1.36.2 Pure High Pressure Liquid Correlations

chemicals.volume.COSTALD_compressed(T, P, Psat, Tc, Pc, omega, Vs)
Calculates compressed-liquid volume, using the COSTALD [1] CSP method and a chemical’s critical properties.

The molar volume of a liquid is given by:

𝑉 = 𝑉𝑠

(︂
1 − 𝐶 ln

𝐵 + 𝑃

𝐵 + 𝑃 𝑠𝑎𝑡

)︂
𝐵

𝑃𝑐
= −1 + 𝑎𝜏1/3 + 𝑏𝜏2/3 + 𝑑𝜏 + 𝑒𝜏4/3

𝑒 = exp(𝑓 + 𝑔𝜔𝑆𝑅𝐾 + ℎ𝜔2
𝑆𝑅𝐾)

𝐶 = 𝑗 + 𝑘𝜔𝑆𝑅𝐾

Parameters
T [float] Temperature of fluid [K]

P [float] Pressure of fluid [Pa]

Psat [float] Saturation pressure of the fluid [Pa]

Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of fluid [Pa]

omega [float] (ideally SRK) Acentric factor for fluid, [-] This parameter is alternatively a fit
parameter.

Vs [float] Saturation liquid volume, [m^3/mol]

Returns
V_dense [float] High-pressure liquid volume, [m^3/mol]

478 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Notes

Original equation was in terms of density, but it is converted here.

The example is from DIPPR, and exactly correct. This is DIPPR Procedure 4C: Method for Estimating the
Density of Pure Organic Liquids under Pressure.

References

[1]

Examples

>>> COSTALD_compressed(303., 9.8E7, 85857.9, 466.7, 3640000.0, 0.281, 0.000105047)
9.287482879788505e-05

1.36.3 Liquid Mixing Rules

chemicals.volume.Amgat(xs, Vms)
Calculate mixture liquid density using the Amgat mixing rule. Highly inacurate, but easy to use. Assumes idea
liquids with no excess volume. Average molecular weight should be used with it to obtain density.

𝑉𝑚𝑖𝑥 =
∑︁
𝑖

𝑥𝑖𝑉𝑖

or in terms of density:

𝜌𝑚𝑖𝑥 =
∑︁ 𝑥𝑖

𝜌𝑖

Parameters
xs [array] Mole fractions of each component, []

Vms [array] Molar volumes of each fluids at conditions [m^3/mol]

Returns
Vm [float] Mixture liquid volume [m^3/mol]

Notes

Units are that of the given volumes. It has been suggested to use this equation with weight fractions, but the
results have been less accurate.

Examples

>>> Amgat([0.5, 0.5], [4.057e-05, 5.861e-05])
4.9590000000000005e-05

1.36. Density/Volume (chemicals.volume) 479

chemicals Documentation, Release 1.1.4

chemicals.volume.Rackett_mixture(T, xs, MWs, Tcs, Pcs, Zrs)
Calculate mixture liquid density using the Rackett-derived mixing rule as shown in [2].

𝑉𝑚 =
∑︁
𝑖

𝑥𝑖𝑇𝑐𝑖
𝑀𝑊𝑖𝑃𝑐𝑖

𝑍
(1+(1−𝑇𝑟)

2/7)
𝑅,𝑚 𝑅

∑︁
𝑖

𝑥𝑖𝑀𝑊𝑖

Parameters
T [float] Temperature of liquid [K]

xs: list Mole fractions of each component, []

MWs [list] Molecular weights of each component [g/mol]

Tcs [list] Critical temperatures of each component [K]

Pcs [list] Critical pressures of each component [Pa]

Zrs [list] Rackett parameters of each component []

Returns
Vm [float] Mixture liquid volume [m^3/mol]

Notes

Model for pure compounds in [1] forms the basis for this model, shown in [2]. Molecular weights are used
as weighing by such has been found to provide higher accuracy in [2]. The model can also be used without
molecular weights, but results are somewhat different.

As with the Rackett model, critical compressibilities may be used if Rackett parameters have not been regressed.

Critical mixture temperature, and compressibility are all obtained with simple mixing rules.

References

[1], [2]

Examples

Calculation in [2] for methanol and water mixture. Result matches example.

>>> Rackett_mixture(T=298., xs=[0.4576, 0.5424], MWs=[32.04, 18.01], Tcs=[512.58,␣
→˓647.29], Pcs=[8.096E6, 2.209E7], Zrs=[0.2332, 0.2374])
2.6252894930056885e-05

chemicals.volume.COSTALD_mixture(xs, T, Tcs, Vcs, omegas)
Calculate mixture liquid density using the COSTALD CSP method.

A popular and accurate estimation method. If possible, fit parameters are used; alternatively critical properties
work well.

The mixing rules giving parameters for the pure component COSTALD equation are:

𝑇𝑐𝑚 =

∑︀
𝑖

∑︀
𝑗 𝑥𝑖𝑥𝑗(𝑉𝑖𝑗𝑇𝑐𝑖𝑗)

𝑉𝑚

𝑉𝑚 = 0.25

[︃∑︁
𝑥𝑖𝑉𝑖 + 3(

∑︁
𝑥𝑖𝑉

2/3
𝑖)(

∑︁
𝑖

𝑥𝑖𝑉
1/3
𝑖)

]︃

480 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

𝑉𝑖𝑗𝑇𝑐𝑖𝑗 = (𝑉𝑖𝑇𝑐𝑖𝑉𝑗𝑇𝑐𝑗)
0.5

𝜔 =
∑︁
𝑖

𝑧𝑖𝜔𝑖

Parameters
xs: list Mole fractions of each component

T [float] Temperature of fluid [K]

Tcs [list] Critical temperature of fluids [K]

Vcs [list] Critical volumes of fluids [m^3/mol]. This parameter is alternatively a fit parameter

omegas [list] (ideally SRK) Acentric factor of all fluids, [-] This parameter is alternatively a fit
parameter.

Returns
Vs [float] Saturation liquid mixture volume

Notes

Range: 0.25 < Tr < 0.95, often said to be to 1.0 No example has been found. Units are that of critical or fit
constant volume.

References

[1]

Examples

>>> COSTALD_mixture([0.4576, 0.5424], 298., [512.58, 647.29], [0.000117, 5.6e-05],␣
→˓[0.559,0.344])
2.7065887732713534e-05

1.36.4 Gas Correlations

Gas volumes are predicted with one of:

1) An equation of state

2) A virial coefficient model

3) The ideal gas law

Equations of state do much more than predict volume however. An implementation of many of them can be found in
thermo.

Virial functions are implemented in chemicals.virial.

chemicals.volume.ideal_gas(T, P)
Calculates ideal gas molar volume. The molar volume of an ideal gas is given by:

𝑉 =
𝑅𝑇

𝑃

Parameters

1.36. Density/Volume (chemicals.volume) 481

https://github.com/CalebBell/thermo

chemicals Documentation, Release 1.1.4

T [float] Temperature of fluid [K]

P [float] Pressure of fluid [Pa]

Returns
V [float] Gas volume, [m^3/mol]

Examples

>>> ideal_gas(298.15, 101325.)
0.024465403697038125

1.36.5 Pure Solid Correlations

Solid density does not depend on pressure significantly, and unless operating in the geochemical or astronomical domain
is normally neglected.

chemicals.volume.Goodman(T, Tt, Vml)
Calculates solid density at T using the simple relationship by a member of the DIPPR.

The molar volume of a solid is given by:

1

𝑉𝑚
=

(︂
1.28 − 0.16

𝑇

𝑇𝑡

)︂
1

𝑉 𝑚𝐿(𝑇𝑡)

Parameters
T [float] Temperature of fluid [K]

Tt [float] Triple temperature of fluid [K]

Vml [float] Liquid molar volume of the organic liquid at the triple point, [m^3/mol]

Returns
Vms [float] Solid molar volume, [m^3/mol]

Notes

Works to the next solid transition temperature or to approximately 0.3Tt.

References

[1]

Examples

Decane at 200 K:

>>> Goodman(200, 243.225, 0.00023585)
0.0002053665090860923

482 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

1.36.6 Pure Component Liquid Fit Correlations

chemicals.volume.Rackett_fit(T, Tc, rhoc, b, n, MW=None)
Calculates saturation liquid volume, using the Rackett equation form and a known or estimated critical temper-
ature and density as well as fit parameters b and n.

The density of a liquid is given by:

𝜌𝑠𝑎𝑡 = 𝜌𝑐𝑏
−(1− 𝑇

𝑇𝑐
)
𝑛

The density is then converted to a specific volume by taking its inverse.

Note that the units of this equation in some sources are kg/m^3, g/mL in others, and m^3/mol in others. If the
units for the coefficients are in molar units, do NOT provide MW or an incorrect value will be returned. If the
units are mass units and MW is not provided, the output will have the same units as rhoc.

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

rhoc [float] Critical density of fluid, often a fit parameter only [kg/m^3]

b [float] Fit parameter, [-]

n [float] Fit parameter, [-]

MW [float, optional] Molecular weight, [g/mol]

Returns
Vs [float] Saturation liquid volume, [m^3/mol if MW given; m^3/kg otherwise]

References

[1], [2]

Examples

Input sample from NIST (naphthalene) (m^3/kg):

>>> Rackett_fit(T=400.0, Tc=748.402, rhoc=314.629, b=0.257033, n=0.280338)
0.00106174320755

Parameters in Yaws form (butane) (note the 1000 multiplier on rhoc, called A in Yaws) (m^3/kg):

>>> Rackett_fit(T=298.15, Tc=425.18, rhoc=0.2283*1000, b=0.2724, n=0.2863)
0.00174520519958

Same Yaws point, with MW provided:

>>> Rackett_fit(T=298.15, Tc=425.18, rhoc=0.2283*1000, b=0.2724, n=0.2863, MW=58.
→˓123)
0.00010143656181

1.36. Density/Volume (chemicals.volume) 483

chemicals Documentation, Release 1.1.4

chemicals.volume.volume_VDI_PPDS(T, Tc, rhoc, a, b, c, d, MW=None)
Calculates saturation liquid volume, using the critical properties and fitted coefficients from [1]. This is also
known as the PPDS equation 10 or PPDS10.

𝜌𝑚𝑎𝑠𝑠 = 𝜌𝑐 + 𝑎𝜏0.35 + 𝑏𝜏2/3 + 𝑐𝜏 + 𝑑𝜏4/3

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

rhoc [float] Critical density of fluid [kg/m^3]

a,b,c,d [float] Fitted coefficients [-]

MW [float, optional] Molecular weight of chemical [g/mol]

Returns
Vs [float] Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]

References

[1]

Examples

Calculate density of nitrogen in kg/m3 at 300 K:

>>> volume_VDI_PPDS(300, 126.19, 313, 470.922, 493.251, -560.469, 389.611)
313.0

Calculate molar volume of nitrogen in m3/mol at 300 K:

>>> volume_VDI_PPDS(300, 126.19, 313, 470.922, 493.251, -560.469, 389.611, 28.01)
8.9488817891e-05

chemicals.volume.TDE_VDNS_rho(T, Tc, rhoc, a1, a2, a3, a4, MW=None)
Calculates saturation liquid volume, using the critical properties and fitted coefficients in the TDE VDNW form
from [1].

𝜌𝑚𝑎𝑠𝑠 = 𝜌𝑐 + 𝑎𝜏0.35 + 𝑏𝜏 + 𝑐𝜏2 + 𝑑𝜏3

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

rhoc [float] Critical density of fluid [kg/m^3]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

a3 [float] Regression parameter, [-]

a4 [float] Regression parameter, [-]

MW [float, optional] Molecular weight of chemical [g/mol]

484 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

Returns
Vs [float] Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]

References

[1]

Examples

>>> TDE_VDNS_rho(T=400.0, Tc=772.999, rhoc=320.037, a1=795.092, a2=-169.132, a3=448.
→˓929, a4=-102.931)
947.4906064903

chemicals.volume.PPDS17(T, Tc, a0, a1, a2, MW=None)
Calculates saturation liquid volume, using the critical temperature and fitted coefficients in the PPDS17 form in
[1].

𝜌𝑚𝑎𝑠𝑠 =
1

𝑎0(𝑎1 + 𝑎2𝜏)(1+𝜏2/7)

Parameters
T [float] Temperature of fluid [K]

Tc [float] Critical temperature of fluid [K]

a0 [float] Regression parameter, [-]

a1 [float] Regression parameter, [-]

a2 [float] Regression parameter, [-]

MW [float, optional] Molecular weight of chemical [g/mol]

Returns
Vs [float] Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]

References

[1]

Examples

Coefficients for the liquid density of benzene from [1] at 300 K:

>>> PPDS17(300, 562.05, a0=0.0115508, a1=0.281004, a2=-0.00635447)
871.520087707

1.36. Density/Volume (chemicals.volume) 485

chemicals Documentation, Release 1.1.4

1.36.7 Pure Component Solid Fit Correlations

chemicals.volume.CRC_inorganic(T, rho0, k, Tm, MW=None)
Calculates liquid density of a molten element or salt at temperature above the melting point. Some coefficients
are given nearly up to the boiling point.

The mass density of the inorganic liquid is given by:

𝜌 = 𝜌0 − 𝑘(𝑇 − 𝑇𝑚)

Parameters
T [float] Temperature of the liquid, [K]

rho0 [float] Mass density of the liquid at Tm, [kg/m^3]

k [float] Linear temperature dependence of the mass density, [kg/m^3/K]

Tm [float] The normal melting point, used in the correlation [K]

MW [float, optional] Molecular weight of chemical [g/mol]

Returns
rho [float] Mass density of molten metal or salt, [m^3/mol if MW given; kg/m^3 otherwise]

Notes

[1] has units of g/mL. While the individual densities could have been converted to molar units, the temperature
coefficient could only be converted by refitting to calculated data. To maintain compatibility with the form of the
equations, this was not performed.

This linear form is useful only in small temperature ranges. Coefficients for one compound could be used to
predict the temperature dependence of density of a similar compound.

References

[1]

Examples

>>> CRC_inorganic(300, 2370.0, 2.687, 239.08)
2206.30796

1.36.8 Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

chemicals.volume.rho_data_COSTALD
Coefficients for the COSTALD method from [3]; 192 fluids have coefficients published.

chemicals.volume.rho_data_SNM0
Coefficients for the SNM0 method for 73 fluids from [2].

chemicals.volume.rho_data_Perry_8E_105_l
Coefficients for chemicals.dippr.EQ105 from [1] for 344 fluids. Note this is in terms of molar density; to
obtain molar volume, invert the result!

486 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

chemicals.volume.rho_data_VDI_PPDS_2
Coefficients in [5] developed by the PPDS using chemicals.dippr.EQ116 but in terms of mass density
[kg/m^3]; Valid up to the critical temperature, and extrapolates to very low temperatures well.

chemicals.volume.rho_data_CRC_inorg_l
Single-temperature coefficient linear model in terms of mass density for the density of inorganic liquids. Data
is available for 177 fluids normally valid over a narrow range above the melting point, from [4]; described in
CRC_inorganic.

chemicals.volume.rho_data_CRC_inorg_l_const
Constant inorganic liquid molar volumes published in [4].

chemicals.volume.rho_data_CRC_inorg_s_const
Constant solid densities molar volumes published in [4].

chemicals.volume.rho_data_CRC_virial
Coefficients for a tempereture polynomial (T in Kelvin) for the second B virial coefficient published in [4]. The
form of the equation is 𝐵 = (𝑎1 + 𝑡(𝑎2 + 𝑡(𝑎3 + 𝑡(𝑎4 + 𝑎5𝑡)))) × 10−6 with 𝑡 = 298.15

𝑇 − 1 and then B will be
in units of m^3/mol.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.volume.rho_data_COSTALD
Out[2]:

Chemical omega_SRK Vchar Z_RA
CAS
60-29-7 ethyl ether 0.2800 0.000281 0.2632
64-17-5 ethyl alcohol 0.6378 0.000175 0.2502
67-56-1 methyl alcohol 0.5536 0.000120 0.2334
67-63-0 isopropyl alcohol 0.6637 0.000231 0.2493
67-64-1 acetone 0.3149 0.000208 0.2477
...
14752-75-1 heptadecylbenzene 0.9404 0.001146 NaN
30453-31-7 ethyl n-propyl disulfide 0.3876 0.000440 0.2662
33672-51-4 propyl isopropyl disulfide 0.4059 0.000502 0.2680
53966-36-2 ethyl isopropyl disulfide 0.3556 0.000439 0.2711
61828-04-4 tricosylbenzene 1.1399 0.001995 NaN

[192 rows x 4 columns]

In [3]: chemicals.volume.rho_data_SNM0
Out[3]:

Chemical delta_SRK
CAS
56-23-5 Tetrachlouromethane, R-10 -0.013152
60-29-7 Ethylether 0.001062
64-19-7 Acetic acid -0.010347
65-85-0 Benzoic acid 0.026866
67-56-1 Methanol 0.007195
...
7727-37-9 Nitrogen -0.007946
7782-39-0 Deuterium -0.053345
7782-41-4 Flourine -0.030398
7782-44-7 Oxygen -0.027049

(continues on next page)

1.36. Density/Volume (chemicals.volume) 487

chemicals Documentation, Release 1.1.4

(continued from previous page)

7782-50-5 Chlorine 0.013010

[73 rows x 2 columns]

In [4]: chemicals.volume.rho_data_Perry_8E_105_l
Out[4]:

Chemical C1 C2 ... C4 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 1941.50 0.22309 ... 0.28571 181.15 408.00
55-21-0 Benzamide 737.10 0.25487 ... 0.28571 403.00 824.00
56-23-5 Carbon tetrachloride 998.35 0.27400 ... 0.28700 250.33 556.35
57-55-6 1,2-Propylene glycol 1092.30 0.26106 ... 0.20459 213.15 626.00
60-29-7 Diethyl ether 955.40 0.26847 ... 0.28140 156.85 466.70
...
10028-15-6 Ozone 3359.20 0.29884 ... 0.28523 80.15 261.00
10035-10-6 Hydrogen bromide 2832.00 0.28320 ... 0.28571 185.15 363.15
10102-43-9 Nitric oxide 5246.00 0.30440 ... 0.24200 109.50 180.15
13511-13-2 Propenylcyclohexene 612.55 0.26769 ... 0.28571 199.00 636.00
132259-10-0 Air 2896.30 0.26733 ... 0.27341 59.15 132.45

[344 rows x 7 columns]

In [5]: chemicals.volume.rho_data_VDI_PPDS_2
Out[5]:

Chemical MW ... C D
CAS ...
50-00-0 Formaldehyde 30.03 ... 245.3425 43.9601
56-23-5 Carbon tetrachloride 153.82 ... 535.7568 -28.0071
56-81-5 Glycerol 92.09 ... 1429.7634 -527.7710
60-29-7 Diethyl ether 74.12 ... -489.2726 486.7458
62-53-3 Aniline 93.13 ... 242.0930 0.7157
...
10097-32-2 Bromine 159.82 ... 676.7593 15.3973
10102-43-9 Nitric oxide 30.01 ... 2252.1437 -1031.3210
10102-44-0 Nitrogen dioxide 46.01 ... 2233.6217 -968.0655
10544-72-6 Dinitrogentetroxide 92.01 ... 604.1720 -135.9384
132259-10-0 Air 28.96 ... -841.3265 495.5129

[272 rows x 8 columns]

In [6]: chemicals.volume.rho_data_CRC_inorg_l
Out[6]:

Chemical MW rho k Tm Tmax
CAS
497-19-8 Sodium carbonate 105.989 1972.0 0.448 1129.15 1277.15
584-09-8 Rubidium carbonate 230.945 2840.0 0.640 1110.15 1280.15
7429-90-5 Aluminum 26.982 2377.0 0.311 933.47 1190.15
7429-91-6 Dysprosium 162.500 8370.0 1.430 1685.15 1813.15
7439-88-5 Iridium 192.217 19000.0 0.000 2719.15 2739.15
...
13572-98-0 Gadolinium(III) iodide 537.960 4120.0 0.908 1203.15 1305.15
13709-38-1 Lanthanum fluoride 195.900 4589.0 0.682 1766.15 2450.15

(continues on next page)

488 Chapter 1. Key Features & Capabilities

chemicals Documentation, Release 1.1.4

(continued from previous page)

13709-59-6 Thorium(IV) fluoride 308.032 6058.0 0.759 1383.15 1651.15
13718-50-8 Barium iodide 391.136 4260.0 0.977 984.15 1248.15
13813-22-4 Lanthanum iodide 519.619 4290.0 1.110 1051.15 1180.15

[177 rows x 6 columns]

In [7]: chemicals.volume.rho_data_CRC_inorg_l_const
Out[7]:

Chemical Vm
CAS
74-90-8 Hydrogen cyanide 0.000039
75-15-0 Carbon disulfide 0.000060
96-10-6 Chlorodiethylaluminum 0.000126
109-63-7 Boron trifluoride etherate 0.000126
289-22-5 Cyclopentasilane 0.000156
...
19624-22-7 Pentaborane(9) 0.000105
20398-06-5 Thallium(I) ethanolate 0.000071
23777-80-2 Hexaborane(10) 0.000112
27218-16-2 Chlorine perchlorate 0.000075
52988-75-7 3-Silylpentasilane 0.000217

[116 rows x 2 columns]

In [8]: chemicals.volume.rho_data_CRC_inorg_s_const
Out[8]:

Chemical Vm
CAS
62-54-4 Calcium acetate 0.000105
62-76-0 Sodium oxalate 0.000057
75-20-7 Calcium carbide 0.000029
127-08-2 Potassium acetate 0.000063
127-09-3 Sodium acetate 0.000054
...
75926-28-2 Selenium sulfide [Se4S4] 0.000135
84359-31-9 Chromium(III) phosphate hexahydrate 0.000120
92141-86-1 Cesium metaborate 0.000047
133578-89-9 Vanadyl selenite hydrate 0.000060
133863-98-6 Molybdenum(VI) metaphosphate 0.000174

[1872 rows x 2 columns]

In [9]: chemicals.volume.rho_data_CRC_virial
Out[9]:

Chemical a1 a2 a3 a4 a5
CAS
56-23-5 Tetrachloromethane -1600.0 -4059.0 -4653.0 0.0 0.0
60-29-7 Diethyl ether -1226.0 -4458.0 -7746.0 -10005.0 0.0
64-17-5 Ethanol -4475.0 -29719.0 -56716.0 0.0 0.0
67-56-1 Methanol -1752.0 -4694.0 0.0 0.0 0.0
67-63-0 2-Propanol -3165.0 -16092.0 -24197.0 0.0 0.0
...

(continues on next page)

1.36. Density/Volume (chemicals.volume) 489

chemicals Documentation, Release 1.1.4

(continued from previous page)

7783-81-5 Uranium(VI) fluoride -1204.0 -2690.0 -2144.0 0.0 0.0
7783-82-6 Tungsten(VI) fluoride -719.0 -1143.0 0.0 0.0 0.0
7803-51-2 Phosphine -146.0 -733.0 1022.0 -1220.0 0.0
10024-97-2 Nitrous oxide -130.0 -307.0 -248.0 0.0 0.0
10102-43-9 Nitric oxide -12.0 -119.0 89.0 -73.0 0.0

[105 rows x 6 columns]

1.37 Developer’s Guide and Roadmap

The chemicals project has the following core ideas as its goals:

• Efficient
– Functions do only the work required.

– Caching various values, precomputing others.

– Using various macros and automated expressions to run code with Numba at its optimal speed.

– Not using Numpy/SciPy most of the time, allowing PyPy or Numba to speed code up when speed is
important.

• Capable of vectorized computation
– Wrapped with numpy’s np.vectorize.

– Wrapped with numba’s ufunc machinery.

• Comprehensive
– Most correlations taught at the undergrad level included.

• Capable of handling units
– Pint interface

– All docstrings/code in base SI units

This is a hobby project primarily by Caleb Bell. Contributors are welcome! Chemicals properties is huge big field.

1.37.1 Scope and Future Features

The library has a focus on pure-component properties. Lots of data files are included and there is ample room for more
files. However, it is not feasible to add data on an individual chemical alone - a compilation of data which includes that
chemicals must be found instead.

The following properties have been looked at a little but may have too much data fit on PyPi. If you are interested in
implementing one of them it may take multiple data packages uploaded to PyPi alongside chemicals:

• IR, NMR, MS, and UV-Vis spectra. Files are typically 4-40 KB. A collection of ~2000 UV files from NIST takes
6 MB space, so the space issue would not be ran into right away. Some databases like NIST and NMRShiftDB
are open.

490 Chapter 1. Key Features & Capabilities

https://nmrshiftdb.nmr.uni-koeln.de/nmrshiftdb/media-type/html/user/anon/page/default.psml/js_pane/P-Home

chemicals Documentation, Release 1.1.4

1.37.2 Contributing

Chemicals has a lot of infrastructure that makes it attractive to add code to the project. Adding functionality to chemicals
may also make your work more visible to more people.

Adding new functionality is possible without compromising load speed, RAM usage or maintainability. If you have a
chemical property you are interested in adding, a utility function, or a new data source, please feel free to open a PR
and we can make any changes needed. There is no template - just do your best.

In an ideal world, new contributions would come with unit tests, docstrings, an addition to the tutorial if relevant.

1.37.3 Running Tests

From the root directory of the project you downloaded with git clone https://github.com/CalebBell/chemicals.git, run
the following command:

python3 -m pytest .

This will run all of the tests. Additionally pytest can be used to run the doctests:

python3 -m pytest --doctest-modules .

The test suite can take some time to run; tests are marked with various markers to allow a fast subset of tests to run.

python3 -m pytest -m "not slow" .

This should only take a few seconds, and show red output if a test is broken. To keep the main test suite fast, pytest
allows a flag which shows how long each test takes.

python3 -m pytest -m "not slow" --durations=100

If a test you added appears in this list, consider splitting it into a fast portion and a slow portion.

