

chemicals: Chemical properties component of Chemical Engineering Design Library (ChEDL)

Key Features & Capabilities

The chemicals library features an extensive compilation of pure component
chemical data that can serve engineers, scientists, technicians, and anyone
working with chemicals. The chemicals library facilitates the retrieval and
calculation of:

	Chemical constants including formula, molecular weight, normal boiling and
melting points, triple point, heat of formation, absolute entropy of
formation, heat of fusion, similarity variable, dipole moment, acentric
factor, etc.

	Assorted information of safety and toxicity of chemicals.

	Methods (and their respective coefficients) for the calculation of temperature
and pressure dependent chemical properties including vapor pressure,
heat capacity, molar volume, thermal conductivity, surface tension, dynamic
viscosity, heat of vaporization, relative permittivity, etc.

	Methods to solve thermodynamic phase equilibrium, including flash routines,
vapor-liquid equilibrium constant correlations, and both numerical and
analytical solutions for the Rachford Rice and Li-Johns-Ahmadi equations.
Rachford Rice solutions for systems of 3 or more phases are also available.

Data for over 20,000 chemicals are made available as local databanks in this
library. All databanks are loaded on-demand, saving loading time and RAM. For
example, if only data on the normal boiling point is required, the chemicals
library will only load normal boiling point datasets. This on-demand loading
feature makes the chemicals library an attractive dependence for software
modeling chemical processes. In fact, The Biorefinery Simulation and Techno-Economic
Analysis Modules (BioSTEAM) [https://biosteam.readthedocs.io/en/latest/]
is reliant on the chemicals library for the simulation of unit operations.

The chemicals library also supports integration with
Numba [https://numba.pydata.org/], a powerful accelerator that works
well with NumPy; Pint [https://pint.readthedocs.io/en/stable/] Quantity
objects to keep track of units of measure; and
NumPy vectorized [https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html]
functions.

If you need to know something about a chemical, give chemicals a try.

Tutorial

	Chemicals tutorial

API

	Acentric Factor (chemicals.acentric)
	Lookup Functions

	Definitions

	Correlations

	Air: Fundamental Equation of State for Air (chemicals.air)
	Dry Air Basic Solvers

	Dry Air Bubble/Dew Points

	Dry Air Constants

	Dry Air Ideal Gas Terms

	Dry Air Residual Terms

	Humid Air Virial Terms

	Henry’s Law for Air in Water

	Combustion Calculations (chemicals.combustion)
	Combustion Stoichiometry

	Heat of Combustion

	Heat of Combustion and Stiochiometry

	Basic Combustion Spec Solvers

	Engine Combustion

	Lookup Functions

	Critical Properties (chemicals.critical)
	Critical Temperature

	Critical Pressure

	Critical Volume

	Critical Compressibility Factor

	Critical Property Relationships

	Critical Temperature of Mixtures

	Critical Volume of Mixtures

	Dipole Moment (chemicals.dipole)
	Lookup Functions

	DIPPR Fit Equations (chemicals.dippr)
	Equations

	Jacobians (for fitting)

	Periodic Table (chemicals.elements)
	Periodic Table and Elements

	Working with Formulas

	Working with Parsed Formulas

	Environmental Properties (chemicals.environment)
	Global Warming Potential

	Ozone Depletion Potential

	Octanol-Water Partition Coefficient

	Exceptions Generated by Chemicals (chemicals.exceptions)

	Ideal VLE and Flash Initialization (chemicals.flash_basic)
	Ideal Flash Function

	Flash Initialization

	Equilibrium Constants

	Heat Capacity (chemicals.heat_capacity)
	Gas Heat Capacity Model Equations

	Gas Heat Capacity Estimation Models

	Gas Heat Capacity Theory

	Liquid Heat Capacity Model Equations

	Liquid Heat Capacity Estimation Models

	Solid Heat Capacity Estimation Models

	Utility methods

	Fit Coefficients

	IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)
	IAPWS-95 Basic Solvers

	IAPWS-97 Basic Solvers

	IAPWS-95 Properties

	IAPWS Saturation Pressure/Temperature

	IAPWS Saturation Density

	IAPWS Constants

	IAPWS-97 Region 1

	IAPWS-97 Region 2

	IAPWS-97 Region 3

	IAPWS-97 Region 3 PT Backwards Equation Boundaries

	IAPWS-97 Region 3 PT Backwards Equations

	IAPWS-97 Region 5

	IAPWS-95 Ideal Gas Terms

	IAPWS-95 Residual Terms

	Chemical Metadata (chemicals.identifiers)
	Search Functions

	CAS Number Utilities

	Database Objects

	Chemical Groups

	Surface Tension (chemicals.interface)
	Pure Component Correlations

	Mixing Rules

	Correlations for Specific Substances

	Petroleum Correlations

	Oil-Water Interfacial Tension Correlations

	Fit Correlations

	Fit Coefficients

	Lennard-Jones Models (chemicals.lennard_jones)
	Stockmayer Parameter

	Stockmayer Parameter Correlations

	Molecular Diameter

	Molecular Diameter Correlations

	Utility Functions

	Miscellaneous Data (chemicals.miscdata)
	Temperature Dependent data

	Chemical Geometry (chemicals.molecular_geometry)
	Lookup Functions

	Support for Numba (chemicals.numba)

	Relative Permittivity/Dielectric Constant (chemicals.permittivity)
	Correlations for Specific Substances

	Fit Coefficients

	Phase Change Properties (chemicals.phase_change)
	Boiling Point

	Melting Point

	Heat of Fusion

	Heat of Vaporization at Tb Correlations

	Heat of Vaporization at T Correlations

	Heat of Vaporization at T Model Equations

	Heat of Sublimation

	Fit Coefficients

	Rachford-Rice Equation Solvers (chemicals.rachford_rice)
	Two Phase - Interface

	Two Phase - Implementations

	Two Phase - High-Precision Implementations

	Three Phase

	N Phase

	Two Phase Utility Functions

	Numerical Notes

	Chemical Reactions (chemicals.reaction)
	Solid Heat of Formation

	Liquid Heat of Formation

	Gas Heat of Formation

	Solid Absolute Entropy

	Liquid Absolute Entropy

	Gas Absolute Entropy

	Utility Functions

	Chemical Reactions

	Refractive Index (chemicals.refractivity)
	Lookup Functions

	Correlations for Specific Substances

	Unit Conversions

	Utility functions

	Pure Component Liquid Fit Correlations

	Health, Safety, and Flammability Properties (chemicals.safety)
	Short-term Exposure Limit

	Time-Weighted Average Exposure Limit

	Ceiling Limit

	Skin Absorbance

	Carcinogenicity

	Flash Point

	Autoignition Point

	Lower Flammability Limit

	Upper Flammability Limit

	Mixture Flammability Limit

	Utility Methods

	Solubility (chemicals.solubility)
	Henry’s Law

	Utility functions

	ITS Temperature Scales (chemicals.temperature)
	Conversion functions

	Thermal Conductivity (chemicals.thermal_conductivity)
	Pure Low Pressure Liquid Correlations

	Pure High Pressure Liquid Correlations

	Liquid Mixing Rules

	Pure Low Pressure Gas Correlations

	Pure High Pressure Gas Correlations

	Gas Mixing Rules

	Correlations for Specific Substances

	Fit Correlations

	Fit Coefficients

	Triple Point (chemicals.triple)
	Triple Temperature

	Triple Pressure

	Utilities (chemicals.utils)

	Support for pint Quantities (chemicals.units)

	Vapor Pressure (chemicals.vapor_pressure)
	Fit Correlations

	Fit Correlation Derivatives

	Jacobians (for fitting)

	Vapor Pressure Estimation Correlations

	Sublimation Pressure Estimation Correlations

	Correlations for Specific Substances

	Analytical Fit Equations

	Fit Coefficients

	Support for Numpy Arrays (chemicals.vectorized)

	Virial Coefficients (chemicals.virial)
	Utilities

	Second Virial Correlations

	Third Virial Correlations

	Cross-Parameters

	Second Virial Correlations Dense Implementations

	Third Virial Correlations Dense Implementations

	Viscosity (chemicals.viscosity)
	Pure Low Pressure Liquid Correlations

	Pure High Pressure Liquid Correlations

	Liquid Mixing Rules

	Pure Low Pressure Gas Correlations

	Pure High Pressure Gas Correlations

	Gas Mixing Rules

	Correlations for Specific Substances

	Petroleum Correlations

	Fit Correlations

	Conversion functions

	Fit Coefficients

	Density/Volume (chemicals.volume)
	Pure Low Pressure Liquid Correlations

	Pure High Pressure Liquid Correlations

	Liquid Mixing Rules

	Gas Correlations

	Pure Solid Correlations

	Pure Component Liquid Fit Correlations

	Pure Component Solid Fit Correlations

	Fit Coefficients

Developer's guide

	Developer’s Guide and Roadmap

	Computing Properties of Water and Steam in Python

Installation

Get the latest version of chemicals from
https://pypi.python.org/pypi/chemicals/

If you have an installation of Python with pip, simple install it with:

$ pip install chemicals

If you are using conda [https://docs.conda.io/en/latest/], you can install
chemicals from conda-forge channel:

$ conda install -c conda-forge chemicals

To get the git version, run:

$ git clone git://github.com/CalebBell/chemicals.git

Latest source code

The latest development version of chemicals’s sources can be obtained at

https://github.com/CalebBell/chemicals

Bug reports

To report bugs, please use the chemicals’s Bug Tracker at:

https://github.com/CalebBell/chemicals/issues

License information

See LICENSE.txt for information on the terms & conditions for usage
of this software, and a DISCLAIMER OF ALL WARRANTIES.

Although not required by the chemicals license, if it is convenient for you,
please cite chemicals if used in your work. Please also consider contributing
any changes you make back, and benefit the community.