1.37.4 Docstrings

The docstrings follow Pep8, most of the numpydoc standard, More information about numpydoc can be found here

In addition to being documentation, the docstrings in chemicals serve the following purposes:

• Contain LaTeX math formulas for implemented formulas. This makes it easy for the reader and authors to follow
code. This is especially important when the code can be optimized by hand significantly, and end up not looking
like the math formulas.

• Contain doctests for every public method. These examples often make debugging really easy since they can just
be copy-pasted into Jupyter or an IDE/debugger.

• Contain type information for each variable, which is automatically parsed by the unit handling framework around
pint.

• Contain the units of each argument, which is used by the unit handling framework around pint.

• Contain docstrings for every argument - these are checked by the unit tests programatically to avoid forgetting to
add a description, which the author did often before the checker was added.

No automated style tool is ran on the docstrings at present, but the following command was used once to format the
docstrings with the tool docformatter

1.37. Developer’s Guide and Roadmap 491

https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/myint/docformatter

chemicals Documentation, Release 1.1.4

python3 -m docformatter --wrap-summaries=80 --wrap-descriptions=80 --in-place --
→˓recursive .

This does not quite match numpydoc’s recommended 75 character limit.

1.37.5 Doctest

As anyone who has used doctest before knows, floating-point calculations have trivially different results across plat-
forms. An example cause of this is that most compilers have different sin/cos implementations which are not identical.
However, docstrings are checked bit-for-bit, so consistent output is important. Python is better than most languages at
maintaining the same results between versions but it is still an issue.

The docstrings are not considered sufficiently consistent to be part of the automated CI infrastructure. All functionality
tested by docstrings should also be tested as part of the unit tests.

CPython 3.7 64 bit on Linux compiled with gcc 9.2 is currently the platform used to generate the final/official results
of docstring examples. Docstrings are should be added by contributors for new functionality, but don’t worry about
this floating point issue. The principal author will make any necessary changes before each release.

1.37.6 Type Hints

The Python ecosystem is gradually adding support for type information, which may allow static analyzers to help find
bugs in code even before it is ran. The author has not found these helpful in Python yet - the tools are too slow, missing
features, and most libraries do not contain type information. However, type hints might still be useful for your program
that uses chemicals!

For that reason chemicals includes a set of type hints as stub files (.pyi extension). These are not generated by hand -
they use the cool MonkeyType library. An included script make_test_stubs interfaces with this library, which runs the
test suite and at the end generates the type hints including the types of every argument to every function seen in the test
suite. This is another reason comprehensive test suite coverage is required.

Monkeytype on the chemicals test suite takes ~5 minutes to run, and generates a ~1 GB database file which is deleted
at the end of the run. Some manipulation of the result by hand may be required in the future, or MonkeyType may be
replaced by making the type hints by hand. It is planned to incorporate the type stubs into the main file at some point
in the future when the tooling is better.

If you are contributing, the main developer can do this step for your contribution.

1.37.7 Supported Python Versions

It is strongly recommended to use Chemicals with Python 3.6 or later.

Numpy’s latest release supports Python 3.6 or later as of August 2020. Pint, the unit interface, supports Python 3.6
or later as of August 2020. If using the Numba interface of Chemicals, the latest version of Numba is required. New
features added to Numba may be added to Chemicals quite quickly.

Chemicals may import in an earlier Python but that is not an indication you should use it in that case.

492 Chapter 1. Key Features & Capabilities

https://github.com/Instagram/MonkeyType/

chemicals Documentation, Release 1.1.4

1.37.8 Packaging

The most up to date chemicals can be obtained on GitHub, and new releases are pushed to PyPi whenever a new release
is made.

1.37.9 Code Formatting

Pep8 is loosely followed. Do your best to follow it if possible, otherwise don’t worry about it. Please don’t submit a
PR for just style changes.

1.37.10 Documentation

Sphinx is used with readthedocs. Readthedocs is configured to build whatever is on the release branch. From the root
of the chemicals project, the documentation can be built with the following command, which will output html files into
a “_build” folder:

sphinx-build -b html docs _build

1.37.11 Sample Notebooks

The nbval pytest plugin can be used to check the results of running the notebooks against the stored notebooks.

On UNIX/Mac OS/WSL, the notebook results can be regenerated with the following shell command, from the directory
with the notebooks:

for i in *.ipynb ; do python3 -m jupyter nbconvert --to notebook --inplace --execute "$i
→˓" ; done

1.37.12 Continuous Integration

Github Actions is presently used. They test only code in the release branch. Some tests, like those that download data
from the internet, are not ran by design on their platforms. The same goes for testing numba online - getting an up to
date version of numba is challenging.

1.37.13 Load Speed

On CPython, chemicals will load Numpy on load if it is available and SciPy and Pandas when they are needed. Numpy
loads in ~150 ms. chemicals alone loads in ~15 ms. It is intended for this to increase only slowly.

1.37.14 RAM Usage

Adding new data and methods is well worth the price of increasing RAM, but it is intended to keep RAM consumption
small via lazy-loading all data sets.

1.37. Developer’s Guide and Roadmap 493

https://pypi.org/project/nbval/

chemicals Documentation, Release 1.1.4

1.37.15 Additional Material

More information about the interfaces with PyPy and Numba can be found on the fluids site.

1.38 Computing Properties of Water and Steam in Python

Water is a very special substance. It is abundant, cheap, hydrating, and great for many engineering applications.
Whatever your modeling goal, there is a good change you will require properties of water at various conditions.

There is an international association, IAPWS, which publishes and coordinates some of the best research on the prop-
erties of water. There is a special equation of state just for water developed by them that very accurately computes the
properties of water, called IAPWS-95. There is also a “shortcut” version called IAPWS-97 which is faster to solve but
has reduced accuracy and various discontinuities.

There are quite a few implementations of IAPWS-95 and IAPWS-97 out there. Besides the many commercial imple-
mentations, the are the following excellent open source ones:

• iapws by Juan José Gómez Romera, GPL3 licensed, containing IAPWS-95 and IAPWS-97 among other stan-
dards. Implemented in Python.

• CoolProp by Ian Bell, MIT licensed and containing IAPWS-95 and IAPWS-97 along with their transport prop-
erties. Implemented in C++ with an excellent interface to Python among other languages.

• freesteam by John Pye, GPL3 licensed, containing most of IAPWS-97 and the transport properties. Implemented
in C.

There are many more, but these are the best developed libraries that can be used from Python. Water is so common
and present in so many calculations that for many applications it is important to make it as fast as possible. IAPWS-95
is conventionally slow; properties are requested at a specified temperature T and pressure P, but the equation of state’s
input variables are temperature and density! A numerical solver must be used in this case to find the density which
yields the specified pressure. This density-solution procedure is normally the slowest part, although computing some
properties requires many derivatives that can be slow also.

A good conventional density solver will take ~10-30 s on a modern computer. Only the CPU clockspeed really matters
for this calculation time. It was discovered that with the use of Common subexpression elimination, the calculation
could be speed up quite a lot. Additionally, if the IAPWS-95 density solution is initialized by the IAPWS-97 explicit
calculation (applicable most of the time but not always), a few more iterations can be saved.

The net result of these optimizations is a greatly improved density solve time - normally 2.5-4 s when running with PyPy
or Numba. The con to this approach is that the code is nearly unreadable, and it would not be possible to update the
coefficients without rewriting the implementation. As IAPWS-95 is a static model which will be the best one available
for many years to come, this is an acceptable trade off.

494 Chapter 1. Key Features & Capabilities

https://fluids.readthedocs.io/developers.html
https://github.com/jjgomera/iapws
https://github.com/CoolProp/CoolProp
http://freesteam.sourceforge.net/
https://en.wikipedia.org/wiki/Common_subexpression_elimination

CHAPTER

TWO

INSTALLATION

Get the latest version of chemicals from https://pypi.python.org/pypi/chemicals/

If you have an installation of Python with pip, simple install it with:

$ pip install chemicals

If you are using conda, you can install chemicals from conda-forge channel:

$ conda install -c conda-forge chemicals

To get the git version, run:

$ git clone git://github.com/CalebBell/chemicals.git

495

https://pypi.python.org/pypi/chemicals/
https://docs.conda.io/en/latest/

chemicals Documentation, Release 1.1.4

496 Chapter 2. Installation

CHAPTER

THREE

LATEST SOURCE CODE

The latest development version of chemicals’s sources can be obtained at

https://github.com/CalebBell/chemicals

497

https://github.com/CalebBell/chemicals

chemicals Documentation, Release 1.1.4

498 Chapter 3. Latest source code

CHAPTER

FOUR

BUG REPORTS

To report bugs, please use the chemicals’s Bug Tracker at:

https://github.com/CalebBell/chemicals/issues

499

https://github.com/CalebBell/chemicals/issues

chemicals Documentation, Release 1.1.4

500 Chapter 4. Bug reports

CHAPTER

FIVE

LICENSE INFORMATION

See LICENSE.txt for information on the terms & conditions for usage of this software, and a DISCLAIMER OF ALL
WARRANTIES.

Although not required by the chemicals license, if it is convenient for you, please cite chemicals if used in your work.
Please also consider contributing any changes you make back, and benefit the community.

501

chemicals Documentation, Release 1.1.4

502 Chapter 5. License information

CHAPTER

SIX

CITATION

To cite chemicals in publications use:

Caleb Bell, Yoel Rene Cortes-Pena, and Contributors (2016-2023). Chemicals: Chemical␣
→˓properties component of Chemical Engineering Design Library (ChEDL)
https://github.com/CalebBell/chemicals.

503

chemicals Documentation, Release 1.1.4

504 Chapter 6. Citation

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

505

chemicals Documentation, Release 1.1.4

506 Chapter 7. Indices and tables

BIBLIOGRAPHY

[1] Pitzer, K. S., D. Z. Lippmann, R. F. Curl, C. M. Huggins, and D. E. Petersen: The Volumetric and Thermodynamic
Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization. J. Am. Chem. Soc.,
77: 3433 (1955).

[2] Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and Jürgen Gmehling. “PSRK Group Con-
tribution Equation of State: Comprehensive Revision and Extension IV, Including Critical Constants and A-
Function Parameters for 1000 Components.” Fluid Phase Equilibria 227, no. 2 (January 25, 2005): 157-64.
doi:10.1016/j.fluid.2004.11.002.

[3] Passut, Charles A., and Ronald P. Danner. “Acentric Factor. A Valuable Correlating Parameter for the Properties
of Hydrocarbons.” Industrial & Engineering Chemistry Process Design and Development 12, no. 3 (July 1, 1973):
365-68. doi:10.1021/i260047a026.

[4] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[5] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Halm, Roland L., and Leonard I. Stiel. “A Fourth Parameter for the Vapor Pressure and Entropy of Vaporization
of Polar Fluids.” AIChE Journal 13, no. 2 (1967): 351-355. doi:10.1002/aic.690130228.

[2] D, Kukoljac Miloš, and Grozdanić Dušan K. “New Values of the Polarity Factor.” Journal of the Serbian Chemical
Society 65, no. 12 (January 1, 2000). http://www.shd.org.rs/JSCS/Vol65/No12-Pdf/JSCS12-07.pdf

[1] Lee, Byung Ik, and Michael G. Kesler. “A Generalized Thermodynamic Correlation Based on Three-Parameter
Corresponding States.” AIChE Journal 21, no. 3 (1975): 510-527. doi:10.1002/aic.690210313.

[1] Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penoncello, and Daniel G. Friend. “Thermodynamic Properties
of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa.” Journal of
Physical and Chemical Reference Data 29, no. 3 (May 1, 2000): 331-85. https://doi.org/10.1063/1.1285884.

[1] Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penoncello, and Daniel G. Friend. “Thermodynamic Properties
of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa.” Journal of
Physical and Chemical Reference Data 29, no. 3 (May 1, 2000): 331-85. https://doi.org/10.1063/1.1285884.

[1] Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penoncello, and Daniel G. Friend. “Thermodynamic Properties
of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa.” Journal of
Physical and Chemical Reference Data 29, no. 3 (May 1, 2000): 331-85. https://doi.org/10.1063/1.1285884.

[1] Herrmann, Sebastian, Hans-Joachim Kretzschmar, and Donald P. Gatley. “Thermodynamic Properties of Real
Moist Air, Dry Air, Steam, Water, and Ice (RP-1485).” HVAC&R Research 15, no. 5 (September 1, 2009): 961-
986. https://doi.org/10.1080/10789669.2009.10390874.

507

https://doi.org/10.1021/acs.iecr.2c01427
http://www.shd.org.rs/JSCS/Vol65/No12-Pdf/JSCS12-07.pdf
https://doi.org/10.1063/1.1285884
https://doi.org/10.1063/1.1285884
https://doi.org/10.1063/1.1285884
https://doi.org/10.1080/10789669.2009.10390874

chemicals Documentation, Release 1.1.4

[1] Herrmann, Sebastian, Hans-Joachim Kretzschmar, and Donald P. Gatley. “Thermodynamic Properties of Real
Moist Air, Dry Air, Steam, Water, and Ice (RP-1485).” HVAC&R Research 15, no. 5 (September 1, 2009): 961-
986. https://doi.org/10.1080/10789669.2009.10390874.

[1] Herrmann, Sebastian, Hans-Joachim Kretzschmar, and Donald P. Gatley. “Thermodynamic Properties of Real
Moist Air, Dry Air, Steam, Water, and Ice (RP-1485).” HVAC&R Research 15, no. 5 (September 1, 2009): 961-
986. https://doi.org/10.1080/10789669.2009.10390874.

[1] Fernández-Prini, Roberto, Jorge L. Alvarez, and Allan H. Harvey. “Henry’s Constants and Vapor-Liquid Distri-
bution Constants for Gaseous Solutes in H2O and D2O at High Temperatures.” Journal of Physical and Chemical
Reference Data 32, no. 2 (June 2003): 903-16. https://doi.org/10.1063/1.1564818.

[1] Fernández-Prini, Roberto, Jorge L. Alvarez, and Allan H. Harvey. “Henry’s Constants and Vapor-Liquid Distri-
bution Constants for Gaseous Solutes in H2O and D2O at High Temperatures.” Journal of Physical and Chemical
Reference Data 32, no. 2 (June 2003): 903-16. https://doi.org/10.1063/1.1564818.

[1] Green, D. W. Waste management. In Perry`s Chemical Engineers` Handbook, 9 ed.; McGraw-Hill Education,
2018

[1] Green, D. W. Waste management. In Perry`s Chemical Engineers` Handbook, 9 ed.; McGraw-Hill Education,
2018

[1] Perez, Peter L., and André L. Boehman. “Experimental Investigation of the Autoignition Behavior of Surrogate
Gasoline Fuels in a Constant-Volume Combustion Bomb Apparatus and Its Relevance to HCCI Combustion.”
Energy & Fuels 26, no. 10 (October 18, 2012): 6106-17. https://doi.org/10.1021/ef300503b.

[1] Perez, Peter L., and André L. Boehman. “Experimental Investigation of the Autoignition Behavior of Surrogate
Gasoline Fuels in a Constant-Volume Combustion Bomb Apparatus and Its Relevance to HCCI Combustion.”
Energy & Fuels 26, no. 10 (October 18, 2012): 6106-17. https://doi.org/10.1021/ef300503b.

[1] Lehn, Florian vom, Liming Cai, Rupali Tripathi, Rafal Broda, and Heinz Pitsch. “A Property Database of Fuel
Compounds with Emphasis on Spark-Ignition Engine Applications.” Applications in Energy and Combustion
Science 5 (March 1, 2021): 100018. https://doi.org/10.1016/j.jaecs.2020.100018.

[1] McKinsey. “Octane.” Accessed April 18, 2022. http://www.mckinseyenergyinsights.com/resources/
refinery-reference-desk/octane/.

[1] Al Ibrahim, Emad, and Aamir Farooq. “Prediction of the Derived Cetane Number and Carbon/Hydrogen Ratio
from Infrared Spectroscopic Data.” Energy & Fuels 35, no. 9 (May 6, 2021): 8141-52. https://doi.org/10.1021/
acs.energyfuels.0c03899.

[2] Dahmen, Manuel, and Wolfgang Marquardt. “A Novel Group Contribution Method for the Prediction of the
Derived Cetane Number of Oxygenated Hydrocarbons.” Energy & Fuels 29, no. 9 (September 17, 2015): 5781-
5801. https://doi.org/10.1021/acs.energyfuels.5b01032.

[1] Lehn, Florian vom, Liming Cai, Rupali Tripathi, Rafal Broda, and Heinz Pitsch. “A Property Database of Fuel
Compounds with Emphasis on Spark-Ignition Engine Applications.” Applications in Energy and Combustion
Science 5 (March 1, 2021): 100018. https://doi.org/10.1016/j.jaecs.2020.100018.

[2] Kessler, Travis. CombustDB. Python. 2019. UMass Lowell Energy and Combustion Research Laboratory, 2021.
https://github.com/ecrl/combustdb.

[3] Lehn, Florian vom, Benedict Brosius, Rafal Broda, Liming Cai, and Heinz Pitsch. “Using Machine Learning
with Target-Specific Feature Sets for Structure-Property Relationship Modeling of Octane Numbers and Octane
Sensitivity.” Fuel 281 (December 1, 2020): 118772. https://doi.org/10.1016/j.fuel.2020.118772.

[4] Kessler, Travis, and John Hunter Mack. “ECNet: Large Scale Machine Learning Projects for Fuel Property Pre-
diction.” Journal of Open Source Software 2, no. 17 (2017): 401.

[1] Lehn, Florian vom, Liming Cai, Rupali Tripathi, Rafal Broda, and Heinz Pitsch. “A Property Database of Fuel
Compounds with Emphasis on Spark-Ignition Engine Applications.” Applications in Energy and Combustion
Science 5 (March 1, 2021): 100018. https://doi.org/10.1016/j.jaecs.2020.100018.

508 Bibliography

https://doi.org/10.1080/10789669.2009.10390874
https://doi.org/10.1080/10789669.2009.10390874
https://doi.org/10.1063/1.1564818
https://doi.org/10.1063/1.1564818
https://doi.org/10.1021/ef300503b
https://doi.org/10.1021/ef300503b
https://doi.org/10.1016/j.jaecs.2020.100018
http://www.mckinseyenergyinsights.com/resources/refinery-reference-desk/octane/
http://www.mckinseyenergyinsights.com/resources/refinery-reference-desk/octane/
https://doi.org/10.1021/acs.energyfuels.0c03899
https://doi.org/10.1021/acs.energyfuels.0c03899
https://doi.org/10.1021/acs.energyfuels.5b01032
https://doi.org/10.1016/j.jaecs.2020.100018
https://github.com/ecrl/combustdb
https://doi.org/10.1016/j.fuel.2020.118772
https://doi.org/10.1016/j.jaecs.2020.100018

chemicals Documentation, Release 1.1.4

[2] Kessler, Travis. CombustDB. Python. 2019. UMass Lowell Energy and Combustion Research Laboratory, 2021.
https://github.com/ecrl/combustdb.

[3] Lehn, Florian vom, Benedict Brosius, Rafal Broda, Liming Cai, and Heinz Pitsch. “Using Machine Learning
with Target-Specific Feature Sets for Structure-Property Relationship Modeling of Octane Numbers and Octane
Sensitivity.” Fuel 281 (December 1, 2020): 118772. https://doi.org/10.1016/j.fuel.2020.118772.

[4] Kessler, Travis, and John Hunter Mack. “ECNet: Large Scale Machine Learning Projects for Fuel Property Pre-
diction.” Journal of Open Source Software 2, no. 17 (2017): 401.

[1] Dahmen, Manuel, and Wolfgang Marquardt. “A Novel Group Contribution Method for the Prediction of the
Derived Cetane Number of Oxygenated Hydrocarbons.” Energy & Fuels 29, no. 9 (September 17, 2015): 5781-
5801. https://doi.org/10.1021/acs.energyfuels.5b01032.

[1] Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 1.
An Introductory Survey.” Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996): 154-154.
doi:10.1021/je950378q.

[2] Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 2. Normal Alkanes.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

[3] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 3. Aromatic Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 547-58.
doi:10.1021/je00019a002.

[4] Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties of Elements and Compounds. 4.
Aliphatic Alkanols.” Journal of Chemical & Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

[5] Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alka-
nes and Cycloalkanes.” Journal of Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

[6] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 6. Unsaturated Aliphatic Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4 (January
1, 1996): 645-56. doi:10.1021/je9501999.

[7] Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 7. Oxygen Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

[8] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 8. Organic Sulfur, Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical & Engi-
neering Data 46, no. 3 (May 1, 2001): 480-85. doi:10.1021/je000210r.

[9] Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-
Liquid Critical Properties of Elements and Compounds. 9. Organic Compounds Containing Nitrogen.” Journal
of Chemical & Engineering Data 51, no. 2 (March 1, 2006): 305-14. doi:10.1021/je050221q.

[10] Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton, Eugene Nikitin, Constantine
Tsonopoulos, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data 52, no. 5 (September 1, 2007):
1509-38. doi:10.1021/je700336g.

[11] Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin. “Vapor-Liquid Critical Properties of El-
ements and Compounds. 11. Organic Compounds Containing B + O; Halogens + N, + O, + O + S, + S, +
Si; N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54, no. 3 (March 12, 2009): 669-89.
doi:10.1021/je800580z.

Bibliography 509

https://github.com/ecrl/combustdb
https://doi.org/10.1016/j.fuel.2020.118772
https://doi.org/10.1021/acs.energyfuels.5b01032

chemicals Documentation, Release 1.1.4

[12] Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David W. Morton, and Kenneth N. Marsh.
“Vapor-Liquid Critical Properties of Elements and Compounds. 12. Review of Recent Data for Hydrocar-
bons and Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5, 2015, 151005081500002.
doi:10.1021/acs.jced.5b00571.

[13] Mathews, Joseph F. “Critical Constants of Inorganic Substances.” Chemical Reviews 72, no. 1 (February 1, 1972):
71-100. doi:10.1021/cr60275a004.

[14] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[15] Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and Jürgen Gmehling. “PSRK Group Con-
tribution Equation of State: Comprehensive Revision and Extension IV, Including Critical Constants and A-
Function Parameters for 1000 Components.” Fluid Phase Equilibria 227, no. 2 (January 25, 2005): 157-64.
doi:10.1016/j.fluid.2004.11.002.

[16] Passut, Charles A., and Ronald P. Danner. “Acentric Factor. A Valuable Correlating Parameter for the Properties
of Hydrocarbons.” Industrial & Engineering Chemistry Process Design and Development 12, no. 3 (July 1, 1973):
365-68. doi:10.1021/i260047a026.

[17] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[18] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[19] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[20] Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use of 300,000 Pseudo-Experimental Data over
1800 Pure Fluids to Assess the Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and Tc-PR.”
AIChE Journal n/a, no. n/a (n.d.): e17518. https://doi.org/10.1002/aic.17518.

[21] Wilson, G. M., and L. V. Jasperson. “Critical Constants Tc, Pc, Estimation Based on Zero, First and Second Order
Methods.” In Proceedings of the AIChE Spring Meeting, 21, 1996.

[22] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 1.
An Introductory Survey.” Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996): 154-154.
doi:10.1021/je950378q.

[2] Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 2. Normal Alkanes.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

[3] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 3. Aromatic Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 547-58.
doi:10.1021/je00019a002.

[4] Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties of Elements and Compounds. 4.
Aliphatic Alkanols.” Journal of Chemical & Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

[5] Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alka-
nes and Cycloalkanes.” Journal of Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

510 Bibliography

http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1002/aic.17518
https://doi.org/10.1021/acs.iecr.2c01427

chemicals Documentation, Release 1.1.4

[6] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 6. Unsaturated Aliphatic Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4 (January
1, 1996): 645-56. doi:10.1021/je9501999.

[7] Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 7. Oxygen Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

[8] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 8. Organic Sulfur, Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical & Engi-
neering Data 46, no. 3 (May 1, 2001): 480-85. doi:10.1021/je000210r.

[9] Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-
Liquid Critical Properties of Elements and Compounds. 9. Organic Compounds Containing Nitrogen.” Journal
of Chemical & Engineering Data 51, no. 2 (March 1, 2006): 305-14. doi:10.1021/je050221q.

[10] Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton, Eugene Nikitin, Constantine
Tsonopoulos, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data 52, no. 5 (September 1, 2007):
1509-38. doi:10.1021/je700336g.

[11] Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin. “Vapor-Liquid Critical Properties of El-
ements and Compounds. 11. Organic Compounds Containing B + O; Halogens + N, + O, + O + S, + S, +
Si; N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54, no. 3 (March 12, 2009): 669-89.
doi:10.1021/je800580z.

[12] Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David W. Morton, and Kenneth N. Marsh.
“Vapor-Liquid Critical Properties of Elements and Compounds. 12. Review of Recent Data for Hydrocar-
bons and Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5, 2015, 151005081500002.
doi:10.1021/acs.jced.5b00571.

[13] Mathews, Joseph F. “Critical Constants of Inorganic Substances.” Chemical Reviews 72, no. 1 (February 1, 1972):
71-100. doi:10.1021/cr60275a004.

[14] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[15] Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and Jürgen Gmehling. “PSRK Group Con-
tribution Equation of State: Comprehensive Revision and Extension IV, Including Critical Constants and A-
Function Parameters for 1000 Components.” Fluid Phase Equilibria 227, no. 2 (January 25, 2005): 157-64.
doi:10.1016/j.fluid.2004.11.002.

[16] Passut, Charles A., and Ronald P. Danner. “Acentric Factor. A Valuable Correlating Parameter for the Properties
of Hydrocarbons.” Industrial & Engineering Chemistry Process Design and Development 12, no. 3 (July 1, 1973):
365-68. doi:10.1021/i260047a026.

[17] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[18] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[19] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[20] Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use of 300,000 Pseudo-Experimental Data over
1800 Pure Fluids to Assess the Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and Tc-PR.”
AIChE Journal n/a, no. n/a (n.d.): e17518. https://doi.org/10.1002/aic.17518.

[21] Wilson, G. M., and L. V. Jasperson. “Critical Constants Tc, Pc, Estimation Based on Zero, First and Second Order
Methods.” In Proceedings of the AIChE Spring Meeting, 21, 1996.