Citation

To cite chemicals in publications use:

Caleb Bell, Yoel Rene Cortes-Pena, and Contributors (2016-2023). Chemicals: Chemical properties component of Chemical Engineering Design Library (ChEDL)
https://github.com/CalebBell/chemicals.

Indices and tables

	Index

	Module Index

	Search Page

Chemicals tutorial

Importing

Chemicals can be imported as a standalone library, or all of its functions
and classes may be imported with star imports:

>>> import numpy as np
>>> import chemicals # Good practice
>>> from chemicals import * # Bad practice but convenient

All functions are available from either the main chemicals module or the
submodule; i.e. both chemicals.Antoine and
chemicals.vapor_pressure.Antoine are valid ways of accessing a function.

Design philosophy

Like all libraries, this was developed to scratch my own itches.

The bulk of this library’s API is considered quite stable; enhancements to
functions and classes will still happen, and default methods when using a generic
correlation interface may change to newer and more accurate correlations as
they are published and reviewed.

All functions are designed to accept inputs in base SI units. However, any
set of consistent units given to a function will return a consistent result.
The user is directed to unit conversion libraries such as
pint [https://github.com/hgrecco/pint] to perform unit conversions if they
prefer not to work in SI units. The tutorial for using it with chemicals is
at chemicals.units.

There are two ways to use numpy arrays with chemicals. The easiest way to use numpy is a vectorized module,
which wraps all of the chemicals functions with np.vectorize. Instead of importing
from chemicals, the user can import from chemicals.vectorized:

>>> from chemicals.vectorized import *
>>> Antoine(np.linspace(100, 200, 5), A=8.95894, B=510.595, C=-15.95)
array([7.65674361e+02, 1.89116754e+04, 1.41237759e+05, 5.60609191e+05,
 1.53010431e+06])

Inputs do not need to be numpy arrays; they can be any iterable:

>>> import chemicals.vectorized
>>> chemicals.vectorized.Tc(['108-88-3', '7732-18-5'])
array([591.75 , 647.096])

It is possible to switch back and forth between the namespaces with a subsequent
import:

>>> from chemicals import *

The second way is Numba [https://github.com/numba/numba]. This
optional dependency provides the speed you expect from NumPy arrays -
or better. In some cases, much better. The tutorial for using it
is at chemicals.numba, but in general use it the same way but
with a different import.

>>> import chemicals.numba_vectorized

Note that numba can also be used to speed up scalar calculations without numpy.

>>> import chemicals.numba

Working with Elements

Chemicals contains a periodic table.

>>> from chemicals import *
>>> periodic_table.Na
<Element Sodium (Na), number 11, MW=22.98977>
>>> periodic_table.U.MW
238.02891
>>> periodic_table['Th'].CAS
'7440-29-1'
>>> periodic_table.lead.protons
82
>>> periodic_table['7440-57-5'].symbol
'Au'
>>> len(periodic_table)
118
>>> 'gold' in periodic_table
True
>>> periodic_table.He.protons, periodic_table.He.neutrons, periodic_table.He.electrons # Standard number of protons, neutrons, electrons
(2, 2, 2)
>>> periodic_table.He.phase # Phase of the element in the standard state
'g'
>>> periodic_table.He.Hf # Heat of formation in standard state in J/mol - by definition 0
0.0
>>> periodic_table.He.S0 # Absolute entropy (J/(mol*K) in standard state - non-zero)
126.2
>>> periodic_table.Kr.block, periodic_table.Kr.period, periodic_table.Kr.group
('p', 4, 18)
>>> periodic_table.Rn.InChI
'Rn'
>>> periodic_table.Rn.smiles
'[Rn]'
>>> periodic_table.Pu.number
94
>>> periodic_table.Pu.PubChem
23940
>>> periodic_table.Bi.InChI_key
'JCXGWMGPZLAOME-UHFFFAOYSA-N'

The periodic table is a singleton of the periodic table class PeriodicTable.
Each attribute accessed is a reference to an element object Element.
The elements are the basic building blocks of every chemical.

Working with Chemical Identifiers

Chemicals comes with a large library of chemical identifiers.
Chemicals has various ways of searching through its database.
There are a number of different support chemical identifiers as well.

CAS numbers - These are the primary identifiers in Chemicals. A CAS number uniquely identifies a chemical molecule. 7732-18-5 is the CAS number for water. Sometimes, it also identifies the phase of the chemical. 7440-44-0 [https://commonchemistry.cas.org/detail?cas_rn=7440-44-0] is the CAS number for carbon in general, but 7782-42-5 [https://commonchemistry.cas.org/detail?cas_rn=7782-42-5] is the CAS number for graphite and 7782-40-3 [https://commonchemistry.cas.org/detail?cas_rn=7782-40-3] is the CAS number for diamond. Note that because these are assigned by people, mistakes are made and often multiple CAS numbers point to the same compound. Common Chemistry lists 57 “retired” CAS numbers which point to the element carbon. The CAS numbers in Chemicals come mostly from PubChem as there was no Common Chemistry project back then.

PubChem IDs - These are the identifiers for each compound in the PubChem database. Most of the metadata in Chemicals came from PubChem. 962 [https://pubchem.ncbi.nlm.nih.gov/compound/962] is the Pubchem identifier for water. Each entry in PubChem comes with a structure. Sometimes structures are found to be duplicates of each other and entries are merged; these identifiers are assigned automatically by the NIH.

Smiles - These are actual chemicals structures, rendered into easily readable text. Multiple smiles strings can represent the same compound; they are not unique. Both “C(=O)=O” and “O=C=O” are valid SMILES strings for identifying CO2. Programs like rdkit [https://www.rdkit.org/] can create a computational representation of the molecule from a SMILES string. To solve this duplication issue, a concept of a canonical SMILES string was developed which is supposed to be unique, but in general is not reliable at all and only consistent within the same molecular modeling software. There is in general no organization which controls this format, but a there is an effort in the open source community to standardize the format called opensmiles [http://opensmiles.org/]

Chemical Formula - These are what every student is taught in chemistry class. H2O is the formula for water. Is OH2 also a valid formula? Yes. There is a convention called the Hill convention (implemented in chemicals as atoms_to_Hill() which specified the H2O is how the formula should be written. Not all formulas, especially inorganic formulas or older formulas, follow this convention. Formulas are in general NOT unique. Even simple formulas which seem like there should only be one compound with that formula are often duplicated; carbonic acid and performic acid both have the formula “CH2O3”. Searching Chemical’s databases with a formula is a common mistake by users. While you can do it and you may get a match, there is no guarantee the match you wanted was found. The following snippet of code counts the number of compounds with the same formula as asprin; illustrating why searching by formula is a bad idea.

>>> from chemicals.identifiers import pubchem_db
>>> len(list(i for i in pubchem_db if i.formula == 'C9H8O4'))
20

Chemical name - Anyone can call a chemical by any name, so predictably names are a mess. A large number of names were retrieved from PubChem, and form the basis for searches by name in Chemicals. Only one chemical hit will be found for each name search. There is an effort by IUPAC to systematically generate names for each chemical structure, called OPSIN [https://opsin.ch.cam.ac.uk/]. Most chemicals in Chemicals have a correct, associated IUPAC name retrieved from PubChem. There are in the range of a million names that can be looked by in Chemicals.

InChI - Short for the IUPAC International Chemical Identifier, these are programmatically derived strings which represent a compound. A non-profit was established to maintain a software package to manage this format; it is not like SMILES where lots of software implement the format. There contain all the information required to form a structure. There is a variant which is truly unique per compound; this is what is in Chemicals. They have more features than SMILES strings. “C6H14/c1-3-5-6-4-2/h3-6H2,1-2H3” is a sample string, for n-hexane. This is the best possible type of an identifier for a chemical. These can get to be quite long for complex structures.

InChI key - A 27-character hash of the unique InChI identifier. These are also in Chemicals and generated by the same InChI software. These were intended to be unique, and easy to search for as search engines don’t search for InChI strings well. Some collisions have been detected. ‘VLKZOEOYAKHREP-UHFFFAOYSA-N’ is the InChI key for n-hexane as an example.

The main interface for looking up a chemical from one of these identifying markers is search_chemical(). The search can be performed with any of the following input forms:

	Name, in IUPAC form or common form or a synonym registered in PubChem

	InChI name, prefixed by ‘InChI=1S/’ or ‘InChI=1/’

	InChI key, prefixed by ‘InChIKey=’

	PubChem CID, prefixed by ‘PubChem=’

	SMILES (prefix with ‘SMILES=’ to ensure smiles parsing; ex.
‘C’ will return Carbon as it is an element whereas the SMILES
interpretation for ‘C’ is methane)

	CAS number (obsolete numbers may point to the current number)

If the input is an ID representing an element, the following additional
inputs may be specified as

	Atomic symbol (ex ‘Na’)

	Atomic number (as a string)

Some sample queries illustrating the topic:

>>> search_chemical('water')
<ChemicalMetadata, name=water, formula=H2O, smiles=O, MW=18.0153>
>>> search_chemical('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('CCCCCCCCCC')
<ChemicalMetadata, name=DECANE, formula=C10H22, smiles=CCCCCCCCCC, MW=142.286>
>>> search_chemical('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('pubchem=702')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('O') # only elements can be specified by symbol
<ChemicalMetadata, name=oxygen, formula=O, smiles=[O], MW=15.9994>

Each of those queries returns a ChemicalMetadata object. The object holds the chemical metadata. It is an almost unbearable task to assemble a chemical property database. Making a database of chemical metadata is only slightly easier. The chemical metadata database doesn’t have any information whatsoever about about any chemical properties; only information about the chemical structure and those identifiers mentioned above. Each of those identifiers is an attribute of the returned object.