Bibliography 511

http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1002/aic.17518

chemicals Documentation, Release 1.1.4

[22] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 1.
An Introductory Survey.” Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996): 154-154.
doi:10.1021/je950378q.

[2] Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 2. Normal Alkanes.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

[3] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 3. Aromatic Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 547-58.
doi:10.1021/je00019a002.

[4] Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties of Elements and Compounds. 4.
Aliphatic Alkanols.” Journal of Chemical & Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

[5] Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alka-
nes and Cycloalkanes.” Journal of Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

[6] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 6. Unsaturated Aliphatic Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4 (January
1, 1996): 645-56. doi:10.1021/je9501999.

[7] Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 7. Oxygen Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

[8] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 8. Organic Sulfur, Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical & Engi-
neering Data 46, no. 3 (May 1, 2001): 480-85. doi:10.1021/je000210r.

[9] Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-
Liquid Critical Properties of Elements and Compounds. 9. Organic Compounds Containing Nitrogen.” Journal
of Chemical & Engineering Data 51, no. 2 (March 1, 2006): 305-14. doi:10.1021/je050221q.

[10] Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton, Eugene Nikitin, Constantine
Tsonopoulos, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data 52, no. 5 (September 1, 2007):
1509-38. doi:10.1021/je700336g.

[11] Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin. “Vapor-Liquid Critical Properties of El-
ements and Compounds. 11. Organic Compounds Containing B + O; Halogens + N, + O, + O + S, + S, +
Si; N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54, no. 3 (March 12, 2009): 669-89.
doi:10.1021/je800580z.

[12] Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David W. Morton, and Kenneth N. Marsh.
“Vapor-Liquid Critical Properties of Elements and Compounds. 12. Review of Recent Data for Hydrocar-
bons and Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5, 2015, 151005081500002.
doi:10.1021/acs.jced.5b00571.

[13] Mathews, Joseph F. “Critical Constants of Inorganic Substances.” Chemical Reviews 72, no. 1 (February 1, 1972):
71-100. doi:10.1021/cr60275a004.

[14] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

512 Bibliography

https://doi.org/10.1021/acs.iecr.2c01427

chemicals Documentation, Release 1.1.4

[15] Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and Jürgen Gmehling. “PSRK Group Con-
tribution Equation of State: Comprehensive Revision and Extension IV, Including Critical Constants and A-
Function Parameters for 1000 Components.” Fluid Phase Equilibria 227, no. 2 (January 25, 2005): 157-64.
doi:10.1016/j.fluid.2004.11.002.

[16] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[17] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[18] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[19] Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use of 300,000 Pseudo-Experimental Data over
1800 Pure Fluids to Assess the Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and Tc-PR.”
AIChE Journal n/a, no. n/a (n.d.): e17518. https://doi.org/10.1002/aic.17518.

[20] Fedors, R. F. “A Method to Estimate Critical Volumes.” AIChE Journal 25, no. 1 (1979): 202-202. https://doi.
org/10.1002/aic.690250129.

[21] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Mersmann, Alfons, and Matthias Kind. “Correlation for the Prediction of Critical Molar Volume.” Industrial &
Engineering Chemistry Research, October 16, 2017. https://doi.org/10.1021/acs.iecr.7b03171.

[2] Mersmann, Alfons, and Matthias Kind. “Prediction of Mechanical and Thermal Properties of Pure Liquids, of
Critical Data, and of Vapor Pressure.” Industrial & Engineering Chemistry Research, January 31, 2017. https:
//doi.org/10.1021/acs.iecr.6b04323.

[1] Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 1.
An Introductory Survey.” Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996): 154-154.
doi:10.1021/je950378q.

[2] Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 2. Normal Alkanes.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

[3] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 3. Aromatic Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 547-58.
doi:10.1021/je00019a002.

[4] Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties of Elements and Compounds. 4.
Aliphatic Alkanols.” Journal of Chemical & Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

[5] Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alka-
nes and Cycloalkanes.” Journal of Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

[6] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 6. Unsaturated Aliphatic Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4 (January
1, 1996): 645-56. doi:10.1021/je9501999.

[7] Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 7. Oxygen Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

Bibliography 513

http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1002/aic.17518
https://doi.org/10.1002/aic.690250129
https://doi.org/10.1002/aic.690250129
https://doi.org/10.1021/acs.iecr.2c01427
https://doi.org/10.1021/acs.iecr.7b03171
https://doi.org/10.1021/acs.iecr.6b04323
https://doi.org/10.1021/acs.iecr.6b04323

chemicals Documentation, Release 1.1.4

[8] Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid Critical Properties of Elements and Com-
pounds. 8. Organic Sulfur, Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical & Engi-
neering Data 46, no. 3 (May 1, 2001): 480-85. doi:10.1021/je000210r.

[9] Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose, and Constantine Tsonopoulos. “Vapor-
Liquid Critical Properties of Elements and Compounds. 9. Organic Compounds Containing Nitrogen.” Journal
of Chemical & Engineering Data 51, no. 2 (March 1, 2006): 305-14. doi:10.1021/je050221q.

[10] Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton, Eugene Nikitin, Constantine
Tsonopoulos, and Colin L. Young. “Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data 52, no. 5 (September 1, 2007):
1509-38. doi:10.1021/je700336g.

[11] Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin. “Vapor-Liquid Critical Properties of El-
ements and Compounds. 11. Organic Compounds Containing B + O; Halogens + N, + O, + O + S, + S, +
Si; N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54, no. 3 (March 12, 2009): 669-89.
doi:10.1021/je800580z.

[12] Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David W. Morton, and Kenneth N. Marsh.
“Vapor-Liquid Critical Properties of Elements and Compounds. 12. Review of Recent Data for Hydrocar-
bons and Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5, 2015, 151005081500002.
doi:10.1021/acs.jced.5b00571.

[13] Mathews, Joseph F. “Critical Constants of Inorganic Substances.” Chemical Reviews 72, no. 1 (February 1, 1972):
71-100. doi:10.1021/cr60275a004.

[14] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[15] Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and Jürgen Gmehling. “PSRK Group Con-
tribution Equation of State: Comprehensive Revision and Extension IV, Including Critical Constants and A-
Function Parameters for 1000 Components.” Fluid Phase Equilibria 227, no. 2 (January 25, 2005): 157-64.
doi:10.1016/j.fluid.2004.11.002.

[16] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[17] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[18] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[19] Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use of 300,000 Pseudo-Experimental Data over
1800 Pure Fluids to Assess the Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and Tc-PR.”
AIChE Journal n/a, no. n/a (n.d.): e17518. https://doi.org/10.1002/aic.17518.

[20] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Ihmels, E. Christian. “The Critical Surface.” Journal of Chemical & Engineering Data 55, no. 9 (September 9,
2010): 3474-80. doi:10.1021/je100167w.

[1] Meissner, H. P., and E. M. Redding. “Prediction of Critical Constants.” Industrial & Engineering Chemistry 34,
no. 5 (May 1, 1942): 521-26. doi:10.1021/ie50389a003.

[1] Grigoras, Stelian. “A Structural Approach to Calculate Physical Properties of Pure Organic Substances: The
Critical Temperature, Critical Volume and Related Properties.” Journal of Computational Chemistry 11, no. 4
(May 1, 1990): 493-510. doi:10.1002/jcc.540110408

514 Bibliography

http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1002/aic.17518
https://doi.org/10.1021/acs.iecr.2c01427

chemicals Documentation, Release 1.1.4

[1] Hekayati, Javad, and Sona Raeissi. “Estimation of the Critical Properties of Compounds Using Volume-Based
Thermodynamics.” AIChE Journal n/a, no. n/a (n.d.): e17004. https://doi.org/10.1002/aic.17004.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Li, C. C. “Critical Temperature Estimation for Simple Mixtures.” The Canadian Journal of Chemical Engineering
49, no. 5 (October 1, 1971): 709-10. doi:10.1002/cjce.5450490529.

[1] Chueh, P. L., and J. M. Prausnitz. “Vapor-Liquid Equilibria at High Pressures: Calculation of Critical Tempera-
tures, Volumes, and Pressures of Nonpolar Mixtures.” AIChE Journal 13, no. 6 (November 1, 1967): 1107-13.
doi:10.1002/aic.690130613.

[2] Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati. “Prediction of True Critical Temperature of
Multi-Component Mixtures: Extending Fast Estimation Methods.” Fluid Phase Equilibria 392 (April 25, 2015):
104-26. doi:10.1016/j.fluid.2015.02.001.

[1] Grieves, Robert B., and George Thodos. “The Critical Temperatures of Multicomponent Hydrocarbon Systems.”
AIChE Journal 8, no. 4 (September 1, 1962): 550-53. doi:10.1002/aic.690080426.

[2] Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati. “Prediction of True Critical Temperature of
Multi-Component Mixtures: Extending Fast Estimation Methods.” Fluid Phase Equilibria 392 (April 25, 2015):
104-26. doi:10.1016/j.fluid.2015.02.001.

[1] Teja, Amyn S., Kul B. Garg, and Richard L. Smith. “A Method for the Calculation of Gas-Liquid Critical Tem-
peratures and Pressures of Multicomponent Mixtures.” Industrial & Engineering Chemistry Process Design and
Development 22, no. 4 (1983): 672-76.

[2] Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati. “Prediction of True Critical Temperature of
Multi-Component Mixtures: Extending Fast Estimation Methods.” Fluid Phase Equilibria 392 (April 25, 2015):
104-26. doi:10.1016/j.fluid.2015.02.001.

[1] Chueh, P. L., and J. M. Prausnitz. “Vapor-Liquid Equilibria at High Pressures: Calculation of Critical Tempera-
tures, Volumes, and Pressures of Nonpolar Mixtures.” AIChE Journal 13, no. 6 (November 1, 1967): 1107-13.
doi:10.1002/aic.690130613.

[2] Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati. “Prediction of True Critical Volume of
Multi-Component Mixtures: Extending Fast Estimation Methods.” Fluid Phase Equilibria 386 (January 25, 2015):
13-29. doi:10.1016/j.fluid.2014.11.008.

[1] Teja, Amyn S., Kul B. Garg, and Richard L. Smith. “A Method for the Calculation of Gas-Liquid Critical Tem-
peratures and Pressures of Multicomponent Mixtures.” Industrial & Engineering Chemistry Process Design and
Development 22, no. 4 (1983): 672-76.

[2] Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati. “Prediction of True Critical Temperature of
Multi-Component Mixtures: Extending Fast Estimation Methods.” Fluid Phase Equilibria 392 (April 25, 2015):
104-26. doi:10.1016/j.fluid.2015.02.001.

[1] NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Num-
ber 101 Release 17b, September 2015, Editor: Russell D. Johnson III http://cccbdb.nist.gov/

[2] Muller, Karsten, Liudmila Mokrushina, and Wolfgang Arlt. “Second- Order Group Contribution Method for the
Determination of the Dipole Moment.” Journal of Chemical & Engineering Data 57, no. 4 (April 12, 2012):
1231-36. doi:10.1021/je2013395.

[3] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[4] Turney, Justin M., Andrew C. Simmonett, Robert M. Parrish, Edward G. Hohenstein, Francesco A. Evangelista,
Justin T. Fermann, Benjamin J. Mintz, et al. “Psi4: An Open-Source Ab Initio Electronic Structure Program.”
WIREs Computational Molecular Science 2, no. 4 (2012): 556-65. https://doi.org/10.1002/wcms.93.

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Bibliography 515

https://doi.org/10.1002/aic.17004
http://cccbdb.nist.gov/
https://doi.org/10.1002/wcms.93

chemicals Documentation, Release 1.1.4

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[2] Aly, Fouad A., and Lloyd L. Lee. “Self-Consistent Equations for Calculating the Ideal Gas Heat Capac-
ity, Enthalpy, and Entropy.” Fluid Phase Equilibria 6, no. 3 (January 1, 1981): 169-79. doi:10.1016/0378-
3812(81)85002-9.

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

[1] N M O’Boyle, M Banck, C A James, C Morley, T Vandermeersch, and G R Hutchison. “Open Babel: An open
chemical toolbox.” J. Cheminf. (2011), 3, 33. DOI:10.1186/1758-2946-3-33

[1] Hill, Edwin A.”“ON A SYSTEM OF INDEXING CHEMICAL LITERATURE; ADOPTED BY THE CLASSI-
FICATION DIVISION OF THE U. S. PATENT OFFICE.1.” Journal of the American Chemical Society 22, no.
8 (August 1, 1900): 478-94. doi:10.1021/ja02046a005.

[1] RDKit: Open-source cheminformatics; http://www.rdkit.org

[1] Laštovka, Václav, Nasser Sallamie, and John M. Shaw. “A Similarity Variable for Estimating the Heat Capacity
of Solid Organic Compounds: Part I. Fundamentals.” Fluid Phase Equilibria 268, no. 1-2 (June 25, 2008): 51-60.
doi:10.1016/j.fluid.2008.03.019.

[1] Brown, William H., and Thomas Poon. Introduction to Organic Chemistry. 4th edition. Hoboken, NJ: Wiley,
2010.

[1] RDKit: Open-source cheminformatics; http://www.rdkit.org

[1] RDKit: Open-source cheminformatics; http://www.rdkit.org

[1] IPCC. “2.10.2 Direct Global Warming Potentials - AR4 WGI Chapter 2: Changes in Atmospheric Constituents
and in Radiative Forcing.” 2007. https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html.

[2] IPCC. “Climate Change 2013: The Physical Science Basis. - AR5 WGI Chapter 8: Anthropogenic and Natural
Radiative Forcing.” 2013. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf

[3] Hodnebrog, Ø., B. Aamaas, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, M. Sandstad, K. P. Shine,
and T. J. Wallington. “Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and Other
Weak Atmospheric Absorbers.” Reviews of Geophysics 58, no. 3 (2020): e2019RG000691. https://doi.org/10.
1029/2019RG000691.

[1] US EPA, OAR. “Ozone-Depleting Substances.” Accessed April 26, 2016. https://www.epa.gov/
ozone-layer-protection/ozone-depleting-substances.

[2] WMO (World Meteorological Organization), 2011: Scientific Assessment of Ozone Depletion: 2010. Global
Ozone Research and Monitoring Project-Report No. 52, Geneva, Switzerland, 516 p. https://www.wmo.int/pages/
prog/arep/gaw/ozone_2010/documents/Ozone-Assessment-2010-complete.pdf

[1] Syrres. 2006. KOWWIN Data, SrcKowData2.zip. http://esc.syrres.com/interkow/Download/SrcKowData2.zip

[2] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

516 Bibliography

http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf
https://doi.org/10.1029/2019RG000691
https://doi.org/10.1029/2019RG000691
https://www.epa.gov/ozone-layer-protection/ozone-depleting-substances
https://www.epa.gov/ozone-layer-protection/ozone-depleting-substances
https://www.wmo.int/pages/prog/arep/gaw/ozone_2010/documents/Ozone-Assessment-2010-complete.pdf
https://www.wmo.int/pages/prog/arep/gaw/ozone_2010/documents/Ozone-Assessment-2010-complete.pdf
http://esc.syrres.com/interkow/Download/SrcKowData2.zip

chemicals Documentation, Release 1.1.4

[1] Kandula, Vamshi Krishna, John C. Telotte, and F. Carl Knopf. “It`s Not as Easy as It Looks: Revisiting
Peng—Robinson Equation of State Convergence Issues for Dew Point, Bubble Point and Flash Calculations.”
International Journal of Mechanical Engineering Education 41, no. 3 (July 1, 2013): 188-202. https://doi.org/10.
7227/IJMEE.41.3.2.

[1] Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process
Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.

[2] Skogestad, Sigurd. Chemical and Energy Process Engineering. 1st edition. Boca Raton, FL: CRC Press, 2008.

[1] Wilson, Grant M. “A Modified Redlich-Kwong Equation of State, Application to General Physical Data Calcula-
tions.” In 65th National AIChE Meeting, Cleveland, OH, 1969.

[2] Peng, Ding-Yu, and Donald B. Robinson. “Two and Three Phase Equilibrium Calculations for Systems Con-
taining Water.” The Canadian Journal of Chemical Engineering, December 1, 1976. https://doi.org/10.1002/cjce.
5450540620.

[1] Peng, Ding-Yu, and Donald B. Robinson. “Two and Three Phase Equilibrium Calculations for Systems Con-
taining Water.” The Canadian Journal of Chemical Engineering, December 1, 1976. https://doi.org/10.1002/cjce.
5450540620.

[1] Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds in the Gas State, Volume II: V. 2.
College Station, Tex: CRC Press, 1994.

[1] Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds in the Gas State, Volume II: V. 2.
College Station, Tex: CRC Press, 1994.

[1] Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds in the Gas State, Volume II: V. 2.
College Station, Tex: CRC Press, 1994.

[1] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Cp0/
PPDS2Cp0.htm.

[1] Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for Ideal Gas Heat Capacities of Pure
Hydrocarbons and Petroleum Fractions.” Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

[1] Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for Ideal Gas Heat Capacities of Pure
Hydrocarbons and Petroleum Fractions.” Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

[1] Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for Ideal Gas Heat Capacities of Pure
Hydrocarbons and Petroleum Fractions.” Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Bibliography 517

https://doi.org/10.7227/IJMEE.41.3.2
https://doi.org/10.7227/IJMEE.41.3.2
https://doi.org/10.1002/cjce.5450540620
https://doi.org/10.1002/cjce.5450540620
https://doi.org/10.1002/cjce.5450540620
https://doi.org/10.1002/cjce.5450540620
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Cp0/PPDS2Cp0.htm
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Cp0/PPDS2Cp0.htm

chemicals Documentation, Release 1.1.4

[1] Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for Ideal Gas Heat Capacities of Pure
Hydrocarbons and Petroleum Fractions.” Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

[1] Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for Ideal Gas Heat Capacities of Pure
Hydrocarbons and Petroleum Fractions.” Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

[1] Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for Ideal Gas Heat Capacities of Pure
Hydrocarbons and Petroleum Fractions.” Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-CsatL/PPDS15-Csat.htm.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-CsatL/CSExpansion.htm

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[2] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[3] J.S. Rowlinson, Liquids and Liquid Mixtures, 2nd Ed., Butterworth, London (1969).

[1] Dadgostar, Nafiseh, and John M. Shaw. “A Predictive Correlation for the Constant-Pressure Specific Heat Ca-
pacity of Pure and Ill-Defined Liquid Hydrocarbons.” Fluid Phase Equilibria 313 (January 15, 2012): 211-226.
doi:10.1016/j.fluid.2011.09.015.

[1] Dadgostar, Nafiseh, and John M. Shaw. “A Predictive Correlation for the Constant-Pressure Specific Heat Ca-
pacity of Pure and Ill-Defined Liquid Hydrocarbons.” Fluid Phase Equilibria 313 (January 15, 2012): 211-226.
doi:10.1016/j.fluid.2011.09.015.

[1] Dadgostar, Nafiseh, and John M. Shaw. “A Predictive Correlation for the Constant-Pressure Specific Heat Ca-
pacity of Pure and Ill-Defined Liquid Hydrocarbons.” Fluid Phase Equilibria 313 (January 15, 2012): 211-226.
doi:10.1016/j.fluid.2011.09.015.

518 Bibliography

https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-CsatL/PPDS15-Csat.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-CsatL/PPDS15-Csat.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-CsatL/CSExpansion.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-CsatL/CSExpansion.htm

chemicals Documentation, Release 1.1.4

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Laštovka, Václav, Michal Fulem, Mildred Becerra, and John M. Shaw. “A Similarity Variable for Estimating
the Heat Capacity of Solid Organic Compounds: Part II. Application: Heat Capacity Calculation for Ill-Defined
Organic Solids.” Fluid Phase Equilibria 268, no. 1-2 (June 25, 2008): 134-41. doi:10.1016/j.fluid.2008.03.018.

[1] Laštovka, Václav, Michal Fulem, Mildred Becerra, and John M. Shaw. “A Similarity Variable for Estimating
the Heat Capacity of Solid Organic Compounds: Part II. Application: Heat Capacity Calculation for Ill-Defined
Organic Solids.” Fluid Phase Equilibria 268, no. 1-2 (June 25, 2008): 134-41. doi:10.1016/j.fluid.2008.03.018.

[1] Laštovka, Václav, Michal Fulem, Mildred Becerra, and John M. Shaw. “A Similarity Variable for Estimating
the Heat Capacity of Solid Organic Compounds: Part II. Application: Heat Capacity Calculation for Ill-Defined
Organic Solids.” Fluid Phase Equilibria 268, no. 1-2 (June 25, 2008): 134-41. doi:10.1016/j.fluid.2008.03.018.

[1] Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds in the Gas State, Volume II: V. 2.
College Station, Tex: CRC Press, 1994.

[2] Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and
Recommended Values. 2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

[3] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[4] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[5] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Scientific Use.” Journal of Physical and Chemical Reference Data 31,
no. 2 (2002): 387-535.

[1] Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Scientific Use.” Journal of Physical and Chemical Reference Data 31,
no. 2 (2002): 387-535.

[1] Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Scientific Use.” Journal of Physical and Chemical Reference Data 31,
no. 2 (2002): 387-535.

[1] Cooper, JR, and RB Dooley. “Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic
Properties of Water and Steam.” The International Association for the Properties of Water and Steam 1 (2007):
48.

[1] Cooper, JR, and RB Dooley. “Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic
Properties of Water and Steam.” The International Association for the Properties of Water and Steam 1 (2007):
48.

[1] Cooper, JR, and RB Dooley. “Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic
Properties of Water and Steam.” The International Association for the Properties of Water and Steam 1 (2007):
48.

[1] Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Scientific Use.” Journal of Physical and Chemical Reference Data 31,
no. 2 (2002): 387-535.

[1] IAPWS, Secretariat, B Dooley, and EPRI. “Revised Supplementary Release on Saturation Properties of Ordinary
Water Substance”, 1992.

[2] Wagner, Wolfgang, and A. Pruss. “International Equations for the Saturation Properties of Ordinary Water Sub-
stance. Revised According to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref.

Bibliography 519

chemicals Documentation, Release 1.1.4

Data 16, 893 (1987).” Journal of Physical and Chemical Reference Data 22, no. 3 (May 1, 1993): 783-87.
https://doi.org/10.1063/1.555926.

[1] IAPWS, Secretariat, B Dooley, and EPRI. “Revised Supplementary Release on Saturation Properties of Ordinary
Water Substance”, 1992.

[2] Wagner, Wolfgang, and A. Pruss. “International Equations for the Saturation Properties of Ordinary Water Sub-
stance. Revised According to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref.
Data 16, 893 (1987).” Journal of Physical and Chemical Reference Data 22, no. 3 (May 1, 1993): 783-87.
https://doi.org/10.1063/1.555926.

[1] Brock, James R., and R. Byron Bird. “Surface Tension and the Principle of Corresponding States.” AIChE Journal
1, no. 2 (June 1, 1955): 174-77. doi:10.1002/aic.690010208

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[2] Curl, R. F., and Kenneth Pitzer. “Volumetric and Thermodynamic Properties of Fluids-Enthalpy, Free Energy, and
Entropy.” Industrial & Engineering Chemistry 50, no. 2 (February 1, 1958): 265-74. doi:10.1021/ie50578a047

[3] Pitzer, K. S.: Thermodynamics, 3d ed., New York, McGraw-Hill, 1995, p. 521.

[1] Sastri, S. R. S., and K. K. Rao. “A Simple Method to Predict Surface Tension of Organic Liquids.” The
Chemical Engineering Journal and the Biochemical Engineering Journal 59, no. 2 (October 1995): 181-86.
doi:10.1016/0923-0467(94)02946-6.

[1] Zuo, You-Xiang, and Erling H. Stenby. “Corresponding-States and Parachor Models for the Calculation of In-
terfacial Tensions.” The Canadian Journal of Chemical Engineering 75, no. 6 (December 1, 1997): 1130-37.
doi:10.1002/cjce.5450750617

[1] Hakim, D. I., David Steinberg, and L. I. Stiel. “Generalized Relationship for the Surface Tension of Po-
lar Fluids.” Industrial & Engineering Chemistry Fundamentals 10, no. 1 (February 1, 1971): 174-75.
doi:10.1021/i160037a032.

[1] Miqueu, C, D Broseta, J Satherley, B Mendiboure, J Lachaise, and A Graciaa. “An Extended Scaled Equation for
the Temperature Dependence of the Surface Tension of Pure Compounds Inferred from an Analysis of Experi-
mental Data.” Fluid Phase Equilibria 172, no. 2 (July 5, 2000): 169-82. doi:10.1016/S0378-3812(00)00384-8.

[1] Aleem, W., N. Mellon, S. Sufian, M. I. A. Mutalib, and D. Subbarao. “A Model for the Estimation of Surface
Tension of Pure Hydrocarbon Liquids.” Petroleum Science and Technology 33, no. 23-24 (December 17, 2015):
1908-15. doi:10.1080/10916466.2015.1110593.

[1] Mersmann, Alfons, and Matthias Kind. “Prediction of Mechanical and Thermal Properties of Pure Liquids, of
Critical Data, and of Vapor Pressure.” Industrial & Engineering Chemistry Research, January 31, 2017. https:
//doi.org/10.1021/acs.iecr.6b04323.

[1] Gharagheizi, Farhad, Ali Eslamimanesh, Mehdi Sattari, Amir H. Mohammadi, and Dominique Richon. “Devel-
opment of Corresponding States Model for Estimation of the Surface Tension of Chemical Compounds.” AIChE
Journal 59, no. 2 (2013): 613-21. https://doi.org/10.1002/aic.13824.

[1] Gharagheizi, Farhad, Ali Eslamimanesh, Mehdi Sattari, Amir H. Mohammadi, and Dominique Richon. “Devel-
opment of Corresponding States Model for Estimation of the Surface Tension of Chemical Compounds.” AIChE
Journal 59, no. 2 (2013): 613-21. https://doi.org/10.1002/aic.13824.

[1] Winterfeld, P. H., L. E. Scriven, and H. T. Davis. “An Approximate Theory of Interfacial Tensions of Multicom-
ponent Systems: Applications to Binary Liquid-Vapor Tensions.” AIChE Journal 24, no. 6 (November 1, 1978):
1010-14. doi:10.1002/aic.690240610.

[2] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] Weinaug, Charles F., and Donald L. Katz. “Surface Tensions of Methane-Propane Mixtures.” Industrial & Engi-
neering Chemistry 35, no. 2 (February 1, 1943): 239-246. https://doi.org/10.1021/ie50398a028.

520 Bibliography

https://doi.org/10.1063/1.555926
https://doi.org/10.1063/1.555926
https://doi.org/10.1021/acs.iecr.6b04323
https://doi.org/10.1021/acs.iecr.6b04323
https://doi.org/10.1002/aic.13824
https://doi.org/10.1002/aic.13824
https://doi.org/10.1021/ie50398a028

chemicals Documentation, Release 1.1.4

[2] Pedersen, Karen Schou, Aage Fredenslund, and Per Thomassen. Properties of Oils and Natural Gases. Vol. 5.
Gulf Pub Co, 1989.

[1] Diguilio, Ralph, and Amyn S. Teja. “Correlation and Prediction of the Surface Tensions of Mixtures.” The Chem-
ical Engineering Journal 38, no. 3 (July 1988): 205-8. doi:10.1016/0300-9467(88)80079-0.

[1] IAPWS. 2014. Revised Release on Surface Tension of Ordinary Water Substance

[1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

[1] Kalantari Meybodi, Mahdi, Amin Daryasafar, and Masoud Karimi. “Determination of Hydrocarbon-Water In-
terfacial Tension Using a New Empirical Correlation.” Fluid Phase Equilibria 415 (May 15, 2016): 42-50.
doi:10.1016/j.fluid.2016.01.037.

[1] Diky, Vladimir, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth Kroenlein, Joseph W. Magee,
Ilmutdin Abdulagatov, and Michael Frenkel. “ThermoData Engine (TDE): Software Implementation of the Dy-
namic Data Evaluation Concept.” Journal of Chemical Information and Modeling 53, no. 12 (2013): 3418-30.
doi:10.1021/ci4005699.

[1] Somayajulu, G. R. “A Generalized Equation for Surface Tension from the Triple Point to the Critical Point.”
International Journal of Thermophysics 9, no. 4 (July 1988): 559-66. doi:10.1007/BF00503154.

[1] Jasper, Joseph J. “The Surface Tension of Pure Liquid Compounds.” Journal of Physical and Chemical Reference
Data 1, no. 4 (October 1, 1972): 841-1010. doi:10.1063/1.3253106.

[2] Speight, James. Lange’s Handbook of Chemistry. 16 edition. McGraw-Hill Professional, 2005.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-SurfaceTension/PPDS14.htm.

[2] Frenkel, Michael, Robert D. Chirico, Vladimir Diky, Xinjian Yan, Qian Dong, and Chris Muzny. “ThermoData
Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept.” Journal of Chemical Infor-
mation and Modeling 45, no. 4 (July 1, 2005): 816-38. https://doi.org/10.1021/ci050067b.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-SurfaceTension/HVPExpansion-SurfaceTension.htm

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-SurfaceTension/ISTExpansion-SurfaceTension.htm

[1] Somayajulu, G. R. “A Generalized Equation for Surface Tension from the Triple Point to the Critical Point.”
International Journal of Thermophysics 9, no. 4 (July 1988): 559-66. doi:10.1007/BF00503154.

[2] Mulero, A., M. I. Parra, and I. Cachadina. “The Somayajulu Correlation for the Surface Tension Revisited.” Fluid
Phase Equilibria 339 (February 15, 2013): 81-88. doi:10.1016/j.fluid.2012.11.038.

[3] Jasper, Joseph J. “The Surface Tension of Pure Liquid Compounds.” Journal of Physical and Chemical Reference
Data 1, no. 4 (October 1, 1972): 841-1010. doi:10.1063/1.3253106.

[4] Speight, James. Lange’s Handbook of Chemistry. 16 edition. McGraw-Hill Professional, 2005.

[5] Mulero, A., I. Cachadiña, and M. I. Parra. “Recommended Correlations for the Surface Tension of Com-
mon Fluids.” Journal of Physical and Chemical Reference Data 41, no. 4 (December 1, 2012): 043105.
doi:10.1063/1.4768782.

[6] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[2] Magalhães, Ana L., Patrícia F. Lito, Francisco A. Da Silva, and Carlos M. Silva. “Simple and Accurate Correla-
tions for Diffusion Coefficients of Solutes in Liquids and Supercritical Fluids over Wide Ranges of Temperature
and Density.” The Journal of Supercritical Fluids 76 (April 2013): 94-114. doi:10.1016/j.supflu.2013.02.002.

Bibliography 521

https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/PPDS14.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/PPDS14.htm
https://doi.org/10.1021/ci050067b
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/HVPExpansion-SurfaceTension.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/HVPExpansion-SurfaceTension.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/ISTExpansion-SurfaceTension.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/ISTExpansion-SurfaceTension.htm

chemicals Documentation, Release 1.1.4

[1] Flynn, L.W., M.S. thesis, Northwestern Univ., Evanston, Ill. (1960).

[2] Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants Predicted from Critical Properties.” Journal of
Chemical & Engineering Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants Predicted from Critical Properties.” Journal of
Chemical & Engineering Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

[1] Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters for Normal Fluids. Lennard-Jones
12-6 Potential.” Industrial & Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

[1] Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters for Normal Fluids. Lennard-Jones
12-6 Potential.” Industrial & Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[2] Magalhães, Ana L., Patrícia F. Lito, Francisco A. Da Silva, and Carlos M. Silva. “Simple and Accurate Correla-
tions for Diffusion Coefficients of Solutes in Liquids and Supercritical Fluids over Wide Ranges of Temperature
and Density.” The Journal of Supercritical Fluids 76 (April 2013): 94-114. doi:10.1016/j.supflu.2013.02.002.

[1] Flynn, L.W., M.S. thesis, Northwestern Univ., Evanston, Ill. (1960).

[2] Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants Predicted from Critical Properties.” Journal of
Chemical & Engineering Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants Predicted from Critical Properties.” Journal of
Chemical & Engineering Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

[1] Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters for Normal Fluids. Lennard-Jones
12-6 Potential.” Industrial & Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

[1] Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters for Normal Fluids. Lennard-Jones
12-6 Potential.” Industrial & Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

[1] Silva, Carlos M., Hongqin Liu, and Eugenia A. Macedo. “Models for Self-Diffusion Coefficients of Dense Fluids,
Including Hydrogen-Bonding Substances.” Chemical Engineering Science 53, no. 13 (July 1, 1998): 2423-29.
doi:10.1016/S0009-2509(98)00037-2

522 Bibliography

chemicals Documentation, Release 1.1.4

[1] Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena, Revised 2nd Edition. New
York: John Wiley & Sons, Inc., 2006

[1] Gesellschaft, VDI, ed. VDI Heat Atlas. 2E. Berlin : Springer, 2010.

[1] Turney, Justin M., Andrew C. Simmonett, Robert M. Parrish, Edward G. Hohenstein, Francesco A. Evangelista,
Justin T. Fermann, Benjamin J. Mintz, et al. “Psi4: An Open-Source Ab Initio Electronic Structure Program.”
WIREs Computational Molecular Science 2, no. 4 (2012): 556-65. https://doi.org/10.1002/wcms.93.

[2] Kooijman, Harry A., and Ross Taylor. The ChemSep Book. Books on Demand Norderstedt, Germany, 2000.

[1] Turney, Justin M., Andrew C. Simmonett, Robert M. Parrish, Edward G. Hohenstein, Francesco A. Evangelista,
Justin T. Fermann, Benjamin J. Mintz, et al. “Psi4: An Open-Source Ab Initio Electronic Structure Program.”
WIREs Computational Molecular Science 2, no. 4 (2012): 556-65. https://doi.org/10.1002/wcms.93.

[1] IAPWS. 1997. Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238
K to 873 K and Pressures up to 1000 MPa.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[2] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[3] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[4] “CAS Common Chemistry”. https://commonchemistry.cas.org/.

[5] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[6] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[7] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Bradley, Jean-Claude, Antony Williams, and Andrew Lang. “Jean-Claude Bradley Open Melting Point Dataset”,
May 20, 2014. https://figshare.com/articles/Jean_Claude_Bradley_Open_Melting_Point_Datset/1031637.

[2] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[3] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[4] “CAS Common Chemistry”. https://commonchemistry.cas.org/.

[5] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[6] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[2] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

Bibliography 523

https://doi.org/10.1002/wcms.93
https://doi.org/10.1002/wcms.93
https://www.wikidata.org/
https://commonchemistry.cas.org/
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1021/acs.iecr.2c01427
https://figshare.com/articles/Jean_Claude_Bradley_Open_Melting_Point_Datset/1031637
https://www.wikidata.org/
https://commonchemistry.cas.org/
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://www.wikidata.org/

chemicals Documentation, Release 1.1.4

[3] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[4] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Riedel, L. “Eine Neue Universelle Dampfdruckformel Untersuchungen Uber Eine Erweiterung Des Theorems
Der Ubereinstimmenden Zustande. Teil I.” Chemie Ingenieur Technik 26, no. 2 (February 1, 1954): 83-89.
doi:10.1002/cite.330260206.

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[3] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Chen, N. H. “Generalized Correlation for Latent Heat of Vaporization.” Journal of Chemical & Engineering Data
10, no. 2 (April 1, 1965): 207-10. doi:10.1021/je60025a047

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] LIU, ZHI-YONG. “Estimation of Heat of Vaporization of Pure Liquid at Its Normal Boiling Temperature.” Chem-
ical Engineering Communications 184, no. 1 (February 1, 2001): 221-28. doi:10.1080/00986440108912849.

[1] Vetere, Alessandro. “Methods to Predict the Vaporization Enthalpies at the Normal Boiling Temperature of
Pure Compounds Revisited.” Fluid Phase Equilibria 106, no. 1-2 (May 1, 1995): 1-10. doi:10.1016/0378-
3812(94)02627-D.

[2] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Pitzer, Kenneth S. “The Volumetric and Thermodynamic Properties of Fluids. I. Theoretical Basis and
Virial Coefficients.” Journal of the American Chemical Society 77, no. 13 (July 1, 1955): 3427-33.
doi:10.1021/ja01618a001

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[3] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Sivaraman, Alwarappa, Joe W. Magee, and Riki Kobayashi. “Generalized Correlation of Latent Heats of Va-
porization of Coal-Liquid Model Compounds between Their Freezing Points and Critical Points.” Industrial &
Engineering Chemistry Fundamentals 23, no. 1 (February 1, 1984): 97-100. doi:10.1021/i100013a017.

[1] Morgan, David L., and Riki Kobayashi. “Extension of Pitzer CSP Models for Vapor Pressures and Heats of Va-
porization to Long-Chain Hydrocarbons.” Fluid Phase Equilibria 94 (March 15, 1994): 51-87. doi:10.1016/0378-
3812(94)87051-9.

[1] Velasco, S., M. J. Santos, and J. A. White. “Extended Corresponding States Expressions for the Changes in
Enthalpy, Compressibility Factor and Constant-Volume Heat Capacity at Vaporization.” The Journal of Chemical
Thermodynamics 85 (June 2015): 68-76. doi:10.1016/j.jct.2015.01.011.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Watson, KM. “Thermodynamics of the Liquid State.” Industrial & Engineering Chemistry 35, no. 4 (1943): 398-
406.

[2] Martin, Joseph J., and John B. Edwards. “Correlation of Latent Heats of Vaporization.” AIChE Journal 11, no. 2
(1965): 331-33. https://doi.org/10.1002/aic.690110226.

[1] Alibakhshi, Amin. “Enthalpy of Vaporization, Its Temperature Dependence and Correlation with Surface Tension:
A Theoretical Approach.” Fluid Phase Equilibria 432 (January 25, 2017): 62-69. https://doi.org/10.1016/j.fluid.
2016.10.013.

[1] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

524 Bibliography

http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1002/aic.690110226
https://doi.org/10.1016/j.fluid.2016.10.013
https://doi.org/10.1016/j.fluid.2016.10.013

chemicals Documentation, Release 1.1.4

[2] “Enthalpy of Vaporization: PPDS12.” https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Hvap/PPDS12.htm.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.

[2] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[3] Alibakhshi, Amin. “Enthalpy of Vaporization, Its Temperature Dependence and Correlation with Surface Tension:
A Theoretical Approach.” Fluid Phase Equilibria 432 (January 25, 2017): 62-69. https://doi.org/10.1016/j.fluid.
2016.10.013.

[1] Rachford, H. H. Jr, and J. D. Rice. “Procedure for Use of Electronic Digital Computers in Calculating Flash
Vaporization Hydrocarbon Equilibrium.” Journal of Petroleum Technology 4, no. 10 (October 1, 1952): 19-3.
doi:10.2118/952327-G.

[2] Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust Alternative to Rachford-Rice in Flash
Calculations.” Fluid Phase Equilibria 316 (February 25, 2012): 85-97. doi:10.1016/j.fluid.2011.12.005.

[3] Whitson, Curtis H., and Michael L. Michelsen. “The Negative Flash.” Fluid Phase Equilibria, Proceedings of the
Fifth International Conference, 53 (December 1, 1989): 51-71. doi:10.1016/0378-3812(89)80072-X.

[1] Leibovici, Claude F., and Dan Vladimir Nichita. “Iterative Solutions for iai-ci=1 Equations.” Chemical Engineer-
ing Research and Design 88, no. 5 (May 1, 2010): 602-5. https://doi.org/10.1016/j.cherd.2009.10.012.

[2] Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust Alternative to Rachford-Rice in Flash
Calculations.” Fluid Phase Equilibria 316 (February 25, 2012): 85-97. doi:10.1016/j.fluid.2011.12.005.

[3] Billingsley, D. S. “Iterative Solution for iai-ci Equations.” Computers & Chemical Engineering 26, no. 3 (March
15, 2002): 457-60. https://doi.org/10.1016/S0098-1354(01)00767-0.

[1] Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust Alternative to Rachford-Rice in Flash
Calculations.” Fluid Phase Equilibria 316 (February 25, 2012): 85-97. doi:10.1016/j.fluid.2011.12.005.

[1] Leibovici, ClaudeF., and Jean Neoschil. “A New Look at the Rachford-Rice Equation.” Fluid Phase Equilibria 74
(July 15, 1992): 303-8. https://doi.org/10.1016/0378-3812(92)85069-K.

[1] Weigle, Brett D. “A Generalized Polynomial Form of the Objective Function in Flash Calculations.” Pennsylvania
State University, 1992.

[2] Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust Alternative to Rachford-Rice in Flash
Calculations.” Fluid Phase Equilibria 316 (February 25, 2012): 85-97. doi:10.1016/j.fluid.2011.12.005.

[3] Warren, John H. “Explicit Determination of the Vapor Fraction in Flash Calculations.” Pennsylvania State Uni-
versity, 1991.

[1] Leibovici, ClaudeF., and Jean Neoschil. “A New Look at the Rachford-Rice Equation.” Fluid Phase Equilibria 74
(July 15, 1992): 303-8. https://doi.org/10.1016/0378-3812(92)85069-K.

[1] Okuno, Ryosuke, Russell Johns, and Kamy Sepehrnoori. “A New Algorithm for Rachford-Rice for Multiphase
Compositional Simulation.” SPE Journal 15, no. 02 (June 1, 2010): 313-25. https://doi.org/10.2118/117752-PA.

[2] Li, Zhidong, and Abbas Firoozabadi. “Initialization of Phase Fractions in Rachford-Rice Equations for Robust
and Efficient Three-Phase Split Calculation.” Fluid Phase Equilibria 332 (October 25, 2012): 21-27. https://doi.
org/10.1016/j.fluid.2012.06.021.

[3] Gao, Ran, Xiaolong Yin, and Zhiping Li. “Hybrid Newton-Successive Substitution Method for Multiphase
Rachford-Rice Equations.” Entropy 20, no. 6 (June 2018): 452. https://doi.org/10.3390/e20060452.

[4] Leibovici, Claude F., and Jean Neoschil. “A Solution of Rachford-Rice Equations for Multiphase Systems.” Fluid
Phase Equilibria 112, no. 2 (December 1, 1995): 217-21. https://doi.org/10.1016/0378-3812(95)02797-I.

[1] Gao, Ran, Xiaolong Yin, and Zhiping Li. “Hybrid Newton-Successive Substitution Method for Multiphase
Rachford-Rice Equations.” Entropy 20, no. 6 (June 2018): 452. https://doi.org/10.3390/e20060452.

Bibliography 525

https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Hvap/PPDS12.htm
https://doi.org/10.1016/j.fluid.2016.10.013
https://doi.org/10.1016/j.fluid.2016.10.013
https://doi.org/10.1016/j.cherd.2009.10.012
https://doi.org/10.1016/S0098-1354(01)00767-0
https://doi.org/10.1016/0378-3812(92)85069-K
https://doi.org/10.1016/0378-3812(92)85069-K
https://doi.org/10.2118/117752-PA
https://doi.org/10.1016/j.fluid.2012.06.021
https://doi.org/10.1016/j.fluid.2012.06.021
https://doi.org/10.3390/e20060452
https://doi.org/10.1016/0378-3812(95)02797-I
https://doi.org/10.3390/e20060452

chemicals Documentation, Release 1.1.4

[1] Weigle, Brett D. “A Generalized Polynomial Form of the Objective Function in Flash Calculations.” Pennsylvania
State University, 1992.

[2] Warren, John H. “Explicit Determination of the Vapor Fraction in Flash Calculations.” Pennsylvania State Uni-
versity, 1991.

[3] Monroy-Loperena, Rosendo, and Felipe D. Vargas-Villamil. “On the Determination of the Polynomial Defining
of Vapor-Liquid Split of Multicomponent Mixtures.” Chemical Engineering Science 56, no. 20 (October 1, 2001):
5865-68. https://doi.org/10.1016/S0009-2509(01)00267-6.

[1] Rachford, H. H. Jr, and J. D. Rice. “Procedure for Use of Electronic Digital Computers in Calculating Flash
Vaporization Hydrocarbon Equilibrium.” Journal of Petroleum Technology 4, no. 10 (October 1, 1952): 19-3.
doi:10.2118/952327-G.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[2] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Ruscic, Branko, Reinhardt E. Pinzon, Gregor von Laszewski, Deepti Kodeboyina, Alexander Burcat, David Leahy,
David Montoy, and Albert F. Wagner. “Active Thermochemical Tables: Thermochemistry for the 21st Century.”
Journal of Physics: Conference Series 16, no. 1 (January 1, 2005): 561. doi:10.1088/1742-6596/16/1/078.

[2] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[3] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Ruscic, Branko, Reinhardt E. Pinzon, Gregor von Laszewski, Deepti Kodeboyina, Alexander Burcat, David Leahy,
David Montoy, and Albert F. Wagner. “Active Thermochemical Tables: Thermochemistry for the 21st Century.”
Journal of Physics: Conference Series 16, no. 1 (January 1, 2005): 561. doi:10.1088/1742-6596/16/1/078.

[2] Frenkel`, M. L, Texas Engineering Experiment Station, and Thermodynamics Research Center. Thermodynamics
of Organic Compounds in the Gas State. College Station, Tex.: Thermodynamics Research Center, 1994.

[3] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[4] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

[5] Joback, K.G., and R.C. Reid. “Estimation of Pure-Component Properties from Group-Contributions.” Chemical
Engineering Communications 57, no. 1-6 (July 1, 1987): 233-43. doi:10.1080/00986448708960487.

[6] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[2] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[2] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. Amsterdam Boston:
Gulf Professional Publishing, 2014.

526 Bibliography

https://doi.org/10.1016/S0009-2509(01)00267-6
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q

chemicals Documentation, Release 1.1.4

[3] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[1] “Standard Gibbs Free Energy of Formation Calculations Chemistry Tutorial.” Accessed March, 2019. https://
www.ausetute.com.au/gibbsform.html.

[1] Sen, S. K., Hans Agarwal, and Sagar Sen. “Chemical Equation Balancing: An Integer Programming Approach.”
Mathematical and Computer Modelling 44, no. 7 (October 1, 2006): 678-91. https://doi.org/10.1016/j.mcm.2006.
02.004.

[2] URAVNOTE, NOVOODKRITI PARADOKSI V. TEORIJI, and ENJA KEMIJSKIH REAKCIJ. “New Discovered
Paradoxes in Theory of Balancing Chemical Reactions.” Materiali in Tehnologije 45, no. 6 (2011): 503-22.

[1] Sen, S. K., Hans Agarwal, and Sagar Sen. “Chemical Equation Balancing: An Integer Programming Approach.”
Mathematical and Computer Modelling 44, no. 7 (October 1, 2006): 678-91. https://doi.org/10.1016/j.mcm.2006.
02.004.

[2] URAVNOTE, NOVOODKRITI PARADOKSI V. TEORIJI, and ENJA KEMIJSKIH REAKCIJ. “New Discovered
Paradoxes in Theory of Balancing Chemical Reactions.” Materiali in Tehnologije 45, no. 6 (2011): 503-22.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton,
FL: CRC press, 2014.

[2] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[1] IAPWS, 1997. Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Tem-
perature and Pressure.

[1] “RefractometerData Book-Refractive Index and Brix | ATAGO CO., LTD.” Accessed June 13, 2020. https://www.
atago.net/en/databook-refractometer_relationship.php.

[1] “RefractometerData Book-Refractive Index and Brix | ATAGO CO., LTD.” Accessed June 13, 2020. https://www.
atago.net/en/databook-refractometer_relationship.php.

[1] Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. “A Simple Method for Estimation of
Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.” International Journal of
Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8.

[1] Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. “A Simple Method for Estimation of
Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.” International Journal of
Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8.

[1] Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M. Vargas. “A Simple Method for Estimation of
Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.” International Journal of
Thermophysics 37, no. 7 (June 6, 2016): 1-24. doi:10.1007/s10765-016-2075-8.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-RefractiveIndex/RIXExpansion.htm.

[1] International Agency for Research on Cancer. Agents Classified by the IARC Monographs, Volumes 1-115. Lyon,
France: IARC; 2020 Available from: http://monographs.iarc.fr/ENG/Classification/

[2] NTP (National Toxicology Program). 2021. Report on Carcinogens, Fifteenth Edition.; Research Triangle
Park, NC: U.S. Department of Health and Human Services, Public Health Service. https://doi.org/10.22427/
NTP-OTHER-1003

[1] IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1: Material characteristics for gas and vapour clas-
sification - Test methods and data.” https://webstore.iec.ch/publication/635. See also https://law.resource.org/pub/
in/bis/S05/is.iec.60079.20.1.2010.pdf

[2] National Fire Protection Association. NFPA 497: Recommended Practice for the Classification of Flammable
Liquids, Gases, or Vapors and of Hazardous. NFPA, 2008.

Bibliography 527

http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://www.ausetute.com.au/gibbsform.html
https://www.ausetute.com.au/gibbsform.html
https://doi.org/10.1016/j.mcm.2006.02.004
https://doi.org/10.1016/j.mcm.2006.02.004
https://doi.org/10.1016/j.mcm.2006.02.004
https://doi.org/10.1016/j.mcm.2006.02.004
https://www.wikidata.org/
https://www.atago.net/en/databook-refractometer_relationship.php
https://www.atago.net/en/databook-refractometer_relationship.php
https://www.atago.net/en/databook-refractometer_relationship.php
https://www.atago.net/en/databook-refractometer_relationship.php
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-RefractiveIndex/RIXExpansion.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-RefractiveIndex/RIXExpansion.htm
http://monographs.iarc.fr/ENG/Classification/
https://doi.org/10.22427/NTP-OTHER-1003
https://doi.org/10.22427/NTP-OTHER-1003
https://webstore.iec.ch/publication/635
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf

chemicals Documentation, Release 1.1.4

[3] Serat, Fatima Zohra, Ali Mustapha Benkouider, Ahmed Yahiaoui, and Farid Bagui. “Nonlinear Group Contribu-
tion Model for the Prediction of Flash Points Using Normal Boiling Points.” Fluid Phase Equilibria 449 (October
15, 2017): 52-59. doi:10.1016/j.fluid.2017.06.008.

[4] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[1] IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1: Material characteristics for gas and vapour clas-
sification - Test methods and data.” https://webstore.iec.ch/publication/635. See also https://law.resource.org/pub/
in/bis/S05/is.iec.60079.20.1.2010.pdf

[2] National Fire Protection Association. NFPA 497: Recommended Practice for the Classification of Flammable
Liquids, Gases, or Vapors and of Hazardous. NFPA, 2008.

[3] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[1] IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1: Material characteristics for gas and vapour clas-
sification - Test methods and data.” https://webstore.iec.ch/publication/635. See also https://law.resource.org/pub/
in/bis/S05/is.iec.60079.20.1.2010.pdf

[2] National Fire Protection Association. NFPA 497: Recommended Practice for the Classification of Flammable
Liquids, Gases, or Vapors and of Hazardous. NFPA, 2008.

[3] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[1] Suzuki, Takahiro. “Note: Empirical Relationship between Lower Flammability Limits and Standard En-
thalpies of Combustion of Organic Compounds.” Fire and Materials 18, no. 5 (September 1, 1994): 333-36.
doi:10.1002/fam.810180509.

[1] Crowl, Daniel A., and Joseph F. Louvar. Chemical Process Safety: Fundamentals with Applications. 2E. Upper
Saddle River, N.J: Prentice Hall, 2001.

[2] Jones, G. W. “Inflammation Limits and Their Practical Application in Hazardous Industrial Operations.” Chemical
Reviews 22, no. 1 (February 1, 1938): 1-26. doi:10.1021/cr60071a001

[1] Standardization, International Organization for. ISO 10156: 2017 : Gas Cylinders - Gases and Gas Mixtures -
Determination of Fire Potential and Oxidizing Ability for the Selection of Cylinder Valve Outlets, 2017.

[1] IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1: Material characteristics for gas and vapour clas-
sification - Test methods and data.” https://webstore.iec.ch/publication/635. See also https://law.resource.org/pub/
in/bis/S05/is.iec.60079.20.1.2010.pdf

[2] National Fire Protection Association. NFPA 497: Recommended Practice for the Classification of Flammable
Liquids, Gases, or Vapors and of Hazardous. NFPA, 2008.