>>> water = search_chemical('water')
>>> (water.pubchemid, water.formula, water.smiles, water.InChI, water.InChI_key, water.CASs)
(962, 'H2O', 'O', 'H2O/h1H2', 'XLYOFNOQVPJJNP-UHFFFAOYSA-N', '7732-18-5')
>>> water.common_name, water.iupac_name, len(water.synonyms)
('water', 'oxidane', 89)

Acentric Factor (chemicals.acentric)

This module contains a lookup function, a definition function, and correlations
for a chemical’s acentric factor, normally given the variable \(\omega\).

A similar variable called the stiel polar factor can be calculated from its
definition as well.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Lookup Functions

	Definitions

	Correlations

Lookup Functions

	
chemicals.acentric.omega(CASRN, method=None)

	Retrieve a chemical’s acentric factor, omega.

Automatically select a method to use if no method is provided;
returns None if the data is not available.

\[\omega \equiv -\log_{10}\left[\lim_{T/T_c=0.7}(P^{sat}/P_c)\right]-1.0

\]

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	omegafloat
	Acentric factor of compound

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘HEOS’, ‘PSRK’, ‘PD’, or ‘YAWS’.
All valid values are also held in the variable omega_all_methods.

See also

	omega_methods
	

Notes

A total of four sources are available for this function. They are:

	‘PSRK’, a compillation of experimental and estimated data published
in the Appendix of [2], the fourth revision of the PSRK model.

	‘PD’, an older compillation of
data published in (Passut & Danner, 1973) [3].

	‘YAWS’, a large compillation of data from a
variety of sources; no data points are sourced in the work of [4].

	‘ACENTRIC_DEFINITION’, the precalculated results using the
VaporPressure object of Thermo and the critical properties of
chemicals.

	‘HEOS’, a series of values from the NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids
(and other high-precision fundamental equations of state)

References

	1

	Pitzer, K. S., D. Z. Lippmann, R. F. Curl, C. M. Huggins, and
D. E. Petersen: The Volumetric and Thermodynamic Properties of Fluids.
II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization.
J. Am. Chem. Soc., 77: 3433 (1955).

	2

	Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and
Jürgen Gmehling. “PSRK Group Contribution Equation of State:
Comprehensive Revision and Extension IV, Including Critical Constants
and A-Function Parameters for 1000 Components.” Fluid Phase Equilibria
227, no. 2 (January 25, 2005): 157-64. doi:10.1016/j.fluid.2004.11.002.

	3

	Passut, Charles A., and Ronald P. Danner. “Acentric Factor. A
Valuable Correlating Parameter for the Properties of Hydrocarbons.”
Industrial & Engineering Chemistry Process Design and Development 12,
no. 3 (July 1, 1973): 365-68. doi:10.1021/i260047a026.

	4

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	5

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

>>> omega(CASRN='64-17-5')
0.646

	
chemicals.acentric.omega_methods(CASRN)

	Return all methods available for obtaining omega for the desired
chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain omega with the given inputs.

See also

	omega
	

	
chemicals.acentric.omega_all_methods = ('HEOS', 'PSRK', 'PD', 'YAWS', 'ACENTRIC_DEFINITION')

	Tuple of method name keys. See the omega for the actual references

Definitions

	
chemicals.acentric.omega_definition(Psat, Pc)

	Returns the acentric factor of a fluid according to its fundamental
definition using the vapor pressure at a reduced temperature of 0.7Tc.

\[\omega \equiv -\log_{10}\left[\lim_{T/T_c=0.7}(P^{sat}/P_c)\right]-1.0

\]

	Parameters

	
	Psatfloat
	Vapor pressure of the fluid at a reduced temperature of 0.7 [Pa]

	Pcfloat
	Critical pressure of the fluid [Pa]

	Returns

	
	omegafloat
	Acentric factor of the fluid [-]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Water

>>> omega_definition(999542, 22048320.0)
0.3435744558761711

	
chemicals.acentric.Stiel_polar_factor(Psat, Pc, omega)

	This function handles the calculation of a chemical’s Stiel Polar
factor, directly through the definition of Stiel-polar factor.
Requires the vapor pressure Psat at a reduced temperature of 0.6,
the critical pressure Pc, and the acentric factor omega.

\[x = \log_{10} P_r|_{T_r=0.6} + 1.70 \omega + 1.552

\]

	Parameters

	
	Psatfloat
	Vapor pressure of fluid at a reduced temperature of 0.6 [Pa]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor of the fluid [-]

	Returns

	
	factorfloat
	Stiel polar factor of compound, [-]

Notes

A few points have also been published in [2], which may be used for
comparison. Currently this is only used for a surface tension correlation.

References

	1

	Halm, Roland L., and Leonard I. Stiel. “A Fourth Parameter for the
Vapor Pressure and Entropy of Vaporization of Polar Fluids.” AIChE
Journal 13, no. 2 (1967): 351-355. doi:10.1002/aic.690130228.

	2

	D, Kukoljac Miloš, and Grozdanić Dušan K. “New Values of the
Polarity Factor.” Journal of the Serbian Chemical Society 65, no. 12
(January 1, 2000). http://www.shd.org.rs/JSCS/Vol65/No12-Pdf/JSCS12-07.pdf

Examples

Calculating the factor for water:

>>> Stiel_polar_factor(Psat=169745, Pc=22048321.0, omega=0.344)
0.02322146744772713

Correlations

	
chemicals.acentric.LK_omega(Tb, Tc, Pc)

	Estimates the acentric factor of a fluid using a correlation in [1].

\[\omega = \frac{\ln P_{br}^{sat} - 5.92714 + 6.09648/T_{br} + 1.28862
\ln T_{br} -0.169347T_{br}^6}
{15.2518 - 15.6875/T_{br} - 13.4721 \ln T_{br} + 0.43577 T_{br}^6}

\]

	Parameters

	
	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	Returns

	
	omegafloat
	Acentric factor of the fluid [-]

Notes

The units of the above equation are atmosphere and Kelvin; values are
converted internally.

References

	1

	Lee, Byung Ik, and Michael G. Kesler. “A Generalized Thermodynamic
Correlation Based on Three-Parameter Corresponding States.” AIChE Journal
21, no. 3 (1975): 510-527. doi:10.1002/aic.690210313.

Examples

Isopropylbenzene, from Reid (1987).

>>> LK_omega(425.6, 631.1, 32.1E5)
0.32544249926397856

Air: Fundamental Equation of State for Air (chemicals.air)

This module contains various thermodynamic functions for air and humid air.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Dry Air Basic Solvers

	Dry Air Bubble/Dew Points

	Dry Air Constants

	Dry Air Ideal Gas Terms

	Dry Air Residual Terms

	Humid Air Virial Terms

	Henry’s Law for Air in Water

Dry Air Basic Solvers

	
chemicals.air.lemmon2000_rho(T, P)

	Calculate the density of air according to the Lemmon (2000) [1]
given a temperature T and pressure P.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Molar density of air, [mol/m^3]

Notes

This solution is iterative due to the nature of the equation.
This solver has been tested only for gas solutions.

References

	1(1,2)

	Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penoncello, and
Daniel G. Friend. “Thermodynamic Properties of Air and Mixtures of
Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa.”
Journal of Physical and Chemical Reference Data 29, no. 3 (May 1, 2000):
331-85. https://doi.org/10.1063/1.1285884.

Examples

>>> lemmon2000_rho(T=300.0, P=1e6)
402.046613509

2 GPa and 2000 K are suggested as upper limits of [1] although there are
no hardcoded limits for temperature and pressure.

>>> lemmon2000_rho(T=2000.0, P=2e9)
32892.9327834

	
chemicals.air.lemmon2000_P(T, rho)

	Calculate the pressure of air according to the (2000)
given a temperature T and molar density rho.

	Parameters

	
	Tfloat
	Temperature, [K]

	rhofloat
	Molar density of air, [mol/m^3]

	Returns

	
	Pfloat
	Pressure, [Pa]

Notes

Helmholtz equations of state are explicit with inputs of temperature and
density, so this is a direct calculation with no iteration required.

References

	1

	Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penoncello, and
Daniel G. Friend. “Thermodynamic Properties of Air and Mixtures of
Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa.”
Journal of Physical and Chemical Reference Data 29, no. 3 (May 1, 2000):
331-85. https://doi.org/10.1063/1.1285884.

Examples

>>> lemmon2000_P(330.0, lemmon2000_rho(T=330.0, P=8e5))
8e5
>>> lemmon2000_P(823.0, 40)
273973.0024911

	
chemicals.air.lemmon2000_T(P, rho)

	Calculate the temperature of air according to the Lemmon (2000) [1]
given a pressure P and molar density rho .

	Parameters

	
	Pfloat
	Pressure, [Pa]

	rhofloat
	Molar density of air, [mol/m^3]

	Returns

	
	Tfloat
	Temperature, [K]

Notes

This solution is iterative due to the nature of the equation.
This solver has been tested only for gas solutions.

References

	1

	Lemmon, Eric W., Richard T. Jacobsen, Steven G. Penoncello, and
Daniel G. Friend. “Thermodynamic Properties of Air and Mixtures of
Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa.”
Journal of Physical and Chemical Reference Data 29, no. 3 (May 1, 2000):
331-85. https://doi.org/10.1063/1.1285884.