[3] Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

[1] Suzuki, Takahiro, and Kozo Koide. “Short Communication: Correlation between Upper Flammability Limits and
Thermochemical Properties of Organic Compounds.” Fire and Materials 18, no. 6 (November 1, 1994): 393-97.
doi:10.1002/fam.810180608.

[1] Crowl, Daniel A., and Joseph F. Louvar. Chemical Process Safety: Fundamentals with Applications. 2E. Upper
Saddle River, N.J: Prentice Hall, 2001.

[2] Jones, G. W. “Inflammation Limits and Their Practical Application in Hazardous Industrial Operations.” Chemical
Reviews 22, no. 1 (February 1, 1938): 1-26. doi:10.1021/cr60071a001

[1] Crowl, Daniel A., and Joseph F. Louvar. Chemical Process Safety: Fundamentals with Applications. 2E. Upper
Saddle River, N.J: Prentice Hall, 2001.

[1] ACGIH. Industrial Ventilation: A Manual of Recommended Practice, 23rd Edition. American Conference of
Governmental and Industrial Hygenists, 2004.

[1] ACGIH. Industrial Ventilation: A Manual of Recommended Practice, 23rd Edition. American Conference of
Governmental and Industrial Hygenists, 2004.

528 Bibliography

https://www.wikidata.org/
https://webstore.iec.ch/publication/635
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://www.wikidata.org/
https://webstore.iec.ch/publication/635
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://www.wikidata.org/
https://webstore.iec.ch/publication/635
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf
https://www.wikidata.org/

chemicals Documentation, Release 1.1.4

[1] NFPA (National Fire Prevention Association). NFPA 30: Flammable and Combustible Liquids Code, 2008. Na-
tional Fire Protection Association (NFPA), 2007.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Barton, Allan F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, Second Edition.
CRC Press, 1991.

[1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH,
2012.

[1] Wier, Ron D., and Robert N. Goldberg. “On the Conversion of Thermodynamic Properties to the Basis of the
International Temperature Scale of 1990.” The Journal of Chemical Thermodynamics 28, no. 3 (March 1996):
261-76. doi:10.1006/jcht.1996.0026.

[2] Goldberg, Robert N., and R. D. Weir. “Conversion of Temperatures and Thermodynamic Properties to the Basis of
the International Temperature Scale of 1990 (Technical Report).” Pure and Applied Chemistry 64, no. 10 (1992):
1545-1562. doi:10.1351/pac199264101545.

[1] Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. “Techniques for Approximating the International Temperature
Scale of 1990.” Bureau International Des Poids et Mesures, Sfievres, 1990.

[2] Wier, Ron D., and Robert N. Goldberg. “On the Conversion of Thermodynamic Properties to the Basis of the
International Temperature Scale of 1990.” The Journal of Chemical Thermodynamics 28, no. 3 (March 1996):
261-76. doi:10.1006/jcht.1996.0026.

[3] Goldberg, Robert N., and R. D. Weir. “Conversion of Temperatures and Thermodynamic Properties to the Basis of
the International Temperature Scale of 1990 (Technical Report).” Pure and Applied Chemistry 64, no. 10 (1992):
1545-1562. doi:10.1351/pac199264101545.

[4] Code10.info. “Conversions among International Temperature Scales.” Accessed May 22, 2016.
http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D83:
conversions-among-international-temperature-scales%26catid%3D60:temperature%26Itemid%3D83.

[1] Scheffy, W. J., and E. F. Johnson. “Thermal Conductivities of Liquids at High Temperatures.” Journal of Chemical
& Engineering Data 6, no. 2 (April 1, 1961): 245-49. doi:10.1021/je60010a019

[1] Riedel, L.: Chem. Ing. Tech., 21, 349 (1949); 23: 59, 321, 465 (1951)

[2] Maejima, T., private communication, 1973

[3] Properties of Gases and Liquids”, 3rd Ed., McGraw-Hill, 1977

[1] Lakshmi, D. S., and D. H. L. Prasad. “A Rapid Estimation Method for Thermal Conductivity of Pure Liquids.”
The Chemical Engineering Journal 48, no. 3 (April 1992): 211-14. doi:10.1016/0300-9467(92)80037-B

Bibliography 529

http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D83:conversions-among-international-temperature-scales%26catid%3D60:temperature%26Itemid%3D83
http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D83:conversions-among-international-temperature-scales%26catid%3D60:temperature%26Itemid%3D83

chemicals Documentation, Release 1.1.4

[1] Gharagheizi, Farhad, Poorandokht Ilani-Kashkouli, Mehdi Sattari, Amir H. Mohammadi, Deresh Ramjuger-
nath, and Dominique Richon. “Development of a General Model for Determination of Thermal Conductivity
of Liquid Chemical Compounds at Atmospheric Pressure.” AIChE Journal 59, no. 5 (May 1, 2013): 1702-8.
doi:10.1002/aic.13938

[1] Nicola, Giovanni Di, Eleonora Ciarrocchi, Mariano Pierantozzi, and Roman Stryjek. “A New Equation for the
Thermal Conductivity of Organic Compounds.” Journal of Thermal Analysis and Calorimetry 116, no. 1 (April
1, 2014): 135-40. doi:10.1007/s10973-013-3422-7

[1] Di Nicola, Giovanni, Eleonora Ciarrocchi, Gianluca Coccia, and Mariano Pierantozzi. “Correlations of Ther-
mal Conductivity for Liquid Refrigerants at Atmospheric Pressure or near Saturation.” International Journal of
Refrigeration. 2014. doi:10.1016/j.ijrefrig.2014.06.003

[1] Bahadori, Alireza, and Saeid Mokhatab. “Estimating Thermal Conductivity of Hydrocarbons.” Chemical Engi-
neering 115, no. 13 (December 2008): 52-54

[1] Mersmann, Alfons, and Matthias Kind. “Prediction of Mechanical and Thermal Properties of Pure Liquids, of
Critical Data, and of Vapor Pressure.” Industrial & Engineering Chemistry Research, January 31, 2017. https:
//doi.org/10.1021/acs.iecr.6b04323.

[1] Missenard, F. A., Thermal Conductivity of Organic Liquids of a Series or a Group of Liquids , Rev.
Gen.Thermodyn., 101 649 (1970).

[2] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] Missenard, F. A., Thermal Conductivity of Organic Liquids of a Series or a Group of Liquids , Rev.
Gen.Thermodyn., 101 649 (1970).

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. The Properties of Gases and Liquids. McGraw-Hill Com-
panies, 1987.

[2] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[3] Focke, Walter W. “Correlating Thermal-Conductivity Data for Ternary Liquid Mixtures.” International Journal
of Thermophysics 29, no. 4 (August 1, 2008): 1342-60. https://doi.org/10.1007/s10765-008-0465-2.

[1] Li, C. C. “Thermal Conductivity of Liquid Mixtures.” AIChE Journal 22, no. 5 (1976): 927-30. https://doi.org/
10.1002/aic.690220520.

[2] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. The Properties of Gases and Liquids. McGraw-Hill Com-
panies, 1987.

[2] Filippov, L. P.: Vest. Mosk. Univ., Ser. Fiz. Mat. Estestv. Nauk, (8I0E): 67-69A955); Chem. Abstr., 50: 8276
A956). Filippov, L. P., and N. S. Novoselova: Vestn. Mosk. Univ., Ser. F iz. Mat. Estestv.Nauk, CI0B): 37-
40A955); Chem. Abstr., 49: 11366 A955).

[1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Bromley, LeRoy A., Berkeley. University of California, and U.S. Atomic Energy Commission. Thermal Conduc-
tivity of Gases at Moderate Pressures. UCRL;1852. Berkeley, CA: University of California Radiation Laboratory,
1952.

530 Bibliography

https://doi.org/10.1021/acs.iecr.6b04323
https://doi.org/10.1021/acs.iecr.6b04323
https://doi.org/10.1007/s10765-008-0465-2
https://doi.org/10.1002/aic.690220520
https://doi.org/10.1002/aic.690220520

chemicals Documentation, Release 1.1.4

[2] Stiel, Leonard I., and George Thodos. “The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous
and Liquid Regions.” AIChE Journal 10, no. 1 (January 1, 1964): 26-30. doi:10.1002/aic.690100114

[3] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] Chung, Ting Horng, Lloyd L. Lee, and Kenneth E. Starling. “Applications of Kinetic Gas Theories and Multipa-
rameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity.” Industrial & Engineering
Chemistry Fundamentals 23, no. 1 (February 1, 1984): 8-13. doi:10.1021/i100013a002

[2] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Ely, James F., and H. J. M. Hanley. “Prediction of Transport Properties. 2. Thermal Conductivity of Pure Flu-
ids and Mixtures.” Industrial & Engineering Chemistry Fundamentals 22, no. 1 (February 1, 1983): 90-97.
doi:10.1021/i100009a016.

[2] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Gharagheizi, Farhad, Poorandokht Ilani-Kashkouli, Mehdi Sattari, Amir H. Mohammadi, Deresh Ramjuger-
nath, and Dominique Richon. “Development of a General Model for Determination of Thermal Conductivity
of Liquid Chemical Compounds at Atmospheric Pressure.” AIChE Journal 59, no. 5 (May 1, 2013): 1702-8.
doi:10.1002/aic.13938

[1] Bahadori, Alireza, and Saeid Mokhatab. “Estimating Thermal Conductivity of Hydrocarbons.” Chemical Engi-
neering 115, no. 13 (December 2008): 52-54

[1] Stiel, Leonard I., and George Thodos. “The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous
and Liquid Regions.” AIChE Journal 10, no. 1 (January 1, 1964): 26-30. doi:10.1002/aic.690100114.

[2] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Ely, James F., and H. J. M. Hanley. “Prediction of Transport Properties. 2. Thermal Conductivity of Pure Flu-
ids and Mixtures.” Industrial & Engineering Chemistry Fundamentals 22, no. 1 (February 1, 1983): 90-97.
doi:10.1021/i100009a016.

[2] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Chung, Ting Horng, Mohammad Ajlan, Lloyd L. Lee, and Kenneth E. Starling. “Generalized Multiparameter
Correlation for Nonpolar and Polar Fluid Transport Properties.” Industrial & Engineering Chemistry Research
27, no. 4 (April 1, 1988): 671-79. doi:10.1021/ie00076a024.

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Lindsay, Alexander L., and LeRoy A. Bromley. “Thermal Conductivity of Gas Mixtures.” Industrial & Engineer-
ing Chemistry 42, no. 8 (August 1, 1950): 1508-11. doi:10.1021/ie50488a017.

[2] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[3] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Huber, M. L., R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann,
and E. Vogel. “New International Formulation for the Thermal Conductivity of H2O.” Journal of Physical and
Chemical Reference Data 41, no. 3 (September 1, 2012): 033102. doi:10.1063/1.4738955.

Bibliography 531

chemicals Documentation, Release 1.1.4

[1] Lemmon, E. W., and R. T. Jacobsen. “Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen,
Argon, and Air.” International Journal of Thermophysics 25, no. 1 (January 1, 2004): 21-69. https://doi.org/10.
1023/B:IJOT.0000022327.04529.f3.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-ThermalCondSatL/PPDS8.htm

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-ThermalCondG/PPDS3-ThermCondGas.htm

[1] Kooijman, Harry A., and Ross Taylor. The ChemSep Book. Books on Demand Norderstedt, Germany, 2000.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[2] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[1] Staveley, L. A. K., L. Q. Lobo, and J. C. G. Calado. “Triple-Points of Low Melting Substances and Their Use in
Cryogenic Work.” Cryogenics 21, no. 3 (March 1981): 131-144. doi:10.1016/0011-2275(81)90264-2.

[2] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[3] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] Staveley, L. A. K., L. Q. Lobo, and J. C. G. Calado. “Triple-Points of Low Melting Substances and Their Use in
Cryogenic Work.” Cryogenics 21, no. 3 (March 1981): 131-144. doi:10.1016/0011-2275(81)90264-2.

[2] Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds., NIST WebBook, NIST, http://doi.org/10.
18434/T4M88Q

[3] Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden. “The NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids.” Industrial & Engineering Chemistry Research 61,
no. 42 (October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

[1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

[1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[2] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985.

[3] Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process
Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.

[1] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985.

[2] Pratt, R. M. “Thermodynamic Properties Involving Derivatives: Using the Peng-Robinson Equation of State.”
Chemical Engineering Education 35, no. 2 (March 1, 2001): 112-115.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[2] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.

[3] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

532 Bibliography

https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ThermalCondSatL/PPDS8.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ThermalCondSatL/PPDS8.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ThermalCondG/PPDS3-ThermCondGas.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ThermalCondG/PPDS3-ThermCondGas.htm
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1021/acs.iecr.2c01427
http://doi.org/10.18434/T4M88Q
http://doi.org/10.18434/T4M88Q
https://doi.org/10.1021/acs.iecr.2c01427

chemicals Documentation, Release 1.1.4

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Pini, Matteo. “NiceProp: An Interactive Python-Based Educational Tool for Non-Ideal Compressible Fluid Dy-
namics.” SoftwareX 17 (2022): 100897.

[2] Kouremenos, D. A., and K. A. Antonopoulos. “Isentropic Exponents of Real Gases and Application for the Air
at Temperatures from 150 K to 450 K.” Acta Mechanica 65, no. 1 (January 1, 1987): 81-99. https://doi.org/10.
1007/BF01176874.

[1] Pini, Matteo. “NiceProp: An Interactive Python-Based Educational Tool for Non-Ideal Compressible Fluid Dy-
namics.” SoftwareX 17 (2022): 100897.

[2] Kouremenos, D. A., and K. A. Antonopoulos. “Isentropic Exponents of Real Gases and Application for the Air
at Temperatures from 150 K to 450 K.” Acta Mechanica 65, no. 1 (January 1, 1987): 81-99. https://doi.org/10.
1007/BF01176874.

[1] Pini, Matteo. “NiceProp: An Interactive Python-Based Educational Tool for Non-Ideal Compressible Fluid Dy-
namics.” SoftwareX 17 (2022): 100897.

[2] Kouremenos, D. A., and K. A. Antonopoulos. “Isentropic Exponents of Real Gases and Application for the Air
at Temperatures from 150 K to 450 K.” Acta Mechanica 65, no. 1 (January 1, 1987): 81-99. https://doi.org/10.
1007/BF01176874.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Venkatarathnam, G., and L. R. Oellrich. “Identification of the Phase of a Fluid Using Partial Derivatives of Pres-
sure, Volume, and Temperature without Reference to Saturation Properties: Applications in Phase Equilibria
Calculations.” Fluid Phase Equilibria 301, no. 2 (February 25, 2011): 225-33. doi:10.1016/j.fluid.2010.12.001.

[2] Jayanti, Pranava Chaitanya, and G. Venkatarathnam. “Identification of the Phase of a Substance from the Deriva-
tives of Pressure, Volume and Temperature, without Prior Knowledge of Saturation Properties: Extension to Solid
Phase.” Fluid Phase Equilibria 425 (October 15, 2016): 269-277. doi:10.1016/j.fluid.2016.06.001.

[1] Venkatarathnam, G., and L. R. Oellrich. “Identification of the Phase of a Fluid Using Partial Derivatives of Pres-
sure, Volume, and Temperature without Reference to Saturation Properties: Applications in Phase Equilibria
Calculations.” Fluid Phase Equilibria 301, no. 2 (February 25, 2011): 225-33. doi:10.1016/j.fluid.2010.12.001.

[2] Jayanti, Pranava Chaitanya, and G. Venkatarathnam. “Identification of the Phase of a Substance from the Deriva-
tives of Pressure, Volume and Temperature, without Prior Knowledge of Saturation Properties: Extension to Solid
Phase.” Fluid Phase Equilibria 425 (October 15, 2016): 269-277. doi:10.1016/j.fluid.2016.06.001.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.

[2] Johnson III, Russell D. “NIST 101. Computational Chemistry Comparison and Benchmark Database,” 1999.
https://cccbdb.nist.gov

[1] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process
Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.

[2] Pratt, R. M. “Thermodynamic Properties Involving Derivatives: Using the Peng-Robinson Equation of State.”
Chemical Engineering Education 35, no. 2 (March 1, 2001): 112-115.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

Bibliography 533

https://doi.org/10.1007/BF01176874
https://doi.org/10.1007/BF01176874
https://doi.org/10.1007/BF01176874
https://doi.org/10.1007/BF01176874
https://doi.org/10.1007/BF01176874
https://doi.org/10.1007/BF01176874
https://cccbdb.nist.gov

chemicals Documentation, Release 1.1.4

[2] Antoine, C. 1888. Tensions des Vapeurs: Nouvelle Relation Entre les Tensions et les Tempé. Compt.Rend.
107:681-684.

[3] Yaws, Carl L. The Yaws Handbook of Vapor Pressure: Antoine Coefficients. 1 edition. Houston, Tex: Gulf Pub-
lishing Company, 2007.

[1] Wagner, W. “New Vapour Pressure Measurements for Argon and Nitrogen and a New Method for Establish-
ing Rational Vapour Pressure Equations.” Cryogenics 13, no. 8 (August 1973): 470-82. doi:10.1016/0011-
2275(73)90003-9

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[3] PPDS2 Temperature-Dependent Equation Forms. National Engineering Laboratory, 2004 https://web.archive.org/
web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[2] McGarry, Jack. “Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges.”
Industrial & Engineering Chemistry Process Design and Development 22, no. 2 (April 1, 1983): 313-22.
doi:10.1021/i200021a023.

[3] PPDS2 Temperature-Dependent Equation Forms. National Engineering Laboratory, 2004 https://web.archive.org/
web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Yaws, Carl L. Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and
Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill, 2001.

[2] “ThermoData Engine (TDE103a V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103a/
Eqns-Pure-PhaseBoundaryLG/Yaws-VaporPressure.htm.

[1] “ThermoData Engine (TDE103a V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-PhaseBoundaryLG/PVExpansion.htm

[1] Lee, Byung Ik, and Michael G. Kesler. “A Generalized Thermodynamic Correlation Based on Three-Parameter
Corresponding States.” AIChE Journal 21, no. 3 (1975): 510-527. doi:10.1002/aic.690210313.

[2] Reid, Robert C..; Prausnitz, John M.;; Poling, Bruce E. The Properties of Gases and Liquids. McGraw-Hill Com-
panies, 1987.

[1] Ambrose, D., and J. Walton. “Vapour Pressures up to Their Critical Temperatures of Normal Alkanes and 1-
Alkanols.” Pure and Applied Chemistry 61, no. 8 (1989): 1395-1403. doi:10.1351/pac198961081395.

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Reid, Robert C..; Prausnitz, John M.;; Poling, Bruce E. The Properties of Gases and Liquids. McGraw-Hill Com-
panies, 1987.

[1] Sanjari, Ehsan, Mehrdad Honarmand, Hamidreza Badihi, and Ali Ghaheri. “An Accurate Generalized Model for
Predict Vapor Pressure of Refrigerants.” International Journal of Refrigeration 36, no. 4 (June 2013): 1327-32.
doi:10.1016/j.ijrefrig.2013.01.007.

[1] Edalat, M., R. B. Bozar-Jomehri, and G. A. Mansoori. “Generalized Equation Predicts Vapor Pressure of Hydro-
carbons.” Oil and Gas Journal; 91:5 (February 1, 1993).

[1] Goodman, B. T., W. V. Wilding, J. L. Oscarson, and R. L. Rowley. “Use of the DIPPR Database for the Devel-
opment of QSPR Correlations: Solid Vapor Pressure and Heat of Sublimation of Organic Compounds.” Interna-
tional Journal of Thermophysics 25, no. 2 (March 1, 2004): 337-50. https://doi.org/10.1023/B:IJOT.0000028471.
77933.80.

[2] Feistel, Rainer, and Wolfgang Wagner. “Sublimation Pressure and Sublimation Enthalpy of H2O Ice Ih between
0 and 273.16K.” Geochimica et Cosmochimica Acta 71, no. 1 (January 1, 2007): 36-45. https://doi.org/10.1016/
j.gca.2006.08.034.

534 Bibliography

https://web.archive.org/web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf
https://web.archive.org/web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf
https://web.archive.org/web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf
https://web.archive.org/web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf
https://trc.nist.gov/TDE/Help/TDE103a/Eqns-Pure-PhaseBoundaryLG/Yaws-VaporPressure.htm
https://trc.nist.gov/TDE/Help/TDE103a/Eqns-Pure-PhaseBoundaryLG/Yaws-VaporPressure.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-PhaseBoundaryLG/PVExpansion.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-PhaseBoundaryLG/PVExpansion.htm
https://doi.org/10.1023/B:IJOT.0000028471.77933.80
https://doi.org/10.1023/B:IJOT.0000028471.77933.80
https://doi.org/10.1016/j.gca.2006.08.034
https://doi.org/10.1016/j.gca.2006.08.034

chemicals Documentation, Release 1.1.4

[1] Kretzschmar, Hans-Joachim, and Wolfgang Wagner. International Steam Tables: Properties of Water and Steam
Based on the Industrial Formulation IAPWS-IF97. Springer, 2019.

[1] Kretzschmar, Hans-Joachim, and Wolfgang Wagner. International Steam Tables: Properties of Water and Steam
Based on the Industrial Formulation IAPWS-IF97. Springer, 2019.

[1] Kretzschmar, Hans-Joachim, and Wolfgang Wagner. International Steam Tables: Properties of Water and Steam
Based on the Industrial Formulation IAPWS-IF97. Springer, 2019.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] McGarry, Jack. “Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges.”
Industrial & Engineering Chemistry Process Design and Development 22, no. 2 (April 1, 1983): 313-22.
doi:10.1021/i200021a023.

[2] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[4] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[5] Alcock, C. B., V. P. Itkin, and M. K. Horrigan. “Vapour Pressure Equations for the Metallic Elements: 298-
2500K.” Canadian Metallurgical Quarterly 23, no. 3 (July 1, 1984): 309-13. https://doi.org/10.1179/cmq.1984.
23.3.309.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Prausnitz, John M., Rudiger N. Lichtenthaler, and Edmundo Gomes de Azevedo. Molecular Thermodynamics of
Fluid-Phase Equilibria. 3rd edition. Upper Saddle River, N.J: Prentice Hall, 1998.

[2] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985.

[1] Prausnitz, John M., Rudiger N. Lichtenthaler, and Edmundo Gomes de Azevedo. Molecular Thermodynamics of
Fluid-Phase Equilibria. 3rd edition. Upper Saddle River, N.J: Prentice Hall, 1998.

[2] Walas, Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill Professional, 2000.

[1] Pitzer, Kenneth S., and R. F. Curl. “The Volumetric and Thermodynamic Properties of Fluids. III. Empirical
Equation for the Second Virial Coefficient1.” Journal of the American Chemical Society 79, no. 10 (May 1,
1957): 2369-70. doi:10.1021/ja01567a007.

[1] Smith, H. C. Van Ness Joseph M. Introduction to Chemical Engineering Thermodynamics 4E 1987.

[1] Tsonopoulos, Constantine. “An Empirical Correlation of Second Virial Coefficients.” AIChE Journal 20, no. 2
(March 1, 1974): 263-72. doi:10.1002/aic.690200209.

[1] Tsonopoulos, C., and J. L. Heidman. “From the Virial to the Cubic Equation of State.” Fluid Phase Equilibria 57,
no. 3 (1990): 261-76. doi:10.1016/0378-3812(90)85126-U

[2] Tsonopoulos, Constantine, and John H. Dymond. “Second Virial Coefficients of Normal Alkanes, Linear 1-
Alkanols (and Water), Alkyl Ethers, and Their Mixtures.” Fluid Phase Equilibria, International Workshop on

Bibliography 535

https://doi.org/10.1179/cmq.1984.23.3.309
https://doi.org/10.1179/cmq.1984.23.3.309

chemicals Documentation, Release 1.1.4

Vapour-Liquid Equilibria and Related Properties in Binary and Ternary Mixtures of Ethers, Alkanes and Alka-
nols, 133, no. 1-2 (June 1997): 11-34. doi:10.1016/S0378-3812(97)00058-7.

[1] O`Connell, J. P., and J. M. Prausnitz. “Empirical Correlation of Second Virial Coefficients for Vapor-Liquid
Equilibrium Calculations.” Industrial & Engineering Chemistry Process Design and Development 6, no. 2 (April
1, 1967): 245-50. https://doi.org/10.1021/i260022a016.

[1] Xiang, H. W. “The New Simple Extended Corresponding-States Principle: Vapor Pressure and Second
Virial Coefficient.” Chemical Engineering Science 57, no. 8 (April 2002): 1439049. https://doi.org/10.1016/
S0009-2509(02)00017-9.

[1] Meng, Long, Yuan-Yuan Duan, and Lei Li. “Correlations for Second and Third Virial Coefficients of Pure Fluids.”
Fluid Phase Equilibria 226 (December 10, 2004): 109-20. https://doi.org/10.1016/j.fluid.2004.09.023.

[1] Meng, Long, Yuan-Yuan Duan, and Lei Li. “Correlations for Second and Third Virial Coefficients of Pure Fluids.”
Fluid Phase Equilibria 226 (December 10, 2004): 109-20. https://doi.org/10.1016/j.fluid.2004.09.023.

[1] Orbey, Hasan, and J. H. Vera. “Correlation for the Third Virial Coefficient Using Tc, Pc and as Parameters.”
AIChE Journal 29, no. 1 (January 1, 1983): 107-13. https://doi.org/10.1002/aic.690290115.

[1] Liu, D. X., and H. W. Xiang. “Corresponding-States Correlation and Prediction of Third Virial Coefficients for
a Wide Range of Substances.” International Journal of Thermophysics 24, no. 6 (November 1, 2003): 1667-80.
https://doi.org/10.1023/B:IJOT.0000004098.98614.38.

[1] Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved Corresponding States Method for Polar Fluids:
Correlation of Second Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95. https://doi.org/10.1002/aic.
690230510.

[2] Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross Virial Coefficients of Nonpolar Binary
Mixtures.” Fluid Phase Equilibria 238 (December 1, 2005): 229-38. https://doi.org/10.1016/j.fluid.2005.10.007.

[1] Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved Corresponding States Method for Polar Fluids:
Correlation of Second Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95. https://doi.org/10.1002/aic.
690230510.

[2] Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross Virial Coefficients of Nonpolar Binary
Mixtures.” Fluid Phase Equilibria 238 (December 1, 2005): 229-38. https://doi.org/10.1016/j.fluid.2005.10.007.

[1] Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved Corresponding States Method for Polar Fluids:
Correlation of Second Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95. https://doi.org/10.1002/aic.
690230510.

[2] Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross Virial Coefficients of Nonpolar Binary
Mixtures.” Fluid Phase Equilibria 238 (December 1, 2005): 229-38. https://doi.org/10.1016/j.fluid.2005.10.007.

[1] Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved Corresponding States Method for Polar Fluids:
Correlation of Second Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95. https://doi.org/10.1002/aic.
690230510.

[2] Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross Virial Coefficients of Nonpolar Binary
Mixtures.” Fluid Phase Equilibria 238 (December 1, 2005): 229-38. https://doi.org/10.1016/j.fluid.2005.10.007.

[1] Estela-Uribe, J. F., and J. Jaramillo. “Generalised Virial Equation of State for Natural Gas Systems.” Fluid Phase
Equilibria 231, no. 1 (April 1, 2005): 84-98. https://doi.org/10.1016/j.fluid.2005.01.005.

[2] Lee, Byung Ik, and Michael G. Kesler. “A Generalized Thermodynamic Correlation Based on Three-Parameter
Corresponding States.” AIChE Journal 21, no. 3 (1975): 510-27. https://doi.org/10.1002/aic.690210313.

[1] Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross Virial Coefficients of Nonpolar Binary
Mixtures.” Fluid Phase Equilibria 238 (December 1, 2005): 229-38. https://doi.org/10.1016/j.fluid.2005.10.007.

[1] Letsou, Athena, and Leonard I. Stiel. “Viscosity of Saturated Nonpolar Liquids at Elevated Pressures.” AIChE
Journal 19, no. 2 (1973): 409-11. doi:10.1002/aic.690190241.

536 Bibliography

https://doi.org/10.1021/i260022a016
https://doi.org/10.1016/S0009-2509(02)00017-9
https://doi.org/10.1016/S0009-2509(02)00017-9
https://doi.org/10.1016/j.fluid.2004.09.023
https://doi.org/10.1016/j.fluid.2004.09.023
https://doi.org/10.1002/aic.690290115
https://doi.org/10.1023/B:IJOT.0000004098.98614.38
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1016/j.fluid.2005.10.007
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1016/j.fluid.2005.10.007
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1016/j.fluid.2005.10.007
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1002/aic.690230510
https://doi.org/10.1016/j.fluid.2005.10.007
https://doi.org/10.1016/j.fluid.2005.01.005
https://doi.org/10.1002/aic.690210313
https://doi.org/10.1016/j.fluid.2005.10.007

chemicals Documentation, Release 1.1.4

[1] Przedziecki, J. W., and T. Sridhar. “Prediction of Liquid Viscosities.” AIChE Journal 31, no. 2 (February 1, 1985):
333-35. doi:10.1002/aic.690310225.

[1] Lucas, Klaus. “Ein Einfaches Verfahren Zur Berechnung Der Viskositat von Gasen Und Gasgemischen.” Chemie
Ingenieur Technik 46, no. 4 (February 1, 1974): 157-157. doi:10.1002/cite.330460413.

[2] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Yoon, Poong, and George Thodos. “Viscosity of Nonpolar Gaseous Mixtures at Normal Pressures.” AIChE Jour-
nal 16, no. 2 (1970): 300-304. doi:10.1002/aic.690160225.

[1] Stiel, Leonard I., and George Thodos. “The Viscosity of Nonpolar Gases at Normal Pressures.” AIChE Journal
7, no. 4 (1961): 611-15. doi:10.1002/aic.690070416.

[1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. Properties of Gases and Liquids. McGraw-Hill Companies,
1987.

[1] Gharagheizi, Farhad, Ali Eslamimanesh, Mehdi Sattari, Amir H. Mohammadi, and Dominique Richon. “Cor-
responding States Method for Determination of the Viscosity of Gases at Atmospheric Pressure.” Industrial &
Engineering Chemistry Research 51, no. 7 (February 22, 2012): 3179-85. doi:10.1021/ie202591f.

[1] Herning, F. and Zipperer, L,: “Calculation of the Viscosity of Technical Gas Mixtures from the Viscosity of
Individual Gases, german”, Gas u. Wasserfach (1936) 79, No. 49, 69.

[1] Brokaw, R. S. “Predicting Transport Properties of Dilute Gases.” Industrial & Engineering Chemistry Process
Design and Development 8, no. 2 (April 1, 1969): 240-53. doi:10.1021/i260030a015.

[2] Brokaw, R. S. Viscosity of Gas Mixtures, NASA-TN-D-4496, 1968.

[3] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] Wilke, C. R. “A Viscosity Equation for Gas Mixtures.” The Journal of Chemical Physics 18, no. 4 (April 1, 1950):
517-19. https://doi.org/10.1063/1.1747673.

[1] Wilke, C. R. “A Viscosity Equation for Gas Mixtures.” The Journal of Chemical Physics 18, no. 4 (April 1, 1950):
517-19. https://doi.org/10.1063/1.1747673.

[1] Wilke, C. R. “A Viscosity Equation for Gas Mixtures.” The Journal of Chemical Physics 18, no. 4 (April 1, 1950):
517-19. https://doi.org/10.1063/1.1747673.

[1] Huber, M. L., R. A. Perkins, A. Laesecke, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, E. Vogel, R.
Mares, and K. Miyagawa. “New International Formulation for the Viscosity of H2O.” Journal of Physical and
Chemical Reference Data 38, no. 2 (June 1, 2009): 101-25. doi:10.1063/1.3088050.

[1] Lemmon, E. W., and R. T. Jacobsen. “Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen,
Argon, and Air.” International Journal of Thermophysics 25, no. 1 (January 1, 2004): 21-69. https://doi.org/10.
1023/B:IJOT.0000022327.04529.f3.

[1] Twu, Chorng H. “Internally Consistent Correlation for Predicting Liquid Viscosities of Petroleum Fractions.”
Industrial & Engineering Chemistry Process Design and Development 24, no. 4 (October 1, 1985): 1287-93.
https://doi.org/10.1021/i200031a064.

[1] Lohrenz, John, Bruce G. Bray, and Charles R. Clark. “Calculating Viscosities of Reservoir Fluids From Their
Compositions.” Journal of Petroleum Technology 16, no. 10 (October 1, 1964): 1,171-1,176. https://doi.org/10.
2118/915-PA.

[2] Whitson, Curtis H., and Michael R. Brulé. Phase Behavior. Henry L. Doherty Memorial Fund of AIME, Society
of Petroleum Engineers, 2000.

[1] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[1] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

Bibliography 537

https://doi.org/10.1063/1.1747673
https://doi.org/10.1063/1.1747673
https://doi.org/10.1063/1.1747673
https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
https://doi.org/10.1021/i200031a064
https://doi.org/10.2118/915-PA
https://doi.org/10.2118/915-PA

chemicals Documentation, Release 1.1.4

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-ViscosityG/PPDS5-ViscosityGas.htm.

[1] Viswanath, Dabir S., and G. Natarajan. Databook On The Viscosity Of Liquids. New York: Taylor & Francis,
1989

[1] Viswanath, Dabir S., and G. Natarajan. Databook On The Viscosity Of Liquids. New York: Taylor & Francis,
1989

[1] Viswanath, Dabir S., and G. Natarajan. Databook On The Viscosity Of Liquids. New York: Taylor & Francis,
1989

[1] Yaws, Carl L. Thermophysical Properties of Chemicals and Hydrocarbons, Second Edition. 2 edition. Amsterdam
Boston: Gulf Professional Publishing, 2014.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-ViscositySatL/ViscosityL.htm.

[1] Hydraulic Institute. Hydraulic Institute Engineering Data Book. Cleveland, Ohio: Hydraulic Institute, 1990.

[2] Gardner/Sward. Paint Testing Manual. Physical and Chemical Examination of Paints, Varnishes, Lacquers, and
Colors. 13th Edition. ASTM, 1972.

[3] Euverard, M. R., The Efflux Type Viscosity Cup. National Paint, Varnish, and Lacquer Association, 1948.

[4] API Technical Data Book: General Properties & Characterization. American Petroleum Institute, 7E, 2005.

[5] ASTM. Standard Practice for Conversion of Kinematic Viscosity to Saybolt Universal Viscosity or to Saybolt
Furol Viscosity. D 2161 - 93.

[1] ASTM D2270-10(2016) Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 °C
and 100 °C, ASTM International, West Conshohocken, PA, 2016, http://dx.doi.org/10.1520/D2270-10R16

[1] Viswanath, Dabir S., and G. Natarajan. Databook On The Viscosity Of Liquids. New York: Taylor & Francis,
1989

[2] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[3] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, Eighth Edition. McGraw-Hill Profes-
sional, 2007.

[1] Rackett, Harold G. “Equation of State for Saturated Liquids.” Journal of Chemical & Engineering Data 15, no. 4
(1970): 514-517. doi:10.1021/je60047a012

[1] Hankinson, Risdon W., and George H. Thomson. “A New Correlation for Saturated Densities of Liquids and Their
Mixtures.” AIChE Journal 25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412

[1] Yen, Lewis C., and S. S. Woods. “A Generalized Equation for Computer Calculation of Liquid Densities.” AIChE
Journal 12, no. 1 (1966): 95-99. doi:10.1002/aic.690120119

[1] Gunn, R. D., and Tomoyoshi Yamada. “A Corresponding States Correlation of Saturated Liquid Volumes.” AIChE
Journal 17, no. 6 (1971): 1341-45. doi:10.1002/aic.690170613

[2] Yamada, Tomoyoshi, and Robert D. Gunn. “Saturated Liquid Molar Volumes. Rackett Equation.” Journal of
Chemical & Engineering Data 18, no. 2 (1973): 234-36. doi:10.1021/je60057a006

[1] Hales, J. L, and R Townsend. “Liquid Densities from 293 to 490 K of Nine Aromatic Hydrocarbons.” The Journal
of Chemical Thermodynamics 4, no. 5 (1972): 763-72. doi:10.1016/0021-9614(72)90050-X

[1] Bhirud, Vasant L. “Saturated Liquid Densities of Normal Fluids.” AIChE Journal 24, no. 6 (November 1, 1978):
1127-31. doi:10.1002/aic.690240630

[1] Campbell, Scott W., and George Thodos. “Prediction of Saturated Liquid Densities and Critical Volumes for
Polar and Nonpolar Substances.” Journal of Chemical & Engineering Data 30, no. 1 (January 1, 1985): 102-11.
doi:10.1021/je00039a032.

538 Bibliography

https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ViscosityG/PPDS5-ViscosityGas.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ViscosityG/PPDS5-ViscosityGas.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ViscositySatL/ViscosityL.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ViscositySatL/ViscosityL.htm
http://dx.doi.org/10.1520/D2270-10R16

chemicals Documentation, Release 1.1.4

[1] Mchaweh, A., A. Alsaygh, Kh. Nasrifar, and M. Moshfeghian. “A Simplified Method for Calculating Saturated
Liquid Densities.” Fluid Phase Equilibria 224, no. 2 (October 1, 2004): 157-67. doi:10.1016/j.fluid.2004.06.054

[1] Thomson, G. H., K. R. Brobst, and R. W. Hankinson. “An Improved Correlation for Densities of Compressed
Liquids and Liquid Mixtures.” AIChE Journal 28, no. 4 (July 1, 1982): 671-76. doi:10.1002/aic.690280420

[1] Rackett, Harold G. “Equation of State for Saturated Liquids.” Journal of Chemical & Engineering Data 15, no. 4
(1970): 514-517. doi:10.1021/je60047a012

[2] Danner, Ronald P, and Design Institute for Physical Property Data. Manual for Predicting Chemical Process De-
sign Data. New York, N.Y, 1982.

[1] Hankinson, Risdon W., and George H. Thomson. “A New Correlation for Saturated Densities of Liquids and Their
Mixtures.” AIChE Journal 25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412

[1] Goodman, Benjamin T., W. Vincent Wilding, John L. Oscarson, and Richard L. Rowley. “A Note on the Relation-
ship between Organic Solid Density and Liquid Density at the Triple Point.” Journal of Chemical & Engineering
Data 49, no. 6 (2004): 1512-14. doi:10.1021/je034220e.

[1] Frenkel, Michael, Robert D. Chirico, Vladimir Diky, Xinjian Yan, Qian Dong, and Chris Muzny. “ThermoData
Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept.” Journal of Chemical Infor-
mation and Modeling 45, no. 4 (July 1, 2005): 816-38. https://doi.org/10.1021/ci050067b.

[2] Yaws, Carl L. “Liquid Density of the Elements: A Comprehensive Tabulation for All the Important Elements
from Ag to Zr.” Chemical Engineering 114, no. 12 (2007): 44-47.

[1] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/Help/TDE103b/
Eqns-Pure-DensityLG/VDNSExpansion.htm.

[1] “ThermoData Engine (TDE103b V10.1) User`s Guide.” https://trc.nist.gov/TDE/TDE_Help/
Eqns-Pure-DensityLG/PPDS17.htm.

[1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. [Boca
Raton, FL]: CRC press, 2014.

[1] Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook, 8E. McGraw-Hill Professional, 2007.

[2] Mchaweh, A., A. Alsaygh, Kh. Nasrifar, and M. Moshfeghian. “A Simplified Method for Calculating Saturated
Liquid Densities.” Fluid Phase Equilibria 224, no. 2 (October 1, 2004): 157-67. doi:10.1016/j.fluid.2004.06.054

[3] Hankinson, Risdon W., and George H. Thomson. “A New Correlation for Saturated Densities of Liquids and Their
Mixtures.” AIChE Journal 25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412

[4] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics. [Boca Raton,
FL]: CRC press, 2014.

[5] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.

Bibliography 539

https://doi.org/10.1021/ci050067b
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-DensityLG/VDNSExpansion.htm
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-DensityLG/VDNSExpansion.htm
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-DensityLG/PPDS17.htm
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-DensityLG/PPDS17.htm

chemicals Documentation, Release 1.1.4

540 Bibliography

PYTHON MODULE INDEX

c
chemicals.acentric, 7
chemicals.air, 11
chemicals.combustion, 28
chemicals.critical, 45
chemicals.dipole, 63
chemicals.dippr, 64
chemicals.elements, 77
chemicals.environment, 86
chemicals.exceptions, 90
chemicals.flash_basic, 92
chemicals.heat_capacity, 100
chemicals.iapws, 133
chemicals.identifiers, 183
chemicals.interface, 191
chemicals.lennard_jones, 211
chemicals.miscdata, 224
chemicals.molecular_geometry, 225
chemicals.permittivity, 228
chemicals.phase_change, 230
chemicals.rachford_rice, 246
chemicals.reaction, 262
chemicals.refractivity, 274
chemicals.safety, 280
chemicals.solubility, 297
chemicals.temperature, 304
chemicals.thermal_conductivity, 307
chemicals.triple, 335
chemicals.utils, 338
chemicals.vapor_pressure, 370
chemicals.vectorized, 398
chemicals.virial, 399
chemicals.viscosity, 442
chemicals.volume, 471

541

chemicals Documentation, Release 1.1.4

542 Python Module Index

INDEX

A
air_fuel_ratio_solver() (in module chemi-

cals.combustion), 37
AKI() (in module chemicals.combustion), 40
Aleem() (in module chemicals.interface), 196
Alibakhshi() (in module chemicals.phase_change), 243
Ambrose_Walton() (in module chemi-

cals.vapor_pressure), 386
Amgat() (in module chemicals.volume), 479
Antoine() (in module chemicals.vapor_pressure), 371
Antoine_AB_coeffs_from_point() (in module chem-

icals.vapor_pressure), 393
Antoine_coeffs_from_point() (in module chemi-

cals.vapor_pressure), 392
Antoine_fitting_jacobian() (in module chemi-

cals.vapor_pressure), 384
API10A32() (in module chemicals.interface), 203
API_to_rho() (in module chemicals.utils), 338
API_to_SG() (in module chemicals.utils), 338
atom_fractions() (in module chemicals.elements), 84
atom_matrix() (in module chemicals.elements), 86
atoms_to_Hill() (in module chemicals.elements), 81

B
B_from_Z() (in module chemicals.virial), 400
B_to_Z() (in module chemicals.virial), 399
Bahadori_gas() (in module chemi-

cals.thermal_conductivity), 322
Bahadori_liquid() (in module chemi-

cals.thermal_conductivity), 311
balance_stoichiometry() (in module chemi-

cals.reaction), 272
Bhirud_normal() (in module chemicals.volume), 475
boiling_critical_relation() (in module chemi-

cals.vapor_pressure), 387
brix_to_RI() (in module chemicals.refractivity), 276
Brock_Bird() (in module chemicals.interface), 191
Brokaw() (in module chemicals.viscosity), 449
BVirial_Abbott() (in module chemicals.virial), 414
BVirial_Abbott_fast() (in module chemicals.virial),

421

BVirial_Abbott_mat() (in module chemicals.virial),
434

BVirial_Abbott_vec() (in module chemicals.virial),
433

BVirial_Meng() (in module chemicals.virial), 424
BVirial_Meng_mat() (in module chemicals.virial), 436
BVirial_Meng_vec() (in module chemicals.virial), 435
BVirial_mixture() (in module chemicals.virial), 402
BVirial_Oconnell_Prausnitz() (in module chemi-

cals.virial), 423
BVirial_Oconnell_Prausnitz_mat() (in module

chemicals.virial), 437
BVirial_Oconnell_Prausnitz_vec() (in module

chemicals.virial), 437
BVirial_Pitzer_Curl() (in module chemicals.virial),

413
BVirial_Pitzer_Curl_fast() (in module chemi-

cals.virial), 420
BVirial_Pitzer_Curl_mat() (in module chemi-

cals.virial), 433
BVirial_Pitzer_Curl_vec() (in module chemi-

cals.virial), 432
BVirial_Tsonopoulos() (in module chemicals.virial),

416
BVirial_Tsonopoulos_extended() (in module chem-

icals.virial), 417
BVirial_Tsonopoulos_extended_fast() (in module

chemicals.virial), 422
BVirial_Tsonopoulos_extended_mat() (in module

chemicals.virial), 439
BVirial_Tsonopoulos_extended_vec() (in module

chemicals.virial), 438
BVirial_Tsonopoulos_fast() (in module chemi-

cals.virial), 421
BVirial_Tsonopoulos_mat() (in module chemi-

cals.virial), 435
BVirial_Tsonopoulos_vec() (in module chemi-

cals.virial), 434
BVirial_Xiang() (in module chemicals.virial), 424
BVirial_Xiang_mat() (in module chemicals.virial),

431
BVirial_Xiang_vec() (in module chemicals.virial),

543

chemicals Documentation, Release 1.1.4

431

C
calculate() (chemicals.heat_capacity.ShomateRange

method), 105
calculate() (chemicals.heat_capacity.ZabranskyQuasipolynomial

method), 120
calculate() (chemicals.heat_capacity.ZabranskySpline

method), 119
calculate_integral() (chemi-

cals.heat_capacity.ShomateRange method),
105

calculate_integral() (chemi-
cals.heat_capacity.ZabranskyQuasipolynomial
method), 121

calculate_integral() (chemi-
cals.heat_capacity.ZabranskySpline method),
119

calculate_integral_over_T() (chemi-
cals.heat_capacity.ShomateRange method),
105

calculate_integral_over_T() (chemi-
cals.heat_capacity.ZabranskyQuasipolynomial
method), 121

calculate_integral_over_T() (chemi-
cals.heat_capacity.ZabranskySpline method),
120

Campbell_Thodos() (in module chemicals.volume), 476
Carcinogen() (in module chemicals.safety), 284
Carcinogen_all_methods (in module chemi-

cals.safety), 285
Carcinogen_methods() (in module chemicals.safety),

285
CAS_from_any() (in module chemicals.identifiers), 183
CAS_to_int() (in module chemicals.identifiers), 187
Ceiling() (in module chemicals.safety), 283
Ceiling_all_methods (in module chemicals.safety),

283
Ceiling_methods() (in module chemicals.safety), 283
charge_from_formula() (in module chemi-

cals.elements), 80
check_CAS() (in module chemicals.identifiers), 186
ChemicalMetadata (class in chemicals.identifiers), 188
ChemicalMetadataDB (class in chemicals.identifiers),

189
chemicals.acentric

module, 7
chemicals.air

module, 11
chemicals.combustion

module, 28
chemicals.critical

module, 45
chemicals.dipole

module, 63
chemicals.dippr

module, 64
chemicals.elements

module, 77
chemicals.environment

module, 86
chemicals.exceptions

module, 90
chemicals.flash_basic

module, 92
chemicals.heat_capacity

module, 100
chemicals.iapws

module, 133
chemicals.identifiers

module, 183
chemicals.interface

module, 191
chemicals.lennard_jones

module, 211
chemicals.miscdata

module, 224
chemicals.molecular_geometry

module, 225
chemicals.permittivity

module, 228
chemicals.phase_change

module, 230
chemicals.rachford_rice

module, 246
chemicals.reaction

module, 262
chemicals.refractivity

module, 274
chemicals.safety

module, 280
chemicals.solubility

module, 297
chemicals.temperature

module, 304
chemicals.thermal_conductivity

module, 307
chemicals.triple

module, 335
chemicals.utils

module, 338
chemicals.vapor_pressure

module, 370
chemicals.vectorized

module, 398
chemicals.virial

module, 399
chemicals.viscosity

544 Index

chemicals Documentation, Release 1.1.4

module, 442
chemicals.volume

module, 471
Chemsep_16() (in module chemi-

cals.thermal_conductivity), 333
Chen() (in module chemicals.phase_change), 235
Chueh_Prausnitz_Tc() (in module chemicals.critical),

59
Chueh_Prausnitz_Vc() (in module chemicals.critical),

61
Chung() (in module chemicals.thermal_conductivity),

319
Chung_dense() (in module chemi-

cals.thermal_conductivity), 325
Clapeyron() (in module chemicals.phase_change), 241
combustion_data() (in module chemicals.combustion),

32
combustion_products_mixture() (in module chemi-

cals.combustion), 29
combustion_spec_solver() (in module chemi-

cals.combustion), 36
combustion_stoichiometry() (in module chemi-

cals.combustion), 28
CombustionData (class in chemicals.combustion), 33
CommonMixtureMetadata (class in chemi-

cals.identifiers), 189
COSTALD() (in module chemicals.volume), 472
COSTALD_compressed() (in module chemicals.volume),

478
COSTALD_mixture() (in module chemicals.volume), 480
Cp_data_Poling (in module chemicals.heat_capacity),

130
Cp_dict_characteristic_temperatures_adjusted_psi4_2022a

(in module chemicals.heat_capacity), 130
Cp_dict_characteristic_temperatures_psi4_2022a

(in module chemicals.heat_capacity), 130
Cp_dict_PerryI (in module chemicals.heat_capacity),

130
Cp_minus_Cv() (in module chemicals.utils), 339
Cpg_statistical_mechanics() (in module chemi-

cals.heat_capacity), 113
Cpg_statistical_mechanics_integral() (in mod-

ule chemicals.heat_capacity), 114
Cpg_statistical_mechanics_integral_over_T()

(in module chemicals.heat_capacity), 114
CRC_inorganic() (in module chemicals.volume), 486
CRC_standard_data (in module chemi-

cals.heat_capacity), 130
critical_surface() (in module chemicals.critical), 52
critical_surface_all_methods (in module chemi-

cals.critical), 53
critical_surface_methods() (in module chemi-

cals.critical), 53
Crowl_Louvar_LFL() (in module chemicals.safety), 289

Crowl_Louvar_UFL() (in module chemicals.safety), 293
cryogenics (in module chemicals.identifiers), 190
CVirial_Liu_Xiang() (in module chemicals.virial),

427
CVirial_Liu_Xiang_mat() (in module chemi-

cals.virial), 440
CVirial_Liu_Xiang_vec() (in module chemi-

cals.virial), 439
CVirial_mixture_Orentlicher_Prausnitz() (in

module chemicals.virial), 404
CVirial_Orbey_Vera() (in module chemicals.virial),

426
CVirial_Orbey_Vera_mat() (in module chemi-

cals.virial), 441
CVirial_Orbey_Vera_vec() (in module chemi-

cals.virial), 440

D
d2Antoine_dT2() (in module chemi-

cals.vapor_pressure), 377
d2BVirial_mixture_dzizjs() (in module chemi-

cals.virial), 403
d2CVirial_mixture_dT2_Orentlicher_Prausnitz()

(in module chemicals.virial), 405
d2CVirial_mixture_Orentlicher_Prausnitz_dTdzs()

(in module chemicals.virial), 410
d2CVirial_mixture_Orentlicher_Prausnitz_dzizjs()

(in module chemicals.virial), 408
d2Henry_constants_dT2() (in module chemi-

cals.solubility), 301
d2ns_to_dn2_partials() (in module chemicals.utils),

344
d2TRC_Antoine_extended_dT2() (in module chemi-

cals.vapor_pressure), 381
d2V_dzizjs_virial() (in module chemicals.virial),

412
d2Wagner_dT2() (in module chemicals.vapor_pressure),

378
d2Wagner_original_dT2() (in module chemi-

cals.vapor_pressure), 380
d2xs_to_d2xsn1() (in module chemicals.utils), 345
d2xs_to_dxdn_partials() (in module chemi-

cals.utils), 346
d2Yaws_Psat_dT2() (in module chemi-

cals.vapor_pressure), 382
d3BVirial_mixture_dzizjzks() (in module chemi-

cals.virial), 404
d3CVirial_mixture_dT3_Orentlicher_Prausnitz()