Examples

>>> lemmon2000_T(P=1e5, rho=20.0)
601.1393854499

Dry Air Bubble/Dew Points

	
chemicals.air.lemmon2000_air_P_dew(T)

	Calculates the dew pressure of standard dry air according to Lemmon
(2000).

\[\ln \left(\frac{P_{dew}}{P_j} \right) = \left(\frac{T_j}{T} \right)
\sum_{i}^8 N_i \theta^{i/2}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	P_dewfloat
	Dew pressure, [Pa]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_P_dew(100.0)
567424.1338937

	
chemicals.air.lemmon2000_air_P_bubble(T)

	Calculates the bubble pressure of standard dry air according to Lemmon
(2000).

\[\ln \left(\frac{P_{bubble}}{P_j} \right) = \left(\frac{T_j}{T} \right)
\sum_{i}^8 N_i \theta^{i/2}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	P_bubblefloat
	Bubble pressure, [Pa]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_P_bubble(100.0)
663128.589440

	
chemicals.air.lemmon2000_air_rho_dew(T)

	Calculates the dew molar density of standard dry air according to Lemmon
(2000).

\[\ln \left(\frac{\rho_{dew}}{\rho_j} \right) = N_1\theta^{0.41}
+ N_2\theta + N_3\theta^{2.8} + N_4\theta^{6.5}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	rho_dewfloat
	Dew point molar density, [mol/m^3]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_rho_dew(100.0)
785.7863223794999

	
chemicals.air.lemmon2000_air_rho_bubble(T)

	Calculates the bubble molar density of standard dry air according to Lemmon
(2000).

\[\left(\frac{\rho_{bubble}}{rho_j} -1 \right) = N_1\theta^{0.65}
+ N_2\theta^{0.85} + N_3\theta^{0.95} + N_4\theta^{1.1}
+ N_5\ln\frac{T}{T_j}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	rho_bubblefloat
	bubble point molar density, [mol/m^3]

Notes

The stated range of this ancillary equation is 59.75 K <= T <= 132.6312 K.

Examples

>>> lemmon2000_air_rho_bubble(100.0)
26530.979020427476

Dry Air Constants

	
chemicals.air.lemmon2000_air_T_reducing = 132.6312

	Reducing temperature in K for the Lemmon (2000) EOS for dry air

	
chemicals.air.lemmon2000_air_rho_reducing = 10447.7

	Reducing molar density in mol/m^3 for the Lemmon (2000) EOS for dry air

	
chemicals.air.lemmon2000_air_P_reducing = 3785020.0

	Reducing pressure in Pa for the Lemmon (2000) EOS for dry air

	
chemicals.air.lemmon2000_air_MW = 28.9586

	Molecular weight of air in g/mol for the Lemmon (2000) EOS for dry air

	
chemicals.air.lemmon2000_air_R = 8.31451

	Molar gas constant in Jlemmon2000_air_R/(mol*K) used in the the Lemmon (2000) EOS for dry air

	
chemicals.air.lemmon2000_air_T_max = 2000.0

	Maximum temperature in K valid for the Lemmon (2000) EOS for dry air

	
chemicals.air.lemmon2000_air_P_max = 2000000000.0

	Maximum pressure in Pa valid for the Lemmon (2000) EOS for dry air

Dry Air Ideal Gas Terms

	
chemicals.air.lemmon2000_air_A0(tau, delta)

	Calculates the ideal gas Helmholtz energy of air according to Lemmon
(2000).

\[\phi^\circ = \ln \delta + \sum_{i=1}^5 N_i\tau^{i-4} + N_6\tau^{1.5}
+ N_7\ln \tau + N_8\ln[1-\exp(-N_{11}\tau)] + N_9\ln[1-\exp(-N_{12}\tau)]
+ N_{10}\ln[2/3 + \exp(N_{13}\tau)]

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	A0float
	Ideal gas dimensionless Helmholtz energy A0/(RT) [-]

Notes

The coefficients are as follows:

Ns = [0.605719400E-7, -0.210274769E-4, -0.158860716E-3, -13.841928076,
17.275266575, -0.195363420E-3, 2.490888032, 0.791309509, 0.212236768,
-0.197938904, 25.36365, 16.90741, 37.31279]

Examples

>>> lemmon2000_air_A0(132.6312/200.0, 13000/10447.7)
-14.65173785639

	
chemicals.air.lemmon2000_air_dA0_dtau(tau, delta)

	Calculates the first temperature derivative of ideal gas Helmholtz
energy of air according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	dA0_dtaufloat
	First derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy
with respect to tau [-]

Examples

>>> lemmon2000_air_dA0_dtau(132.6312/200.0, 13000/10447.7)
3.749095669249

	
chemicals.air.lemmon2000_air_d2A0_dtau2(tau, delta)

	Calculates the second temperature derivative of ideal gas Helmholtz
energy of air according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (126.192 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d2A0_dtau2float
	Second derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy
with respect to tau [-]

Examples

>>> lemmon2000_air_d2A0_dtau2(132.6312/200.0, 13000/10447.7)
-5.66675499015

	
chemicals.air.lemmon2000_air_d3A0_dtau3(tau, delta)

	Calculates the third temperature derivative of ideal gas Helmholtz
energy of air according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (126.192 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d3A0_dtau3float
	Third derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy
with respect to tau [-]

Examples

>>> lemmon2000_air_d3A0_dtau3(132.6312/200.0, 13000/10447.7)
17.10538866838

	
chemicals.air.lemmon2000_air_d4A0_dtau4(tau, delta)

	Calculates the fourth temperature derivative of ideal gas Helmholtz
energy of air according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d4A0_dtau4float
	Fourth derivative of A0/(RT) Ideal gas dimensionless Helmholtz energy
with respect to tau [-]

Examples

>>> lemmon2000_air_d4A0_dtau4(126.192/200.0, 13000/10447.7)
-94.815532727

Dry Air Residual Terms

	
chemicals.air.lemmon2000_air_Ar(tau, delta)

	Calculates the residual Helmholtz energy of air according to Lemmon
(2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	Arfloat
	Residual dimensionless Helmholtz energy Ar/(RT) [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt and many multiplies/adds.

Examples

>>> lemmon2000_air_Ar(132.6312/200.0, 13000/10447.7)
-0.34683017661
>>> lemmon2000_air_Ar(0.36842, 0.15880050154579475)
0.0047988122806

	
chemicals.air.lemmon2000_air_dAr_dtau(tau, delta)

	Calculates the first derivative of residual Helmholtz energy of air
with respect to tau according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	dAr_dtaufloat
	First derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 1 divisions
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_dAr_dtau(132.6312/200.0, 13000/10447.7)
-1.8112257495223263

	
chemicals.air.lemmon2000_air_d2Ar_dtau2(tau, delta)

	Calculates the second derivative of residual Helmholtz energy of air
with respect to tau according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d2Ar_dtau2float
	Second derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 2 divisions
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d2Ar_dtau2(132.6312/200.0, 13000/10447.7)
-0.7632109061747

	
chemicals.air.lemmon2000_air_d3Ar_dtau3(tau, delta)

	Calculates the third derivative of residual Helmholtz energy of air
with respect to tau according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d3Ar_dtau3float
	Third derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 4 divisions
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_dtau3(132.6312/200.0, 13000/10447.7)
0.27922007457420

	
chemicals.air.lemmon2000_air_d4Ar_dtau4(tau, delta)

	Calculates the fourth derivative of residual Helmholtz energy of air
with respect to tau according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d4Ar_dtau4float
	Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 4 divisions
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_dtau4(132.6312/200.0, 13000/10447.7)
-8.197368061417

	
chemicals.air.lemmon2000_air_dAr_ddelta(tau, delta)

	Calculates the first derivative of residual Helmholtz energy of air
with respect to delta according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	dAr_ddeltafloat
	First derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_dAr_ddelta(132.6312/200.0, 13000/10447.7)
-0.1367917666005

	
chemicals.air.lemmon2000_air_d2Ar_ddelta2(tau, delta)

	Calculates the second derivative of residual Helmholtz energy of air
with respect to delta according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d2Ar_ddelta2float
	Second derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d2Ar_ddelta2(132.6312/200.0, 13000/10447.7)
0.27027259528316

	
chemicals.air.lemmon2000_air_d3Ar_ddelta3(tau, delta)

	Calculates the third derivative of residual Helmholtz energy of air
with respect to delta according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d3Ar_ddelta3float
	Third derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_ddelta3(132.6312/200.0, 13000/10447.7)
0.1849386546766

	
chemicals.air.lemmon2000_air_d4Ar_ddelta4(tau, delta)

	Calculates the fourth derivative of residual Helmholtz energy of air
with respect to delta according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d4Ar_ddelta4float
	Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddelta4(132.6312/200.0, 13000/10447.7)
0.37902213262258

	
chemicals.air.lemmon2000_air_d2Ar_ddeltadtau(tau, delta)

	Calculates the second derivative of residual Helmholtz energy of air
with respect to delta and tau according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d2Ar_ddeltadtaufloat
	Second derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta and tau, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d2Ar_ddeltadtau(132.6312/200.0, 13000/10447.7)
-1.359976184125

	
chemicals.air.lemmon2000_air_d3Ar_ddeltadtau2(tau, delta)

	Calculates the third derivative of residual Helmholtz energy of air
with respect to delta once and tau twice according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d3Ar_ddeltadtau2float
	Third derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta once and tau twice, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 3 divisions,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_ddeltadtau2(132.6312/200.0, 13000/10447.7)
-0.19089212184849

	
chemicals.air.lemmon2000_air_d3Ar_ddelta2dtau(tau, delta)

	Calculates the third derivative of residual Helmholtz energy of air
with respect to delta twice and tau once according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d3Ar_ddelta2dtaufloat
	Third derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta twice and once twice, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 3 divisions,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d3Ar_ddelta2dtau(132.6312/200.0, 13000/10447.7)
0.01441788198940

	
chemicals.air.lemmon2000_air_d4Ar_ddelta2dtau2(tau, delta)

	Calculates the fourth derivative of residual Helmholtz energy of air
with respect to delta twice and tau twice according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d4Ar_ddelta2dtau2float
	Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta twice and tau twice, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 2 divisions,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddelta2dtau2(132.6312/200.0, 13000/10447.7)
0.1196873112730

	
chemicals.air.lemmon2000_air_d4Ar_ddeltadtau3(tau, delta)

	Calculates the fourth derivative of residual Helmholtz energy of air
with respect to delta once and tau thrice according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d4Ar_ddeltadtau3float
	Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta once and tau thrice, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 1 division,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddeltadtau3(132.6312/200.0, 13000/10447.7)
2.077739387492

	
chemicals.air.lemmon2000_air_d4Ar_ddelta3dtau(tau, delta)

	Calculates the fourth derivative of residual Helmholtz energy of air
with respect to delta thrice and tau once according to Lemmon (2000).

	Parameters

	
	taufloat
	Dimensionless temperature, (132.6312 K)/T [-]

	deltafloat
	Dimensionless density, rho/(10447.7 mol/m^3), [-]

	Returns

	
	d4Ar_ddelta3dtaufloat
	Fourth derivative of residual dimensionless Helmholtz energy Ar/(RT)
with respect to delta thrice and tau once, [-]

Notes

The cost of this function is 1 power, 3 exp, 2 sqrt, 1 division,
and the necessary adds/multiplies.

Examples

>>> lemmon2000_air_d4Ar_ddelta3dtau(132.6312/200.0, 13000/10447.7)
-0.26039336747

Humid Air Virial Terms

	
chemicals.air.TEOS10_BAW_derivatives(T)

	Calculates the second molar virial cross coefficient between
air and water according to [1].

\[B_{aw}(T) = \frac{1}{\bar \rho^*}\sum_{i=1}^3 c_i(\theta)^{d_i}

\]

Where \(\theta = T/T^*\) and \(T^* = 100\) K and \(\bar \rho = 10^6\)
mol/m^3.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Bawfloat
	Air-water second molar virial cross coefficient [m^3/mol]

	dBaw_dTfloat
	First temperature derivative of air-water second molar virial cross
coefficient [m^3/(mol*K)]

	d2Baw_dT2float
	Second temperature derivative of air-water second molar virial cross
coefficient [m^3/(mol*K^2)]

	d3Baw_dT3float
	Third temperature derivative of air-water second molar virial cross
coefficient [m^3/(mol*K^3)]

Notes

The coefficients are as follows:

cis = [0.665687E2, -0.238834E3, -0.176755E3]

dis = [-0.237, -1.048, -3.183]

References

	1

	Herrmann, Sebastian, Hans-Joachim Kretzschmar, and Donald P. Gatley.
“Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and
Ice (RP-1485).” HVAC&R Research 15, no. 5 (September 1, 2009): 961-986.
https://doi.org/10.1080/10789669.2009.10390874.

Examples

>>> TEOS10_BAW_derivatives(300.0)
(-2.956727474282386e-05, 2.8009736043809844e-07, -2.425992413058737e-09, 3.0736974302787557e-11)

	
chemicals.air.TEOS10_CAAW_derivatives(T)

	Calculates the third molar virial cross coefficient between
air and air-water according to [1].

\[C_{aaw}(T) = \frac{1}{(\bar \rho^*)^2}\sum_{i=1}^5 c_i(\theta)^{1-i}

\]

Where \(\theta = T/T^*\) and \(T^* = 100\) K and \(\bar \rho = 10^6\)
mol/m^3.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Caawfloat
	Air air-water second molar virial cross coefficient [m^6/mol^2]

	dCaaw_dTfloat
	First temperature derivative of air air-water third molar virial cross
coefficient [m^6/(mol^2*K)]

	d2Caaw_dT2float
	Second temperature derivative of air air-water third molar virial cross
coefficient [m^6/(mol^2*K^2)]

	d3Caaw_dT3float
	Third temperature derivative of air air-water third molar virial cross
coefficient [m^6/(mol^2*K^3)]

Notes

The coefficients are as follows:

cis = [0.482737E-9, 1.05678E-7, -6.56394E-5, 0.294442E-1, -3.19317]

References

	1

	Herrmann, Sebastian, Hans-Joachim Kretzschmar, and Donald P. Gatley.
“Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and
Ice (RP-1485).” HVAC&R Research 15, no. 5 (September 1, 2009): 961-986.
https://doi.org/10.1080/10789669.2009.10390874.

Examples

>>> TEOS10_CAAW_derivatives(300.0)
(8.019777407407409e-10, -1.9610345679012353e-12, 1.700556378600824e-14, -1.0129827160493832e-16)

	
chemicals.air.TEOS10_CAWW_derivatives(T)

	Calculates the third molar virial cross coefficient between
air and water-water according to [1].

\[C_{aww}(T) = \frac{1}{(\bar \rho^*)^2}\exp\left[\sum_{i=1}^4
d_i(\theta)^{1-i}\right]

\]

Where \(\theta = T/T^*\) and \(T^* = 100\) K and \(\bar \rho = 10^6\)
mol/m^3.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Cawwfloat
	Air water-water second molar virial cross coefficient [m^6/mol^2]

	dCaww_dTfloat
	First temperature derivative of air water-water third molar virial cross
coefficient [m^6/(mol^2*K)]

	d2Caww_dT2float
	Second temperature derivative of air water-water third molar virial cross
coefficient [m^6/(mol^2*K^2)]

	d3Caww_dT3float
	Third temperature derivative of air water-water third molar virial cross
coefficient [m^6/(mol^2*K^3)]

Notes

The coefficients are as follows:

dis = [-0.10728876E2, 0.347802E2, -0.383383E2, 0.334060E2]

References

	1

	Herrmann, Sebastian, Hans-Joachim Kretzschmar, and Donald P. Gatley.
“Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and
Ice (RP-1485).” HVAC&R Research 15, no. 5 (September 1, 2009): 961-986.
https://doi.org/10.1080/10789669.2009.10390874.

Examples

>>> TEOS10_CAWW_derivatives(300.0)
(-1.1555278368039349e-07, 2.6136327775413448e-09, -7.513345818045024e-11, 2.601834967770415e-12)

Henry’s Law for Air in Water

	
chemicals.air.iapws04_Henry_air(T)

	Calculate the Henry’s law constant of air in water according to the
IAPWS-04 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Hfloat
	Henry’s law constant, [1/Pa]

Notes

The mole fractions of air in this model are 0.7812 N2, 0.2095 O2 and
0.0093 Ar.

References

	1

	Fernández-Prini, Roberto, Jorge L. Alvarez, and Allan H. Harvey.
“Henry’s Constants and Vapor-Liquid Distribution Constants for Gaseous
Solutes in H2O and D2O at High Temperatures.” Journal of Physical and
Chemical Reference Data 32, no. 2 (June 2003): 903-16.
https://doi.org/10.1063/1.1564818.

Examples

>>> iapws04_Henry_air(320.0)
1.0991553689889531e-10

	
chemicals.air.iapws04_dHenry_air_dT(T)

	Calculate the temperature derivative of Henry’s law constant of air in
water according to the IAPWS-04 standard. As the actual Henry’s law
constant must be calculated as well, it is also returned.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	dH_dTfloat
	First temperature derivative of Henry’s law constant, [1/(Pa*K)]

	Hfloat
	Henry’s law constant, [1/Pa]

Notes

The mole fractions of air in this model are 0.7812 N2, 0.2095 O2 and
0.0093 Ar.

References

	1

	Fernández-Prini, Roberto, Jorge L. Alvarez, and Allan H. Harvey.
“Henry’s Constants and Vapor-Liquid Distribution Constants for Gaseous
Solutes in H2O and D2O at High Temperatures.” Journal of Physical and
Chemical Reference Data 32, no. 2 (June 2003): 903-16.
https://doi.org/10.1063/1.1564818.

Examples

>>> iapws04_dHenry_air_dT(320.0)
(-8.680064421141611e-13, 1.0991553689889561e-10)

Combustion Calculations (chemicals.combustion)

This module contains a series of functions for modeling combustion reactions.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Combustion Stoichiometry

	Heat of Combustion

	Heat of Combustion and Stiochiometry

	Basic Combustion Spec Solvers

	Engine Combustion

	Lookup Functions

Combustion Stoichiometry

	
chemicals.combustion.combustion_stoichiometry(atoms, MW=None, missing_handling='elemental')

	Return a dictionary of stoichiometric coefficients of chemical
combustion, given a dictionary of a molecule’s constituent atoms and their
counts.

This function is based on the combustion of hydrocarbons; the products for
some inorganics can be hard to predict, and no special handling is included
here for them. This reaction is the standard one at standard pressure with
an excess of oxygen; it does not account for partial combustion or nitrous
oxides.

	Parameters

	
	atomsdict[str, int]
	Dictionary of atoms and their counts, [-]

	MWfloat, optional
	Molecular weight of chemical, used only if missing_handling is ‘Ash’,
[g/mol]

	missing_handlingstr, optional
	How to handle compounds which do not appear in the stoichiometric
reaction below. If ‘elemental’, return those atoms in the monatomic
state; if ‘ash’, converts all missing attoms to ‘Ash’ in the output at
a MW of 1 g/mol, [-]

	Returns

	
	stoichiometrydict[str, float]
	Stoichiometric coefficients of combustion. May inlcude the following
keys for complete combustion: ‘H2O’, ‘CO2’, ‘SO2’, ‘Br2’, ‘I2’, ‘HCl’,
‘HF’ ‘P4O10’; if missing_handling is ‘elemental’ can include the
other elements; if missing_handling is ‘ash’, Ash will be present in
the output if the compounds whose reactions are not included here.
‘O2’ is always present, with negative values indicating oxygen is
required. [-]

Notes

The stoichiometry is given by:

\[C_c H_h O_o N_n S_s Br_b I_i Cl_x F_f P_p + kO_2 -> cCO_2 + \frac{b}{2}Br_2 + \frac{i}{2}I + xHCl + fHF + sSO_2 + \frac{n}{2}N_2 + \frac{p}{4}P_4O_{10} +\frac{h + x + f}{2}H_2O

\]

\[k = c + s + \frac{h}{4} + \frac{5P}{4} - \frac{x + f}{4} - \frac{o}{2}

\]

Also included in the results is the moles of O2 required per mole of
the mixture of the molecule.