(in module chemicals.virial), 406
d3CVirial_mixture_Orentlicher_Prausnitz_dzizjzks()

(in module chemicals.virial), 409
Dadgostar_Shaw() (in module chemi-

cals.heat_capacity), 124

Index 545

chemicals Documentation, Release 1.1.4

Dadgostar_Shaw_integral() (in module chemi-
cals.heat_capacity), 124

Dadgostar_Shaw_integral_over_T() (in module
chemicals.heat_capacity), 125

Dadgostar_Shaw_terms() (in module chemi-
cals.heat_capacity), 126

dAntoine_dT() (in module chemicals.vapor_pressure),
377

dBVirial_mixture_dzs() (in module chemi-
cals.virial), 403

dCVirial_mixture_dT_Orentlicher_Prausnitz()
(in module chemicals.virial), 405

dCVirial_mixture_Orentlicher_Prausnitz_dzs()
(in module chemicals.virial), 407

dHenry_constants_dT() (in module chemi-
cals.solubility), 300

Diguilio_Teja() (in module chemicals.interface), 201
dipole_moment() (in module chemicals.dipole), 63
dipole_moment_all_methods (in module chemi-

cals.dipole), 64
dipole_moment_methods() (in module chemi-

cals.dipole), 64
DIPPR101_ABC_coeffs_from_point() (in module

chemicals.vapor_pressure), 394
DIPPR9B() (in module chemicals.thermal_conductivity),

318
DIPPR9G() (in module chemicals.thermal_conductivity),

313
DIPPR9H() (in module chemicals.thermal_conductivity),

315
DIPPR9I() (in module chemicals.thermal_conductivity),

315
dippr_compounds() (in module chemicals.identifiers),

190
dmu_Yaws_dT() (in module chemicals.viscosity), 464
dns_to_dn_partials() (in module chemicals.utils),

347
dPPDS9_dT() (in module chemicals.viscosity), 460
dPsat_IAPWS_dT() (in module chemi-

cals.vapor_pressure), 391
dTRC_Antoine_extended_dT() (in module chemi-

cals.vapor_pressure), 380
dV_dzs_virial() (in module chemicals.virial), 411
dWagner_dT() (in module chemicals.vapor_pressure),

378
dWagner_original_dT() (in module chemi-

cals.vapor_pressure), 379
dxs_to_dn_partials() (in module chemicals.utils),

347
dxs_to_dns() (in module chemicals.utils), 348
dxs_to_dxsn1() (in module chemicals.utils), 349
dYaws_Psat_dT() (in module chemi-

cals.vapor_pressure), 382

E
Edalat() (in module chemicals.vapor_pressure), 388
Element (class in chemicals.elements), 78
Eli_Hanley() (in module chemi-

cals.thermal_conductivity), 320
Eli_Hanley_dense() (in module chemi-

cals.thermal_conductivity), 324
entropy_formation() (in module chemicals.reaction),

270
epsilon_Bird_Stewart_Lightfoot_boiling() (in

module chemicals.lennard_jones), 214
epsilon_Bird_Stewart_Lightfoot_critical() (in

module chemicals.lennard_jones), 213
epsilon_Bird_Stewart_Lightfoot_melting() (in

module chemicals.lennard_jones), 214
epsilon_Flynn() (in module chemicals.lennard_jones),

213
epsilon_Stiel_Thodos() (in module chemi-

cals.lennard_jones), 215
epsilon_Tee_Gotoh_Steward_1() (in module chemi-

cals.lennard_jones), 215
epsilon_Tee_Gotoh_Steward_2() (in module chemi-

cals.lennard_jones), 216
EQ100() (in module chemicals.dippr), 65
EQ101() (in module chemicals.dippr), 66
EQ101_fitting_jacobian() (in module chemi-

cals.dippr), 75
EQ102() (in module chemicals.dippr), 67
EQ102_fitting_jacobian() (in module chemi-

cals.dippr), 76
EQ104() (in module chemicals.dippr), 68
EQ105() (in module chemicals.dippr), 69
EQ105_fitting_jacobian() (in module chemi-

cals.dippr), 76
EQ106() (in module chemicals.dippr), 70
EQ106_fitting_jacobian() (in module chemi-

cals.dippr), 76
EQ107() (in module chemicals.dippr), 71
EQ107_fitting_jacobian() (in module chemi-

cals.dippr), 76
EQ114() (in module chemicals.dippr), 72
EQ115() (in module chemicals.dippr), 73
EQ116() (in module chemicals.dippr), 73
EQ127() (in module chemicals.dippr), 74
Eucken() (in module chemicals.thermal_conductivity),

317
Eucken_modified() (in module chemi-

cals.thermal_conductivity), 317

F
Filippov() (in module chemi-

cals.thermal_conductivity), 316
fire_mixing() (in module chemicals.safety), 294
flash_ideal() (in module chemicals.flash_basic), 92

546 Index

chemicals Documentation, Release 1.1.4

flash_inner_loop() (in module chemi-
cals.rachford_rice), 247

flash_inner_loop_all_methods (in module chemi-
cals.rachford_rice), 248

flash_inner_loop_methods() (in module chemi-
cals.rachford_rice), 248

flash_Tb_Tc_Pc() (in module chemicals.flash_basic),
95

flash_wilson() (in module chemicals.flash_basic), 94
fuel_air_spec_solver() (in module chemi-

cals.combustion), 34

G
get_pubchem_db() (in module chemicals.identifiers),

190
Gharagheizi_gas() (in module chemi-

cals.thermal_conductivity), 321
Gharagheizi_liquid() (in module chemi-

cals.thermal_conductivity), 309
Gibbs_formation() (in module chemicals.reaction),

269
Goodman() (in module chemicals.volume), 482
Grieves_Thodos() (in module chemicals.critical), 60
Grigoras() (in module chemicals.critical), 55
GWP() (in module chemicals.environment), 87
GWP_all_methods (in module chemicals.environment),

88
GWP_methods() (in module chemicals.environment), 88

H
Hakim_Steinberg_Stiel() (in module chemi-

cals.interface), 194
Hekayati_Raeissi() (in module chemicals.critical), 56
Henry_constants() (in module chemicals.solubility),

299
Henry_converter() (in module chemicals.solubility),

298
Henry_pressure() (in module chemicals.solubility),

297
Henry_pressure_mixture() (in module chemi-

cals.solubility), 297
Herning_Zipperer() (in module chemicals.viscosity),

448
Hf_basis_converter() (in module chemi-

cals.reaction), 271
Hfg() (in module chemicals.reaction), 265
Hfg_all_methods (in module chemicals.reaction), 266
Hfg_methods() (in module chemicals.reaction), 266
Hfl() (in module chemicals.reaction), 264
Hfl_all_methods (in module chemicals.reaction), 264
Hfl_methods() (in module chemicals.reaction), 264
Hfs() (in module chemicals.reaction), 263
Hfs_all_methods (in module chemicals.reaction), 263
Hfs_methods() (in module chemicals.reaction), 263

Hfus() (in module chemicals.phase_change), 233
Hfus_all_methods (in module chemi-

cals.phase_change), 234
Hfus_methods() (in module chemicals.phase_change),

234
HHV_modified_Dulong() (in module chemi-

cals.combustion), 31
HHV_stoichiometry() (in module chemi-

cals.combustion), 30

I
iapws04_dHenry_air_dT() (in module chemicals.air),

27
iapws04_Henry_air() (in module chemicals.air), 27
iapws11_Psub() (in module chemicals.iapws), 143
iapws92_dPsat_dT() (in module chemicals.iapws), 142
iapws92_Psat() (in module chemicals.iapws), 141
iapws92_rhog_sat() (in module chemicals.iapws), 146
iapws92_rhol_sat() (in module chemicals.iapws), 146
iapws95_A0() (in module chemicals.iapws), 174
iapws95_A0_tau_derivatives() (in module chemi-

cals.iapws), 176
iapws95_Ar() (in module chemicals.iapws), 176
iapws95_d2A0_dtau2() (in module chemicals.iapws),

175
iapws95_d2Ar_ddelta2() (in module chemi-

cals.iapws), 178
iapws95_d2Ar_ddeltadtau() (in module chemi-

cals.iapws), 181
iapws95_d2Ar_dtau2() (in module chemicals.iapws),

180
iapws95_d3A0_dtau3() (in module chemicals.iapws),

175
iapws95_d3Ar_ddelta2dtau() (in module chemi-

cals.iapws), 182
iapws95_d3Ar_ddelta3() (in module chemi-

cals.iapws), 179
iapws95_d3Ar_ddeltadtau2() (in module chemi-

cals.iapws), 181
iapws95_d4Ar_ddelta2dtau2() (in module chemi-

cals.iapws), 183
iapws95_dA0_dtau() (in module chemicals.iapws), 174
iapws95_dAr_ddelta() (in module chemicals.iapws),

177
iapws95_dAr_dtau() (in module chemicals.iapws), 179
iapws95_dPsat_dT() (in module chemicals.iapws), 141
iapws95_drhol_sat_dT() (in module chemi-

cals.iapws), 145
iapws95_MW (in module chemicals.iapws), 147
iapws95_P() (in module chemicals.iapws), 134
iapws95_Pc (in module chemicals.iapws), 147
iapws95_properties() (in module chemicals.iapws),

139
iapws95_Psat() (in module chemicals.iapws), 140

Index 547

chemicals Documentation, Release 1.1.4

iapws95_R (in module chemicals.iapws), 147
iapws95_rho() (in module chemicals.iapws), 133
iapws95_rhoc (in module chemicals.iapws), 147
iapws95_rhog_sat() (in module chemicals.iapws), 145
iapws95_rhol_sat() (in module chemicals.iapws), 144
iapws95_saturation() (in module chemicals.iapws),

143
iapws95_T() (in module chemicals.iapws), 135
iapws95_Tc (in module chemicals.iapws), 147
iapws95_Tsat() (in module chemicals.iapws), 142
iapws95_Tt (in module chemicals.iapws), 147
iapws97_A_region3() (in module chemicals.iapws),

155
iapws97_boundary_3ab() (in module chemi-

cals.iapws), 160
iapws97_boundary_3cd() (in module chemi-

cals.iapws), 158
iapws97_boundary_3ef() (in module chemi-

cals.iapws), 157
iapws97_boundary_3gh() (in module chemi-

cals.iapws), 158
iapws97_boundary_3ij() (in module chemi-

cals.iapws), 158
iapws97_boundary_3jk() (in module chemi-

cals.iapws), 159
iapws97_boundary_3mn() (in module chemi-

cals.iapws), 159
iapws97_boundary_3op() (in module chemi-

cals.iapws), 161
iapws97_boundary_3qu() (in module chemi-

cals.iapws), 159
iapws97_boundary_3rx() (in module chemi-

cals.iapws), 160
iapws97_boundary_3uv() (in module chemi-

cals.iapws), 157
iapws97_boundary_3wx() (in module chemi-

cals.iapws), 160
iapws97_d2A_ddelta2_region3() (in module chemi-

cals.iapws), 155
iapws97_d2A_ddeltadtau_region3() (in module

chemicals.iapws), 157
iapws97_d2A_dtau2_region3() (in module chemi-

cals.iapws), 156
iapws97_d2G0_dtau2_region2() (in module chemi-

cals.iapws), 151
iapws97_d2G0_dtau2_region5() (in module chemi-

cals.iapws), 171
iapws97_d2G_dpi2_region1() (in module chemi-

cals.iapws), 148
iapws97_d2G_dpidtau_region1() (in module chemi-

cals.iapws), 150
iapws97_d2G_dtau2_region1() (in module chemi-

cals.iapws), 149
iapws97_d2Gr_dpi2_region2() (in module chemi-

cals.iapws), 153
iapws97_d2Gr_dpi2_region5() (in module chemi-

cals.iapws), 172
iapws97_d2Gr_dpidtau_region2() (in module chem-

icals.iapws), 154
iapws97_d2Gr_dpidtau_region5() (in module chem-

icals.iapws), 173
iapws97_d2Gr_dtau2_region2() (in module chemi-

cals.iapws), 154
iapws97_d2Gr_dtau2_region5() (in module chemi-

cals.iapws), 173
iapws97_dA_ddelta_region3() (in module chemi-

cals.iapws), 155
iapws97_dA_dtau_region3() (in module chemi-

cals.iapws), 156
iapws97_dG0_dtau_region2() (in module chemi-

cals.iapws), 151
iapws97_dG0_dtau_region5() (in module chemi-

cals.iapws), 170
iapws97_dG_dpi_region1() (in module chemi-

cals.iapws), 148
iapws97_dG_dtau_region1() (in module chemi-

cals.iapws), 149
iapws97_dGr_dpi_region2() (in module chemi-

cals.iapws), 152
iapws97_dGr_dpi_region5() (in module chemi-

cals.iapws), 172
iapws97_dGr_dtau_region2() (in module chemi-

cals.iapws), 153
iapws97_dGr_dtau_region5() (in module chemi-

cals.iapws), 173
iapws97_G0_region2() (in module chemicals.iapws),

150
iapws97_G0_region5() (in module chemicals.iapws),

170
iapws97_G_region1() (in module chemicals.iapws),

148
iapws97_Gr_region2() (in module chemicals.iapws),

152
iapws97_Gr_region5() (in module chemicals.iapws),

171
iapws97_P() (in module chemicals.iapws), 136
iapws97_R (in module chemicals.iapws), 147
iapws97_region3_a() (in module chemicals.iapws),

161
iapws97_region3_b() (in module chemicals.iapws),

161
iapws97_region3_c() (in module chemicals.iapws),

162
iapws97_region3_d() (in module chemicals.iapws),

162
iapws97_region3_e() (in module chemicals.iapws),

162
iapws97_region3_f() (in module chemicals.iapws),

548 Index

chemicals Documentation, Release 1.1.4

163
iapws97_region3_g() (in module chemicals.iapws),

163
iapws97_region3_h() (in module chemicals.iapws),

163
iapws97_region3_i() (in module chemicals.iapws),

164
iapws97_region3_j() (in module chemicals.iapws),

164
iapws97_region3_k() (in module chemicals.iapws),

164
iapws97_region3_l() (in module chemicals.iapws),

165
iapws97_region3_m() (in module chemicals.iapws),

165
iapws97_region3_n() (in module chemicals.iapws),

165
iapws97_region3_o() (in module chemicals.iapws),

166
iapws97_region3_p() (in module chemicals.iapws),

166
iapws97_region3_q() (in module chemicals.iapws),

166
iapws97_region3_r() (in module chemicals.iapws),

167
iapws97_region3_s() (in module chemicals.iapws),

167
iapws97_region3_t() (in module chemicals.iapws),

167
iapws97_region3_u() (in module chemicals.iapws),

168
iapws97_region3_v() (in module chemicals.iapws),

168
iapws97_region3_w() (in module chemicals.iapws),

168
iapws97_region3_x() (in module chemicals.iapws),

169
iapws97_region3_y() (in module chemicals.iapws),

169
iapws97_region3_z() (in module chemicals.iapws),

169
iapws97_rho() (in module chemicals.iapws), 136
iapws97_T() (in module chemicals.iapws), 137
ideal_gas() (in module chemicals.volume), 481
IDs_to_CASs() (in module chemicals.identifiers), 186
IDT_to_DCN() (in module chemicals.combustion), 41
ignition_delay() (in module chemicals.combustion),

44
ignition_delay_all_methods (in module chemi-

cals.combustion), 44
ignition_delay_methods() (in module chemi-

cals.combustion), 44
Ihmels() (in module chemicals.critical), 54
index_hydrogen_deficiency() (in module chemi-

cals.elements), 83
inerts (in module chemicals.identifiers), 190
int_to_CAS() (in module chemicals.identifiers), 187
isentropic_exponent() (in module chemicals.utils),

349
isentropic_exponent_PT() (in module chemi-

cals.utils), 350
isentropic_exponent_PV() (in module chemi-

cals.utils), 350
isentropic_exponent_TV() (in module chemi-

cals.utils), 351
isobaric_expansion() (in module chemicals.utils),

352
isothermal_compressibility() (in module chemi-

cals.utils), 352
ISTExpansion() (in module chemicals.interface), 208
ITS90_68_difference() (in module chemi-

cals.temperature), 305

J
Jasper() (in module chemicals.interface), 206
Joule_Thomson() (in module chemicals.utils), 340

K
k_air_lemmon() (in module chemi-

cals.thermal_conductivity), 330
k_data_Perrys_8E_2_314 (in module chemi-

cals.thermal_conductivity), 334
k_data_Perrys_8E_2_315 (in module chemi-

cals.thermal_conductivity), 334
k_data_VDI_PPDS_10 (in module chemi-

cals.thermal_conductivity), 334
k_data_VDI_PPDS_9 (in module chemi-

cals.thermal_conductivity), 334
k_IAPWS() (in module chemicals.thermal_conductivity),

328
K_value() (in module chemicals.flash_basic), 96
kl_Mersmann_Kind() (in module chemi-

cals.thermal_conductivity), 312

L
Lakshmi_Prasad() (in module chemi-

cals.thermal_conductivity), 308
Lastovka_Shaw() (in module chemicals.heat_capacity),

108
Lastovka_Shaw_integral() (in module chemi-

cals.heat_capacity), 110
Lastovka_Shaw_integral_over_T() (in module

chemicals.heat_capacity), 110
Lastovka_Shaw_T_for_Hm() (in module chemi-

cals.heat_capacity), 111
Lastovka_Shaw_T_for_Sm() (in module chemi-

cals.heat_capacity), 112

Index 549

chemicals Documentation, Release 1.1.4

Lastovka_Shaw_term_A() (in module chemi-
cals.heat_capacity), 112

Lastovka_solid() (in module chemi-
cals.heat_capacity), 127

Lastovka_solid_integral() (in module chemi-
cals.heat_capacity), 128

Lastovka_solid_integral_over_T() (in module
chemicals.heat_capacity), 128

Lee_Kesler() (in module chemicals.vapor_pressure),
385

Lee_Kesler_virial_CSP_Vcijs() (in module chemi-
cals.virial), 430

lemmon2000_air_A0() (in module chemicals.air), 15
lemmon2000_air_Ar() (in module chemicals.air), 17
lemmon2000_air_d2A0_dtau2() (in module chemi-

cals.air), 16
lemmon2000_air_d2Ar_ddelta2() (in module chemi-

cals.air), 20
lemmon2000_air_d2Ar_ddeltadtau() (in module

chemicals.air), 21
lemmon2000_air_d2Ar_dtau2() (in module chemi-

cals.air), 18
lemmon2000_air_d3A0_dtau3() (in module chemi-

cals.air), 16
lemmon2000_air_d3Ar_ddelta2dtau() (in module

chemicals.air), 22
lemmon2000_air_d3Ar_ddelta3() (in module chemi-

cals.air), 20
lemmon2000_air_d3Ar_ddeltadtau2() (in module

chemicals.air), 22
lemmon2000_air_d3Ar_dtau3() (in module chemi-

cals.air), 18
lemmon2000_air_d4A0_dtau4() (in module chemi-

cals.air), 17
lemmon2000_air_d4Ar_ddelta2dtau2() (in module

chemicals.air), 23
lemmon2000_air_d4Ar_ddelta3dtau() (in module

chemicals.air), 24
lemmon2000_air_d4Ar_ddelta4() (in module chemi-

cals.air), 21
lemmon2000_air_d4Ar_ddeltadtau3() (in module

chemicals.air), 23
lemmon2000_air_d4Ar_dtau4() (in module chemi-

cals.air), 19
lemmon2000_air_dA0_dtau() (in module chemi-

cals.air), 16
lemmon2000_air_dAr_ddelta() (in module chemi-

cals.air), 19
lemmon2000_air_dAr_dtau() (in module chemi-

cals.air), 17
lemmon2000_air_MW (in module chemicals.air), 15
lemmon2000_air_P_bubble() (in module chemi-

cals.air), 13
lemmon2000_air_P_dew() (in module chemicals.air),

13
lemmon2000_air_P_max (in module chemicals.air), 15
lemmon2000_air_P_reducing (in module chemi-

cals.air), 15
lemmon2000_air_R (in module chemicals.air), 15
lemmon2000_air_rho_bubble() (in module chemi-

cals.air), 14
lemmon2000_air_rho_dew() (in module chemi-

cals.air), 14
lemmon2000_air_rho_reducing (in module chemi-

cals.air), 15
lemmon2000_air_T_max (in module chemicals.air), 15
lemmon2000_air_T_reducing (in module chemi-

cals.air), 15
lemmon2000_P() (in module chemicals.air), 12
lemmon2000_rho() (in module chemicals.air), 11
lemmon2000_T() (in module chemicals.air), 12
Letsou_Stiel() (in module chemicals.viscosity), 442
LFL() (in module chemicals.safety), 287
LFL_all_methods (in module chemicals.safety), 289
LFL_ISO_10156_2017() (in module chemicals.safety),

290
LFL_methods() (in module chemicals.safety), 288
LHV_from_HHV() (in module chemicals.combustion), 31
Li() (in module chemicals.critical), 58
Li_Johns_Ahmadi_solution() (in module chemi-

cals.rachford_rice), 251
Lindsay_Bromley() (in module chemi-

cals.thermal_conductivity), 326
linear() (in module chemicals.molecular_geometry),

226
linear_all_methods (in module chemi-

cals.molecular_geometry), 227
linear_methods() (in module chemi-

cals.molecular_geometry), 226
Liu() (in module chemicals.phase_change), 236
LK_omega() (in module chemicals.acentric), 10
logP() (in module chemicals.environment), 89
logP_all_methods (in module chemicals.environment),

90
logP_methods() (in module chemicals.environment), 90
lookup_VDI_tabular_data() (in module chemi-

cals.miscdata), 224
Lorentz_Bray_Clarke() (in module chemi-

cals.viscosity), 458
Lucas() (in module chemicals.viscosity), 444
Lucas_gas() (in module chemicals.viscosity), 446

M
mass_fractions() (in module chemicals.elements), 84
Meissner() (in module chemicals.critical), 54
Meng_Duan_2005_virial_CSP_kijs() (in module

chemicals.virial), 430
Meng_virial_a() (in module chemicals.virial), 425

550 Index

chemicals Documentation, Release 1.1.4

Mersmann_Kind_predictor() (in module chemi-
cals.critical), 49

Mersmann_Kind_sigma() (in module chemi-
cals.interface), 197

Meybodi_Daryasafar_Karimi() (in module chemi-
cals.interface), 204

mgm3_to_ppmv() (in module chemicals.safety), 295
Miqueu() (in module chemicals.interface), 195
Missenard() (in module chemi-

cals.thermal_conductivity), 314
mix_component_flows() (in module chemicals.utils),

353
mix_component_partial_flows() (in module chemi-

cals.utils), 354
mix_multiple_component_flows() (in module chem-

icals.utils), 355
mixing_logarithmic() (in module chemicals.utils),

355
mixing_power() (in module chemicals.utils), 356
mixing_simple() (in module chemicals.utils), 357
mixture_atomic_composition() (in module chemi-

cals.elements), 85
mixture_atomic_composition_ordered() (in mod-

ule chemicals.elements), 85
MK() (in module chemicals.phase_change), 239
modified_Wilson_Tc() (in module chemicals.critical),

60
modified_Wilson_Vc() (in module chemicals.critical),

62
module

chemicals.acentric, 7
chemicals.air, 11
chemicals.combustion, 28
chemicals.critical, 45
chemicals.dipole, 63
chemicals.dippr, 64
chemicals.elements, 77
chemicals.environment, 86
chemicals.exceptions, 90
chemicals.flash_basic, 92
chemicals.heat_capacity, 100
chemicals.iapws, 133
chemicals.identifiers, 183
chemicals.interface, 191
chemicals.lennard_jones, 211
chemicals.miscdata, 224
chemicals.molecular_geometry, 225
chemicals.permittivity, 228
chemicals.phase_change, 230
chemicals.rachford_rice, 246
chemicals.reaction, 262
chemicals.refractivity, 274
chemicals.safety, 280
chemicals.solubility, 297

chemicals.temperature, 304
chemicals.thermal_conductivity, 307
chemicals.triple, 335
chemicals.utils, 338
chemicals.vapor_pressure, 370
chemicals.vectorized, 398
chemicals.virial, 399
chemicals.viscosity, 442
chemicals.volume, 471

molar_refractivity_from_RI() (in module chemi-
cals.refractivity), 278

molar_velocity_to_velocity() (in module chemi-
cals.utils), 357

molecular_diameter() (in module chemi-
cals.lennard_jones), 216

molecular_diameter_all_methods (in module chem-
icals.lennard_jones), 218

molecular_diameter_methods() (in module chemi-
cals.lennard_jones), 217

molecular_weight() (in module chemicals.elements),
82

MON() (in module chemicals.combustion), 43
MON_all_methods (in module chemicals.combustion),

43
MON_methods() (in module chemicals.combustion), 43
mu_air_lemmon() (in module chemicals.viscosity), 455
mu_data_Dutt_Prasad (in module chemicals.viscosity),

467
mu_data_Perrys_8E_2_312 (in module chemi-

cals.viscosity), 467
mu_data_Perrys_8E_2_313 (in module chemi-

cals.viscosity), 467
mu_data_VDI_PPDS_7 (in module chemicals.viscosity),

467
mu_data_VDI_PPDS_8 (in module chemicals.viscosity),

468
mu_data_VN2 (in module chemicals.viscosity), 467
mu_data_VN2E (in module chemicals.viscosity), 467
mu_data_VN3 (in module chemicals.viscosity), 467
mu_IAPWS() (in module chemicals.viscosity), 453
mu_TDE() (in module chemicals.viscosity), 464
mu_Yaws() (in module chemicals.viscosity), 463
mu_Yaws_fitting_jacobian() (in module chemi-

cals.viscosity), 464
MW() (in module chemicals.identifiers), 184

N
nested_formula_parser() (in module chemi-

cals.elements), 80
NFPA_30_classification() (in module chemi-

cals.safety), 296
Nicola() (in module chemicals.thermal_conductivity),

311

Index 551

chemicals Documentation, Release 1.1.4

Nicola_original() (in module chemi-
cals.thermal_conductivity), 310

none_and_length_check() (in module chemi-
cals.utils), 358

normalize() (in module chemicals.utils), 358

O
octane_sensitivity() (in module chemi-

cals.combustion), 40
ODP() (in module chemicals.environment), 88
ODP_all_methods (in module chemicals.environment),