HF and HCl are gaseous products in their standard state. P4O10 is a solid
in its standard state. Bromine is a liquid as is iodine. Water depends on
the chosen definition of heating value. The other products are gases.

Atoms not in [‘C’, ‘H’, ‘N’, ‘O’, ‘S’, ‘Br’, ‘I’, ‘Cl’, ‘F’, ‘P’] are
returned as pure species; i.e. sodium hydroxide produces water and pure
Na.

Examples

Methane gas burning:

>>> combustion_stoichiometry({'C': 1, 'H':4})
{'CO2': 1, 'O2': -2.0, 'H2O': 2.0}

	
chemicals.combustion.combustion_products_mixture(atoms_list, zs, reactivities=None, CASs=None, missing_handling='elemental', combustion_stoichiometries=None)

	Calculates the combustion products of a mixture of molecules and their,
mole fractions; requires a list of dictionaries of each molecule’s
constituent atoms and their counts. Products for non-hydrocarbons may not be
correct, but are still calculated.

	Parameters

	
	atoms_listlist[dict]
	List of dictionaries of atoms and their counts, [-]

	zslist[float]
	Mole fractions of each molecule in the mixture, [-]

	reactivitieslist[bool]
	Indicators as to whether to combust each molecule, [-]

	CASslist[str]
	CAS numbers of all compounds; non-reacted products will appear
in the products indexed by their CAS number, [-]

	missing_handlingstr, optional
	How to handle compounds which do not appear in the stoichiometric
reaction below. If ‘elemental’, return those atoms in the monatomic
state; if ‘Ash’, converts all missing attoms to ‘Ash’ in the output at
a MW of 1 g/mol, [-]

	combustion_stoichiometrieslist[dict[str, float]]
	List of return values from combustion_stoichiometry, can be
provided if precomputed [-]

	Returns

	
	combustion_producuctsdict
	Dictionary of combustion products and their counts, [-]

Notes

Also included in the results is the moles of O2 required per mole of
the mixture to be burnt.

Note that if O2 is in the feed, this will be subtracted from the required
O2 amount.

HF and HCl are gaseous products in their standard state. P4O10 is a solid
in its standard state. Bromine is a liquid as is iodine. Water depends on
the chosen definition of heating value. The other products are gases.

Note that if instead of mole fractions, mole flows are given - the results
are in terms of mole flows as well!

Examples

Mixture of methane and ethane.

>>> combustion_products_mixture([{'H': 4, 'C': 1}, {'H': 6, 'C': 2}, {'Ar': 1}, {'C': 15, 'H': 32}],
... [.9, .05, .04, .01], reactivities=[True, True, True, False],
... CASs=['74-82-8', '74-84-0', '7440-37-1', '629-62-9'])
{'CO2': 1.0, 'O2': -1.975, 'H2O': 1.9500000000000002, 'Ar': 0.04, '629-62-9': 0.01}

Heat of Combustion

	
chemicals.combustion.HHV_stoichiometry(stoichiometry, Hf, Hf_chemicals=None)

	Return the higher heating value [HHV; in J/mol] based on the
theoretical combustion stoichiometry and the heat of formation of
the chemical.

	Parameters

	
	stoichiometrydict[str, float]
	Stoichiometric coefficients of combustion. May inlcude the following
keys: ‘H2O’, ‘CO2’, ‘SO2’, ‘Br2’, ‘I2’, ‘HCl’, ‘HF’ and ‘P4O10’.

	Hffloat
	Heat of formation [J/mol].

	Hf_chemicalsdict[str, float]
	Heat of formation of chemicals present in stoichiometry, [J/mol]

	Returns

	
	HHVfloat
	Higher heating value [J/mol].

Notes

The combustion reaction is based on the following equation:

\[C_c H_h O_o N_n S_s Br_b I_i Cl_x F_f P_p + kO_2 -> cCO_2 + \frac{b}{2}Br_2 + \frac{i}{2}I + xHCl + fHF + sSO_2 + \frac{n}{2}N_2 + \frac{p}{4}P_4O_{10} +\frac{h + x + f}{2}H_2O

\]

\[k = c + s + \frac{h}{4} + \frac{5P}{4} - \frac{x + f}{4} - \frac{o}{2}

\]

The HHV is calculated as the heat of reaction.

Examples

Burning methane gas:

>>> HHV_stoichiometry({'O2': -2.0, 'CO2': 1, 'H2O': 2.0}, -74520.0)
-890604.0

	
chemicals.combustion.HHV_modified_Dulong(mass_fractions)

	Return higher heating value [HHV; in J/g] based on the modified
Dulong’s equation [1].

	Parameters

	
	mass_fractionsdict[str, float]
	Dictionary of atomic mass fractions [-].

	Returns

	
	HHVfloat
	Higher heating value [J/mol].

Notes

The heat of combustion in J/mol is given by Dulong’s equation [1]:

\[Hc (J/mol) = MW \cdot (338C + 1428(H - O/8)+ 95S)

\]

This equation is only good for <10 wt. % Oxygen content. Variables C, H, O,
and S are atom weight fractions.

References

	1(1,2)

	Green, D. W. Waste management. In Perry`s Chemical Engineers` Handbook,
9 ed.; McGraw-Hill Education, 2018

Examples

Dry bituminous coal:

>>> HHV_modified_Dulong({'C': 0.716, 'H': 0.054, 'S': 0.016, 'N': 0.016, 'O': 0.093, 'Ash': 0.105})
-304.0395

	
chemicals.combustion.LHV_from_HHV(HHV, N_H2O)

	Return the lower heating value [LHV; in J/mol] of a chemical given
the higher heating value [HHV; in J/mol] and the number of water
molecules formed per molecule burned.

	Parameters

	
	HHVfloat
	Higher heating value [J/mol].

	N_H2Oint
	Number of water molecules produced [-].

	Returns

	
	LHVfloat
	Lower heating value [J/mol].

Notes

The LHV is calculated as follows:

\[LHV = HHV + H_{vap} \cdot H_2O

\]

\[H_{vap} = 44011.496 \frac{J}{mol H_2O}

\]

\[H_2O = \frac{mol H_2O}{mol}

\]

Examples

Methanol lower heat of combustion:

>>> LHV_from_HHV(-726024.0, 2)
-638001.008

Heat of Combustion and Stiochiometry

	
chemicals.combustion.combustion_data(formula=None, stoichiometry=None, Hf=None, MW=None, method=None, missing_handling='ash')

	Return a CombustionData object (a named tuple) that contains the stoichiometry
coefficients of the reactants and products, the lower and higher
heating values [LHV, HHV; in J/mol], the heat of formation [Hf; in J/mol],
and the molecular weight [MW; in g/mol].

	Parameters

	
	formulastr, or dict[str, float], optional
	Chemical formula as a string or a dictionary of atoms and their counts.

	stoichiometrydict[str, float], optional
	Stoichiometry of combustion reaction.

	Hffloat, optional
	Heat of formation of given chemical [J/mol].
Required if method is “Stoichiometry”.

	MWfloat, optional
	Molecular weight of chemical [g/mol].

	method“Stoichiometry” or “Dulong”, optional
	Method to estimate LHV and HHV.

	missing_handlingstr, optional
	How to handle compounds which do not appear in the stoichiometric
reaction below. If ‘elemental’, return those atoms in the monatomic
state; if ‘Ash’, converts all missing attoms to ‘Ash’ in the output at
a MW of 1 g/mol, [-]

	Returns

	
	combustion_dataCombustionData
	A combustion data object with the stoichiometric coefficients of
combustion, higher heating value, heat of formation, and molecular
weight as attributes named stoichiomery, HHV, Hf, and MW, respectively.

Notes

The combustion reaction is based on the following equation:

\[C_c H_h O_o N_n S_s Br_b I_i Cl_x F_f P_p + kO_2 -> cCO_2 + \frac{b}{2}Br_2 + \frac{i}{2}I + xHCl + fHF + sSO_2 + \frac{n}{2}N_2 + \frac{p}{4}P_4O_{10} +\frac{h + x + f}{2}H_2O

\]

\[k = c + s + \frac{h}{4} + \frac{5P}{4} - \frac{x + f}{4} - \frac{o}{2}

\]

If the method is “Stoichiometry”, the HHV is found using
through an energy balance on the reaction (i.e. heat of reaction).
If the method is “Dulong”, Dulong’s equation is used [1]:

\[Hc (J/mol) = MW \cdot (338C + 1428(H - O/8)+ 95S)

\]

The LHV is calculated as follows:

\[LHV = HHV + H_{vap} \cdot H_2O

\]

\[H_{vap} = 44011.496 \frac{J}{mol H_2O}

\]

\[H_2O = \frac{mol H_2O}{mol}

\]

References

	1

	Green, D. W. Waste management. In Perry`s Chemical Engineers` Handbook,
9 ed.; McGraw-Hill Education, 2018

Examples

Liquid methanol burning:

>>> combustion_data({'H': 4, 'C': 1, 'O': 1}, Hf=-239100)
CombustionData(stoichiometry={'CO2': 1, 'O2': -1.5, 'H2O': 2.0}, HHV=-726024.0, Hf=-239100, MW=32.04186)

	
class chemicals.combustion.CombustionData(stoichiometry, HHV, Hf, MW)

	Return a CombustionData object (a named tuple) that contains the stoichiometry
coefficients of the reactants and products, the lower and higher
heating values [LHV, HHV; in J/mol], the heat of formation [Hf; in J/mol],
and the molecular weight [MW; in g/mol].

	Parameters

	
	stoichiometrydict[str, float]
	Stoichiometric coefficients of the reactants and products.

	HHVfloat
	Higher heating value [J/mol].

	Hffloat
	Heat of formation [J/mol].

	MWfloat
	Molecular weight [g/mol].

	Attributes

	
	LHV
	Lower heating value [LHV; in J/mol]

Basic Combustion Spec Solvers

	
chemicals.combustion.fuel_air_spec_solver(zs_air, zs_fuel, CASs, atomss, n_fuel=None, n_air=None, n_out=None, O2_excess=None, frac_out_O2=None, frac_out_O2_dry=None, ratio=None, Vm_air=None, Vm_fuel=None, MW_air=None, MW_fuel=None, ratio_basis='mass', reactivities=None, combustion_stoichiometries=None)

	Solves the system of equations describing a flow of air mixing with a
flow of combustibles and burning completely. All calculated variables are
returned as a dictionary.

Supports solving with any 2 of the extensive variables, or one extensive
and one intensive variable:

Extensive variables:

	n_air

	n_fuel

	n_out

Intensive variables:

	O2_excess

	frac_out_O2

	frac_out_O2_dry

	ratio

The variables Vm_air, Vm_fuel, MW_air, and MW_fuel are only
required when an air-fuel ratio is given. Howver, the ratios cannot be
calculated for the other solve options without them.

	Parameters

	
	zs_airlist[float]
	Mole fractions of the air; most not contain any combustibles, [-]

	zs_fuellist[float]
	Mole fractions of the fuel; can contain inerts and/or oxygen as well,
[-]

	CASslist[str]
	CAS numbers of all compounds, [-]

	atomsslist[dict[float]]
	List of dictionaries of elements and their counts for all molecules in
the mixtures, [-]

	n_fuelfloat, optional
	Flow rate of fuel, [mol/s]

	n_airfloat, optional
	Flow rate of air, [mol/s]

	n_outfloat, optional
	Flow rate of combustion products, remaining oxygen, and inerts, [mol/s]

	O2_excessfloat, optional
	The excess oxygen coming out; (O2 in)/(O2 required) - 1, [-]

	frac_out_O2float, optional
	The mole fraction of oxygen out, [-]

	frac_out_O2_dryfloat, optional
	The mole fraction of oxygen out on a dry basis, [-]

	ratiofloat, optional
	Air-fuel ratio, in the specified basis, [-]

	Vm_airfloat, optional
	Molar volume of air, [m^3/mol]

	Vm_fuelfloat, optional
	Molar volume of fuel, [m^3/mol]

	MW_airfloat, optional
	Molecular weight of air, [g/mol]

	MW_fuelfloat, optional
	Molecular weight of fuel, [g/mol]

	ratio_basisstr, optional
	One of ‘mass’, ‘mole’, or ‘volume’, [-]

	reactivitieslist[bool], optional
	Optional list which can be used to mark otherwise combustible
compounds as incombustible and which will leave unreacted, [-]

	combustion_stoichiometrieslist[dict[str, float]]
	List of return values from combustion_stoichiometry, can be
provided if precomputed [-]

	Returns

	
	resultsdict
	
	n_fuel : Flow rate of fuel, [mol/s]

	n_air : Flow rate of air, [mol/s]

	n_out : Flow rate of combustion products, remaining oxygen, and
inerts, [mol/s]

	O2_excess : The excess oxygen coming out; (O2 in)/(O2 required) - 1,
[-]

	frac_out_O2 : The mole fraction of oxygen out, [-]

	frac_out_O2_dry : The mole fraction of oxygen out on a dry basis, [-]

	mole_ratio : Air-fuel mole ratio, [-]

	mass_ratio : Air-fuel mass ratio, [-]

	volume_ratio : Air-fuel volume ratio, [-]

	ns_out : Mole flow rates out, [mol/s]

	zs_out : Mole fractions out, [-]

Notes

Combustion products themselves cannot be set as unreactive.

The function works so long as the flow rates, molar volumes, and molecular
weights are in a consistent basis.

The function may also be used to obtain the other ratios, even if both
flow rates are known.

Be careful to use standard volumes if the ratio known is at standard
conditions!

Examples

>>> zs_air = [0.79, 0.205, 0, 0, 0, 0.0045, 0.0005]
>>> zs_fuel = [0.025, 0.025, 0.85, 0.07, 0.029, 0.0005, 0.0005]
>>> CASs = ['7727-37-9', '7782-44-7', '74-82-8', '74-84-0', '74-98-6', '7732-18-5', '124-38-9']
>>> atomss = [{'N': 2}, {'O': 2}, {'H': 4, 'C': 1}, {'H': 6, 'C': 2}, {'H': 8, 'C': 3}, {'H': 2, 'O': 1}, {'C': 1, 'O': 2}]
>>> ans = fuel_air_spec_solver(zs_air=zs_air, zs_fuel=zs_fuel, CASs=CASs, atomss=atomss, n_fuel=5.0, O2_excess=0.3, Vm_air=0.02493, Vm_fuel=0.02488, MW_air=28.79341351, MW_fuel=18.55158039)
>>> [round(i, 5) for i in ans['ns_out']]
[51.99524, 3.135, 0.0, 0.0, 0.0, 10.42796, 5.42033]
>>> [round(i, 5) for i in ans['zs_out']]
[0.73255, 0.04417, 0.0, 0.0, 0.0, 0.14692, 0.07637]
>>> ans['frac_out_O2'], ans['frac_out_O2_dry']
(0.04416828172034148, 0.051774902132807)
>>> ans['mole_ratio'], ans['mass_ratio'], ans['volume_ratio']
(13.131707317073175, 20.381372957130615, 13.15809740412517)
>>> ans['n_air']
65.65853658536588

	
chemicals.combustion.combustion_spec_solver(zs_air, zs_fuel, zs_third, CASs, atomss, n_third, n_fuel=None, n_air=None, n_out=None, O2_excess=None, frac_out_O2=None, frac_out_O2_dry=None, ratio=None, Vm_air=None, Vm_fuel=None, Vm_third=None, MW_air=None, MW_fuel=None, MW_third=None, ratio_basis='mass', reactivities=None, combustion_stoichiometries=None)

	Solves the system of equations describing a flow of air mixing with two
flow of combustibles, one fixed and one potentially variable, and burning
completely. All calculated variables are returned as a dictionary.

The variables Vm_air, Vm_fuel, Vm_third, MW_air, MW_fuel and
MW_third are only
required when an air-fuel ratio is given. Howver, the ratios cannot be
calculated for the other solve options without them.

	Parameters

	
	zs_airlist[float]
	Mole fractions of the air; most not contain any combustibles, [-]

	zs_fuellist[float]
	Mole fractions of the fuel; can contain inerts and/or oxygen as well,
[-]

	zs_thirdlist[float]
	
	Mole fractions of the fixed fuel flow; can contain inerts and/or oxygen
	as well, [-]

	CASslist[str]
	CAS numbers of all compounds, [-]

	atomsslist[dict[float]]
	List of dictionaries of elements and their counts for all molecules in
the mixtures, [-]

	n_thirdfloat, optional
	Flow rate of third stream, (fixed) fuel flow rate, [mol/s]

	n_fuelfloat, optional
	Flow rate of fuel, [mol/s]

	n_airfloat, optional
	Flow rate of air, [mol/s]

	n_outfloat, optional
	Flow rate of combustion products, remaining oxygen, and inerts, [mol/s]

	O2_excessfloat, optional
	The excess oxygen coming out; (O2 in)/(O2 required) - 1, [-]

	frac_out_O2float, optional
	The mole fraction of oxygen out, [-]

	frac_out_O2_dryfloat, optional
	The mole fraction of oxygen out on a dry basis, [-]

	ratiofloat, optional
	Air-fuel ratio, in the specified basis, [-]

	Vm_airfloat, optional
	Molar volume of air, [m^3/mol]

	Vm_fuelfloat, optional
	Molar volume of fuel, [m^3/mol]

	Vm_thirdfloat, optional
	Molar volume of second fuel stream, [m^3/mol]

	MW_airfloat, optional
	Molecular weight of air, [g/mol]

	MW_fuelfloat, optional
	Molecular weight of fuel, [g/mol]

	MW_thirdfloat, optional
	Molecular weight of second fuel stream, [g/mol]

	ratio_basisstr, optional
	One of ‘mass’, ‘mole’, or ‘volume’, [-]

	reactivitieslist[bool], optional
	Optional list which can be used to mark otherwise combustible
compounds as incombustible and which will leave unreacted, [-]

	combustion_stoichiometrieslist[dict[str, float]]
	List of return values from combustion_stoichiometry, can be
provided if precomputed [-]

	Returns

	
	resultsdict
	
	n_fuel : Flow rate of fuel, [mol/s]

	n_air : Flow rate of air, [mol/s]

	n_out : Flow rate of combustion products, remaining oxygen, and
inerts, [mol/s]

	O2_excess : The excess oxygen coming out; (O2 in)/(O2 required) - 1,
[-]

	frac_out_O2 : The mole fraction of oxygen out, [-]

	frac_out_O2_dry : The mole fraction of oxygen out on a dry basis, [-]

	mole_ratio : Air-fuel mole ratio, [-]

	mass_ratio : Air-fuel mass ratio, [-]

	volume_ratio : Air-fuel volume ratio, [-]

	ns_out : Mole flow rates out, [mol/s]

	zs_out : Mole fractions out, [-]

Notes

Combustion products themselves cannot be set as unreactive.

The function works so long as the flow rates, molar volumes, and molecular
weights are in a consistent basis.

Handling the case of the air feed containing combustibles is not
implemented.