89
ODP_methods() (in module chemicals.environment), 89
omega() (in module chemicals.acentric), 7
omega_all_methods (in module chemicals.acentric), 8
omega_definition() (in module chemicals.acentric), 9
omega_methods() (in module chemicals.acentric), 8
OverspeficiedError (class in chemicals.exceptions),

91

P
Parachor() (in module chemicals.utils), 340
Pc() (in module chemicals.critical), 47
Pc_all_methods (in module chemicals.critical), 48
Pc_methods() (in module chemicals.critical), 48
Perez_Boehman_MON_from_ignition_delay() (in

module chemicals.combustion), 39
Perez_Boehman_RON_from_ignition_delay() (in

module chemicals.combustion), 39
periodic_table (in module chemicals.elements), 77
PeriodicTable (class in chemicals.elements), 78
permittivity_CRC() (in module chemi-

cals.permittivity), 229
permittivity_data_CRC (in module chemi-

cals.permittivity), 229
permittivity_IAPWS() (in module chemi-

cals.permittivity), 228
Perry_151() (in module chemicals.heat_capacity), 126
phase_change_data_Alibakhshi_Cs (in module

chemicals.phase_change), 245
phase_change_data_Perrys2_150 (in module chemi-

cals.phase_change), 245
phase_change_data_VDI_PPDS_4 (in module chemi-

cals.phase_change), 245
phase_identification_parameter() (in module

chemicals.utils), 359
phase_identification_parameter_phase() (in

module chemicals.utils), 359
PhaseCountReducedError (class in chemi-

cals.exceptions), 91
PhaseExistenceImpossible (class in chemi-

cals.exceptions), 91
PiecewiseHeatCapacity (class in chemi-

cals.heat_capacity), 129

Pitzer() (in module chemicals.phase_change), 238
Pitzer_sigma() (in module chemicals.interface), 192
polarizability_from_RI() (in module chemi-

cals.refractivity), 277
Poling() (in module chemicals.heat_capacity), 105
Poling_integral() (in module chemi-

cals.heat_capacity), 106
Poling_integral_over_T() (in module chemi-

cals.heat_capacity), 107
PPDS12() (in module chemicals.phase_change), 244
PPDS14() (in module chemicals.interface), 207
PPDS15() (in module chemicals.heat_capacity), 121
PPDS17() (in module chemicals.volume), 485
PPDS2() (in module chemicals.heat_capacity), 107
PPDS3() (in module chemicals.thermal_conductivity),

332
PPDS5() (in module chemicals.viscosity), 460
PPDS8() (in module chemicals.thermal_conductivity),

332
PPDS9() (in module chemicals.viscosity), 459
ppmv_to_mgm3() (in module chemicals.safety), 294
PR_water_K_value() (in module chemi-

cals.flash_basic), 99
property_mass_to_molar() (in module chemi-

cals.utils), 360
property_molar_to_mass() (in module chemi-

cals.utils), 361
Przedziecki_Sridhar() (in module chemi-

cals.viscosity), 443
Psat_data_Alcock_elements (in module chemi-

cals.vapor_pressure), 395
Psat_data_AntoineExtended (in module chemi-

cals.vapor_pressure), 395
Psat_data_AntoinePoling (in module chemi-

cals.vapor_pressure), 395
Psat_data_Perrys2_8 (in module chemi-

cals.vapor_pressure), 395
Psat_data_VDI_PPDS_3 (in module chemi-

cals.vapor_pressure), 395
Psat_data_WagnerMcGarry (in module chemi-

cals.vapor_pressure), 395
Psat_data_WagnerPoling (in module chemi-

cals.vapor_pressure), 395
Psat_IAPWS() (in module chemicals.vapor_pressure),

390
Psub_Clapeyron() (in module chemi-

cals.vapor_pressure), 389
Pt() (in module chemicals.triple), 337
Pt_all_methods (in module chemicals.triple), 337
Pt_methods() (in module chemicals.triple), 337

R
Rachford_Rice_flash_error() (in module chemi-

cals.rachford_rice), 260

552 Index

chemicals Documentation, Release 1.1.4

Rachford_Rice_polynomial() (in module chemi-
cals.rachford_rice), 259

Rachford_Rice_solution() (in module chemi-
cals.rachford_rice), 248

Rachford_Rice_solution2() (in module chemi-
cals.rachford_rice), 256

Rachford_Rice_solution_binary_dd() (in module
chemicals.rachford_rice), 254

Rachford_Rice_solution_Leibovici_Neoschil()
(in module chemicals.rachford_rice), 251

Rachford_Rice_solution_Leibovici_Neoschil_dd()
(in module chemicals.rachford_rice), 255

Rachford_Rice_solution_LN2() (in module chemi-
cals.rachford_rice), 249

Rachford_Rice_solution_mpmath() (in module
chemicals.rachford_rice), 254

Rachford_Rice_solution_polynomial() (in module
chemicals.rachford_rice), 252

Rachford_Rice_solutionN() (in module chemi-
cals.rachford_rice), 258

Rackett() (in module chemicals.volume), 471
Rackett_fit() (in module chemicals.volume), 483
Rackett_mixture() (in module chemicals.volume), 479
radius_of_gyration() (in module chemicals.utils),

361
REFPROP_sigma() (in module chemicals.interface), 204
remove_zeros() (in module chemicals.utils), 363
RG() (in module chemicals.molecular_geometry), 225
RG_all_methods (in module chemi-

cals.molecular_geometry), 226
RG_methods() (in module chemi-

cals.molecular_geometry), 225
rho_data_COSTALD (in module chemicals.volume), 486
rho_data_CRC_inorg_l (in module chemicals.volume),

487
rho_data_CRC_inorg_l_const (in module chemi-

cals.volume), 487
rho_data_CRC_inorg_s_const (in module chemi-

cals.volume), 487
rho_data_CRC_virial (in module chemicals.volume),

487
rho_data_Perry_8E_105_l (in module chemi-

cals.volume), 486
rho_data_SNM0 (in module chemicals.volume), 486
rho_data_VDI_PPDS_2 (in module chemicals.volume),

487
rho_to_API() (in module chemicals.utils), 363
rho_to_Vm() (in module chemicals.utils), 364
RI() (in module chemicals.refractivity), 274
RI_all_methods (in module chemicals.refractivity), 275
RI_from_molar_refractivity() (in module chemi-

cals.refractivity), 278
RI_IAPWS() (in module chemicals.refractivity), 275
RI_methods() (in module chemicals.refractivity), 275

RI_to_brix() (in module chemicals.refractivity), 277
Riedel() (in module chemicals.phase_change), 234
RON() (in module chemicals.combustion), 42
RON_all_methods (in module chemicals.combustion),

42
RON_methods() (in module chemicals.combustion), 42
Rowlinson_Bondi() (in module chemi-

cals.heat_capacity), 123
Rowlinson_Poling() (in module chemi-

cals.heat_capacity), 123

S
S0g() (in module chemicals.reaction), 268
S0g_all_methods (in module chemicals.reaction), 269
S0g_methods() (in module chemicals.reaction), 269
S0l() (in module chemicals.reaction), 267
S0l_all_methods (in module chemicals.reaction), 268
S0l_methods() (in module chemicals.reaction), 268
S0s() (in module chemicals.reaction), 266
S0s_all_methods (in module chemicals.reaction), 267
S0s_methods() (in module chemicals.reaction), 267
Sanjari() (in module chemicals.vapor_pressure), 387
Sastri_Rao() (in module chemicals.interface), 193
Sato_Riedel() (in module chemi-

cals.thermal_conductivity), 308
search_chemical() (in module chemicals.identifiers),

185
serialize_formula() (in module chemicals.elements),

81
SG() (in module chemicals.utils), 341
SG_to_API() (in module chemicals.utils), 342
Sheffy_Johnson() (in module chemi-

cals.thermal_conductivity), 307
Shomate() (in module chemicals.heat_capacity), 102
Shomate_integral() (in module chemi-

cals.heat_capacity), 103
Shomate_integral_over_T() (in module chemi-

cals.heat_capacity), 104
ShomateRange (class in chemicals.heat_capacity), 104
sigma_Bird_Stewart_Lightfoot_boiling() (in

module chemicals.lennard_jones), 219
sigma_Bird_Stewart_Lightfoot_critical_1() (in

module chemicals.lennard_jones), 219
sigma_Bird_Stewart_Lightfoot_critical_2() (in

module chemicals.lennard_jones), 218
sigma_Bird_Stewart_Lightfoot_melting() (in

module chemicals.lennard_jones), 220
sigma_data_Jasper_Lange (in module chemi-

cals.interface), 209
sigma_data_Mulero_Cachadina (in module chemi-

cals.interface), 209
sigma_data_Somayajulu (in module chemi-

cals.interface), 209

Index 553

chemicals Documentation, Release 1.1.4

sigma_data_Somayajulu2 (in module chemi-
cals.interface), 209

sigma_data_VDI_PPDS_11 (in module chemi-
cals.interface), 209

sigma_Flynn() (in module chemicals.lennard_jones),
218

sigma_Gharagheizi_1() (in module chemi-
cals.interface), 198

sigma_Gharagheizi_2() (in module chemi-
cals.interface), 198

sigma_IAPWS() (in module chemicals.interface), 202
sigma_Silva_Liu_Macedo() (in module chemi-

cals.lennard_jones), 222
sigma_Stiel_Thodos() (in module chemi-

cals.lennard_jones), 220
sigma_Tee_Gotoh_Steward_1() (in module chemi-

cals.lennard_jones), 221
sigma_Tee_Gotoh_Steward_2() (in module chemi-

cals.lennard_jones), 222
similarity_variable() (in module chemi-

cals.elements), 82
simple_formula_parser() (in module chemi-

cals.elements), 79
Skin() (in module chemicals.safety), 283
Skin_all_methods (in module chemicals.safety), 284
Skin_methods() (in module chemicals.safety), 284
SMK() (in module chemicals.phase_change), 238
SNM0() (in module chemicals.volume), 477
solubility_eutectic() (in module chemi-

cals.solubility), 302
solubility_parameter() (in module chemi-

cals.solubility), 303
solve_flow_composition_mix() (in module chemi-

cals.utils), 364
Somayajulu() (in module chemicals.interface), 205
sorted_CAS_key() (in module chemicals.identifiers),

188
speed_of_sound() (in module chemicals.utils), 365
STEL() (in module chemicals.safety), 281
STEL_all_methods (in module chemicals.safety), 281
STEL_methods() (in module chemicals.safety), 281
Stiel_polar_factor() (in module chemi-

cals.acentric), 9
Stiel_Thodos() (in module chemicals.viscosity), 446
Stiel_Thodos_dense() (in module chemi-

cals.thermal_conductivity), 323
Stockmayer() (in module chemicals.lennard_jones),

211
Stockmayer_all_methods (in module chemi-

cals.lennard_jones), 213
Stockmayer_methods() (in module chemi-

cals.lennard_jones), 212
stoichiometric_matrix() (in module chemi-

cals.reaction), 272

Suzuki_LFL() (in module chemicals.safety), 289
Suzuki_UFL() (in module chemicals.safety), 292

T
T_autoignition() (in module chemicals.safety), 286
T_autoignition_all_methods (in module chemi-

cals.safety), 287
T_autoignition_methods() (in module chemi-

cals.safety), 287
T_converter() (in module chemicals.temperature), 305
T_flash() (in module chemicals.safety), 285
T_flash_all_methods (in module chemicals.safety),

286
T_flash_methods() (in module chemicals.safety), 286
T_star() (in module chemicals.lennard_jones), 223
Tarakad_Danner_virial_CSP_kijs() (in module

chemicals.virial), 428
Tarakad_Danner_virial_CSP_omegaijs() (in mod-

ule chemicals.virial), 429
Tarakad_Danner_virial_CSP_Pcijs() (in module

chemicals.virial), 429
Tarakad_Danner_virial_CSP_Tcijs() (in module

chemicals.virial), 428
Tb() (in module chemicals.phase_change), 230
Tb_all_methods (in module chemicals.phase_change),

231
Tb_methods() (in module chemicals.phase_change), 231
Tb_Tc_relationship() (in module chemicals.critical),

57
Tc() (in module chemicals.critical), 45
Tc_all_method_types (in module chemicals.critical),

46
Tc_all_methods (in module chemicals.critical), 46
Tc_methods() (in module chemicals.critical), 46
TDE_CSExpansion() (in module chemi-

cals.heat_capacity), 122
TDE_PVExpansion() (in module chemi-

cals.vapor_pressure), 376
TDE_RIXExpansion() (in module chemi-

cals.refractivity), 279
TDE_VDNS_rho() (in module chemicals.volume), 484
TEOS10_BAW_derivatives() (in module chemi-

cals.air), 24
TEOS10_CAAW_derivatives() (in module chemi-

cals.air), 25
TEOS10_CAWW_derivatives() (in module chemi-

cals.air), 26
third_property() (in module chemicals.critical), 53
Tm() (in module chemicals.phase_change), 232
Tm_all_methods (in module chemicals.phase_change),

233
Tm_depression_eutectic() (in module chemi-

cals.solubility), 303
Tm_methods() (in module chemicals.phase_change), 232

554 Index

chemicals Documentation, Release 1.1.4

to_num() (in module chemicals.utils), 366
Townsend_Hales() (in module chemicals.volume), 474
TRC_Antoine_extended() (in module chemi-

cals.vapor_pressure), 374
TRC_Antoine_extended_fitting_jacobian() (in

module chemicals.vapor_pressure), 384
TRC_gas_data (in module chemicals.heat_capacity), 130
TRCCp() (in module chemicals.heat_capacity), 100
TRCCp_integral() (in module chemi-

cals.heat_capacity), 101
TRCCp_integral_over_T() (in module chemi-

cals.heat_capacity), 102
TrivialSolutionError (class in chemi-

cals.exceptions), 91
Tsat_IAPWS() (in module chemicals.vapor_pressure),

391
Tt() (in module chemicals.triple), 336
Tt_all_methods (in module chemicals.triple), 336
Tt_methods() (in module chemicals.triple), 336
TWA() (in module chemicals.safety), 282
TWA_all_methods (in module chemicals.safety), 282
TWA_methods() (in module chemicals.safety), 282
Twu_1985() (in module chemicals.viscosity), 457

U
UFL() (in module chemicals.safety), 291
UFL_all_methods (in module chemicals.safety), 292
UFL_methods() (in module chemicals.safety), 292
UnderspecifiedError (class in chemicals.exceptions),

90

V
v_molar_to_v() (in module chemicals.utils), 366
v_to_v_molar() (in module chemicals.utils), 366
vapor_mass_quality() (in module chemicals.utils),

367
Vc() (in module chemicals.critical), 48
Vc_all_methods (in module chemicals.critical), 49
Vc_methods() (in module chemicals.critical), 49
Velasco() (in module chemicals.phase_change), 240
velocity_to_molar_velocity() (in module chemi-

cals.utils), 367
Vetere() (in module chemicals.phase_change), 237
Vfs_to_zs() (in module chemicals.utils), 342
vibration_frequency_cm_to_characteristic_temperature()

(in module chemicals.heat_capacity), 115
viscosity_converter() (in module chemi-

cals.viscosity), 465
viscosity_gas_Gharagheizi() (in module chemi-

cals.viscosity), 447
viscosity_index() (in module chemicals.viscosity),

466
Viswanath_Natarajan_2() (in module chemi-

cals.viscosity), 461

Viswanath_Natarajan_2_exponential() (in module
chemicals.viscosity), 462

Viswanath_Natarajan_3() (in module chemi-
cals.viscosity), 462

Vm_to_rho() (in module chemicals.utils), 343
volume_VDI_PPDS() (in module chemicals.volume), 483

W
Wagner() (in module chemicals.vapor_pressure), 372
Wagner_fitting_jacobian() (in module chemi-

cals.vapor_pressure), 383
Wagner_original() (in module chemi-

cals.vapor_pressure), 373
Wagner_original_fitting_jacobian() (in module

chemicals.vapor_pressure), 383
Wassiljewa_Herning_Zipperer() (in module chemi-

cals.thermal_conductivity), 327
Watson() (in module chemicals.phase_change), 242
Watson_K() (in module chemicals.utils), 343
Watson_n() (in module chemicals.phase_change), 242
Watson_sigma() (in module chemicals.interface), 207
Weinaug_Katz() (in module chemicals.interface), 200
Wilke() (in module chemicals.viscosity), 450
Wilke_large() (in module chemicals.viscosity), 453
Wilke_prefactored() (in module chemicals.viscosity),

452
Wilke_prefactors() (in module chemicals.viscosity),

451
Wilson_K_value() (in module chemicals.flash_basic),

98
Winterfeld_Scriven_Davis() (in module chemi-

cals.interface), 199
ws_to_zs() (in module chemicals.utils), 368

Y
Yamada_Gunn() (in module chemicals.volume), 474
Yaws_Psat() (in module chemicals.vapor_pressure),

375
Yaws_Psat_fitting_jacobian() (in module chemi-

cals.vapor_pressure), 384
Yen_Woods_saturation() (in module chemi-

cals.volume), 473
Yoon_Thodos() (in module chemicals.viscosity), 445

Z
Z() (in module chemicals.utils), 344
Z_from_virial_density_form() (in module chemi-

cals.virial), 401
Z_from_virial_pressure_form() (in module chemi-

cals.virial), 401
Zabransky_cubic() (in module chemi-

cals.heat_capacity), 117
Zabransky_cubic_integral() (in module chemi-

cals.heat_capacity), 118

Index 555

chemicals Documentation, Release 1.1.4

Zabransky_cubic_integral_over_T() (in module
chemicals.heat_capacity), 118

zabransky_dicts (in module chemicals.heat_capacity),
130

Zabransky_quasi_polynomial() (in module chemi-
cals.heat_capacity), 115

Zabransky_quasi_polynomial_integral() (in mod-
ule chemicals.heat_capacity), 116

Zabransky_quasi_polynomial_integral_over_T()
(in module chemicals.heat_capacity), 116

ZabranskyQuasipolynomial (class in chemi-
cals.heat_capacity), 120

ZabranskySpline (class in chemicals.heat_capacity),
119

Zc() (in module chemicals.critical), 51
Zc_all_methods (in module chemicals.critical), 52
Zc_methods() (in module chemicals.critical), 52
zs_to_Vfs() (in module chemicals.utils), 368
zs_to_ws() (in module chemicals.utils), 369
Zuo_Stenby() (in module chemicals.interface), 193

556 Index

	Key Features & Capabilities
	Chemicals tutorial
	Importing
	Design philosophy
	Working with Elements
	Working with Chemical Identifiers

	Acentric Factor (chemicals.acentric)
	Lookup Functions
	Definitions
	Correlations

	Air: Fundamental Equation of State for Air (chemicals.air)
	Dry Air Basic Solvers
	Dry Air Bubble/Dew Points
	Dry Air Constants
	Dry Air Ideal Gas Terms
	Dry Air Residual Terms
	Humid Air Virial Terms
	Henry’s Law for Air in Water

	Combustion Calculations (chemicals.combustion)
	Combustion Stoichiometry
	Heat of Combustion
	Heat of Combustion and Stiochiometry
	Basic Combustion Spec Solvers
	Engine Combustion
	Lookup Functions

	Critical Properties (chemicals.critical)
	Critical Temperature
	Critical Pressure
	Critical Volume
	Critical Compressibility Factor
	Critical Property Relationships
	Critical Temperature of Mixtures
	Critical Volume of Mixtures

	Dipole Moment (chemicals.dipole)
	Lookup Functions

	DIPPR Fit Equations (chemicals.dippr)
	Equations
	Jacobians (for fitting)

	Periodic Table (chemicals.elements)
	Periodic Table and Elements
	Working with Formulas
	Working with Parsed Formulas

	Environmental Properties (chemicals.environment)
	Global Warming Potential
	Ozone Depletion Potential
	Octanol-Water Partition Coefficient

	Exceptions Generated by Chemicals (chemicals.exceptions)
	Ideal VLE and Flash Initialization (chemicals.flash_basic)
	Ideal Flash Function
	Flash Initialization
	Equilibrium Constants

	Heat Capacity (chemicals.heat_capacity)
	Gas Heat Capacity Model Equations
	Gas Heat Capacity Estimation Models
	Gas Heat Capacity Theory
	Liquid Heat Capacity Model Equations
	Liquid Heat Capacity Estimation Models
	Solid Heat Capacity Estimation Models
	Utility methods
	Fit Coefficients

	IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)
	IAPWS-95 Basic Solvers
	IAPWS-97 Basic Solvers
	IAPWS-95 Properties
	IAPWS Saturation Pressure/Temperature
	IAPWS Saturation Density
	IAPWS Constants
	IAPWS-97 Region 1
	IAPWS-97 Region 2
	IAPWS-97 Region 3
	IAPWS-97 Region 3 PT Backwards Equation Boundaries
	IAPWS-97 Region 3 PT Backwards Equations
	IAPWS-97 Region 5
	IAPWS-95 Ideal Gas Terms
	IAPWS-95 Residual Terms

	Chemical Metadata (chemicals.identifiers)
	Search Functions
	CAS Number Utilities
	Database Objects
	Chemical Groups

	Surface Tension (chemicals.interface)
	Pure Component Correlations
	Mixing Rules
	Correlations for Specific Substances
	Petroleum Correlations
	Oil-Water Interfacial Tension Correlations
	Fit Correlations
	Fit Coefficients

	Lennard-Jones Models (chemicals.lennard_jones)
	Stockmayer Parameter
	Stockmayer Parameter Correlations
	Molecular Diameter
	Molecular Diameter Correlations
	Utility Functions

	Miscellaneous Data (chemicals.miscdata)
	Temperature Dependent data

	Chemical Geometry (chemicals.molecular_geometry)
	Lookup Functions

	Support for Numba (chemicals.numba)
	Relative Permittivity/Dielectric Constant (chemicals.permittivity)
	Correlations for Specific Substances
	Fit Coefficients

	Phase Change Properties (chemicals.phase_change)
	Boiling Point
	Melting Point
	Heat of Fusion
	Heat of Vaporization at Tb Correlations
	Heat of Vaporization at T Correlations
	Heat of Vaporization at T Model Equations
	Heat of Sublimation
	Fit Coefficients

	Rachford-Rice Equation Solvers (chemicals.rachford_rice)
	Two Phase - Interface
	Two Phase - Implementations
	Two Phase - High-Precision Implementations
	Three Phase
	N Phase
	Two Phase Utility Functions
	Numerical Notes

	Chemical Reactions (chemicals.reaction)
	Solid Heat of Formation
	Liquid Heat of Formation
	Gas Heat of Formation
	Solid Absolute Entropy
	Liquid Absolute Entropy
	Gas Absolute Entropy
	Utility Functions
	Chemical Reactions

	Refractive Index (chemicals.refractivity)
	Lookup Functions
	Correlations for Specific Substances
	Unit Conversions
	Utility functions
	Pure Component Liquid Fit Correlations

	Health, Safety, and Flammability Properties (chemicals.safety)
	Short-term Exposure Limit
	Time-Weighted Average Exposure Limit
	Ceiling Limit
	Skin Absorbance
	Carcinogenicity
	Flash Point
	Autoignition Point
	Lower Flammability Limit
	Upper Flammability Limit
	Mixture Flammability Limit
	Utility Methods

	Solubility (chemicals.solubility)
	Henry’s Law
	Utility functions

	ITS Temperature Scales (chemicals.temperature)
	Conversion functions

	Thermal Conductivity (chemicals.thermal_conductivity)
	Pure Low Pressure Liquid Correlations
	Pure High Pressure Liquid Correlations
	Liquid Mixing Rules
	Pure Low Pressure Gas Correlations
	Pure High Pressure Gas Correlations
	Gas Mixing Rules
	Correlations for Specific Substances
	Fit Correlations
	Fit Coefficients

	Triple Point (chemicals.triple)
	Triple Temperature
	Triple Pressure

	Utilities (chemicals.utils)
	Support for pint Quantities (chemicals.units)
	Vapor Pressure (chemicals.vapor_pressure)
	Fit Correlations
	Fit Correlation Derivatives
	Jacobians (for fitting)
	Vapor Pressure Estimation Correlations
	Sublimation Pressure Estimation Correlations
	Correlations for Specific Substances
	Analytical Fit Equations
	Fit Coefficients

	Support for Numpy Arrays (chemicals.vectorized)
	Virial Coefficients (chemicals.virial)
	Utilities
	Second Virial Correlations
	Third Virial Correlations
	Cross-Parameters
	Second Virial Correlations Dense Implementations
	Third Virial Correlations Dense Implementations

	Viscosity (chemicals.viscosity)
	Pure Low Pressure Liquid Correlations
	Pure High Pressure Liquid Correlations
	Liquid Mixing Rules
	Pure Low Pressure Gas Correlations
	Pure High Pressure Gas Correlations
	Gas Mixing Rules
	Correlations for Specific Substances
	Petroleum Correlations
	Fit Correlations
	Conversion functions
	Fit Coefficients

	Density/Volume (chemicals.volume)
	Pure Low Pressure Liquid Correlations
	Pure High Pressure Liquid Correlations
	Liquid Mixing Rules
	Gas Correlations
	Pure Solid Correlations
	Pure Component Liquid Fit Correlations
	Pure Component Solid Fit Correlations
	Fit Coefficients

	Developer’s Guide and Roadmap
	Scope and Future Features
	Contributing
	Running Tests
	Docstrings
	Doctest
	Type Hints
	Supported Python Versions
	Packaging
	Code Formatting
	Documentation
	Sample Notebooks
	Continuous Integration
	Load Speed
	RAM Usage
	Additional Material

	Computing Properties of Water and Steam in Python

	Installation
	Latest source code
	Bug reports
	License information
	Citation
	Indices and tables
	Bibliography
	Python Module Index
	Index