Examples

>>> zs_air = [0.79, 0.205, 0, 0, 0, 0.0045, 0.0005]
>>> zs_fuel = [0.025, 0.025, 0.85, 0.07, 0.029, 0.0005, 0.0005]
>>> zs_third = [0.1, 0.005, 0.5, 0.39, 0, 0.005, 0]
>>> CASs = ['7727-37-9', '7782-44-7', '74-82-8', '74-84-0', '74-98-6', '7732-18-5', '124-38-9']
>>> atomss = [{'N': 2}, {'O': 2}, {'H': 4, 'C': 1}, {'H': 6, 'C': 2}, {'H': 8, 'C': 3}, {'H': 2, 'O': 1}, {'C': 1, 'O': 2}]
>>> combustion_stoichiometries = [combustion_stoichiometry(atoms) for atoms in atomss]
>>> ans = combustion_spec_solver(zs_air=zs_air, zs_fuel=zs_fuel, zs_third=zs_third, CASs=CASs, atomss=atomss, n_third=1.0, n_fuel=5.0, O2_excess=0.3, Vm_air=0.02493, Vm_fuel=0.02488, Vm_third=.024, MW_air=28.79341351, MW_fuel=18.55158039, MW_third=22.0)
>>> ans['n_air']
80.6317073170732

	
chemicals.combustion.air_fuel_ratio_solver(ratio, Vm_air, Vm_fuel, MW_air, MW_fuel, n_air=None, n_fuel=None, basis='mass')

	Calculates molar flow rate of air or fuel from the other, using a
specified air-fuel ratio. Supports ‘mole’, ‘mass’, and ‘volume’.

bases for the ratio variable. The ratio must be of the same units -
i.e. kg/kg instead of lb/kg.

The mole, mass, and volume air-fuel ratios are calculated in the process
and returned as well.

	Parameters

	
	ratiofloat
	Air-fuel ratio, in the specified basis, [-]

	Vm_airfloat
	Molar volume of air, [m^3/mol]

	Vm_fuelfloat
	Molar volume of fuel, [m^3/mol]

	MW_airfloat
	Molecular weight of air, [g/mol]

	MW_fuelfloat
	Molecular weight of fuel, [g/mol]

	n_airfloat, optional
	Molar flow rate of air, [mol/s]

	n_fuelfloat, optional
	Molar flow rate of fuel, [mol/s]

	basisstr, optional
	One of ‘mass’, ‘mole’, or ‘volume’, [-]

	Returns

	
	n_airfloat
	Molar flow rate of air, [mol/s]

	n_fuelfloat
	Molar flow rate of fuel, [mol/s]

	mole_ratiofloat
	Air-fuel mole ratio, [-]

	mass_ratiofloat
	Air-fuel mass ratio, [-]

	volume_ratiofloat
	Air-fuel volume ratio, [-]

Notes

The function works so long as the flow rates, molar volumes, and molecular
weights are in a consistent basis.

The function may also be used to obtain the other ratios, even if both
flow rates are known.

Be careful to use standard volumes if the ratio known is at standard
conditions!

This function has no provision for mixed units like mass/mole or
volume/mass.

Examples

>>> Vm_air = 0.024936627188566596
>>> Vm_fuel = 0.024880983160354486
>>> MW_air = 28.850334
>>> MW_fuel = 17.86651
>>> n_fuel = 5.0
>>> n_air = 25.0
>>> air_fuel_ratio_solver(ratio=5.0, Vm_air=Vm_air, Vm_fuel=Vm_fuel,
... MW_air=MW_air, MW_fuel=MW_fuel, n_air=n_air,
... n_fuel=n_fuel, basis='mole')
(25.0, 5.0, 5.0, 8.073858296891782, 5.011182039683378)

Engine Combustion

	
chemicals.combustion.Perez_Boehman_RON_from_ignition_delay(ignition_delay)

	Esimates the research octane number (RON) from a known
ignition delay, as shown in [1].

\[\text{RON} = 120.77 - \frac{425.48}{\tau_{ID}}

\]

In the above equation, ignition delay is in ms.

	Parameters

	
	ignition_delayfloat
	The ignition delay, [s]

	Returns

	
	RONfloat
	Research Octane Number [-]

Notes

The correlation was developed using 20 components, for a range of
approximately 3.6 ms to 67 ms.

References

	1

	Perez, Peter L., and André L. Boehman. “Experimental
Investigation of the Autoignition Behavior of Surrogate Gasoline
Fuels in a Constant-Volume Combustion Bomb Apparatus and Its
Relevance to HCCI Combustion.” Energy & Fuels 26, no. 10
(October 18, 2012): 6106-17. https://doi.org/10.1021/ef300503b.

Examples

>>> Perez_Boehman_RON_from_ignition_delay(1/150)
56.948

	
chemicals.combustion.Perez_Boehman_MON_from_ignition_delay(ignition_delay)

	Esimates the motor octane number (MON) from a known
ignition delay, as shown in [1].

\[\text{MON} = 109.93 - \frac{374.73}{\tau_{ID}}

\]

In the above equation, ignition delay is in ms.

	Parameters

	
	ignition_delayfloat
	The ignition delay, [s]

	Returns

	
	MONfloat
	Motor Octane Number [-]

Notes

The correlation was developed using 20 components, for a range of
approximately 3.6 ms to 67 ms.

References

	1

	Perez, Peter L., and André L. Boehman. “Experimental
Investigation of the Autoignition Behavior of Surrogate Gasoline
Fuels in a Constant-Volume Combustion Bomb Apparatus and Its
Relevance to HCCI Combustion.” Energy & Fuels 26, no. 10
(October 18, 2012): 6106-17. https://doi.org/10.1021/ef300503b.

Examples

>>> Perez_Boehman_MON_from_ignition_delay(1/150)
53.7205

	
chemicals.combustion.octane_sensitivity(RON, MON)

	This function calculates the octane sensitivity of a fuel [1].

\[\text{OS} = \text{RON} - \text{MON}

\]

	Parameters

	
	RONfloat
	Research octane number, [-]

	MONfloat
	Motor octane number, [-]

	Returns

	
	OSfloat
	Octane sensitivity, [-]

References

	1

	Lehn, Florian vom, Liming Cai, Rupali Tripathi, Rafal Broda, and
Heinz Pitsch. “A Property Database of Fuel Compounds with Emphasis on
Spark-Ignition Engine Applications.” Applications in Energy and
Combustion Science 5 (March 1, 2021): 100018.
https://doi.org/10.1016/j.jaecs.2020.100018.

Examples

>>> octane_sensitivity(RON=90, MON=74)
16

	
chemicals.combustion.AKI(RON, MON)

	This function calculates the anti knock index (AKI) of a fuel, also
known as (R+M)/2 and by DON [1].

\[\text{AKI} = 0.5\text{RON} + 0.5\text{MON}

\]

	Parameters

	
	RONfloat
	Research octane number, [-]

	MONfloat
	Motor octane number, [-]

	Returns

	
	AKIfloat
	Average of RON and MON, [-]

Notes

This is the number displayed at the gas pumps in North America; in Europe
and Asia the RON is displayed.

References

	1

	McKinsey. “Octane.” Accessed April 18, 2022.
http://www.mckinseyenergyinsights.com/resources/refinery-reference-desk/octane/.

Examples

>>> AKI(RON=90, MON=74)
82.0

	
chemicals.combustion.IDT_to_DCN(IDT)

	This function converts the ignition delay
time [1] into a derived cetane number.

If the ignition delay time is between 3.1 and 6.5 ms:

\[\text{DCN} = 4.46 + \frac{186.6}{\text{IDT}}

\]

Otherwise:

\[\text{DCN} = \left(83.99(\text{IDT} - 1.512)^{-0.658} \right) + 3.547

\]

	Parameters

	
	IDTfloat
	Ignition delay time, [s]

	Returns

	
	DCNfloat
	Derived cetane number, [-]

Notes

This conversion is described in D6890-168.

References

	1

	Al Ibrahim, Emad, and Aamir Farooq. “Prediction of the Derived
Cetane Number and Carbon/Hydrogen Ratio from Infrared Spectroscopic
Data.” Energy & Fuels 35, no. 9 (May 6, 2021): 8141-52.
https://doi.org/10.1021/acs.energyfuels.0c03899.

	2

	Dahmen, Manuel, and Wolfgang Marquardt. “A Novel Group Contribution
Method for the Prediction of the Derived Cetane Number of Oxygenated
Hydrocarbons.” Energy & Fuels 29, no. 9 (September 17, 2015): 5781-5801.
https://doi.org/10.1021/acs.energyfuels.5b01032.

Examples

>>> IDT_to_DCN(4e-3)
51.11

Lookup Functions

	
chemicals.combustion.RON(CASRN, method=None)

	This function handles the retrieval of a chemical’s research octane
number (RON). Lookup is based on CASRNs. Will automatically select a data source
to use if no method is provided; returns None if the data is not available.

Function has data for approximately 1400 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	RONfloat
	Research octane number, [-]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
RON_methods

Notes

The available sources are as follows:

	‘FLORIAN_LIMING’, the experimental values compiled in [1].

	‘FLORIAN_LIMING_ANN’, a set of predicted values using a QSPR-ANN model
developed in the author’s earlier publication [3], from 260 comonents.

	‘COMBUSTDB’, a compilation of values from various sources [2].

	‘COMBUSTDB_PREDICTIONS’, a set of predicted values developed by the
author of CombustDB (Travis Kessler) using the tool [4].

References

	1

	Lehn, Florian vom, Liming Cai, Rupali Tripathi, Rafal Broda, and
Heinz Pitsch. “A Property Database of Fuel Compounds with Emphasis on
Spark-Ignition Engine Applications.” Applications in Energy and
Combustion Science 5 (March 1, 2021): 100018.
https://doi.org/10.1016/j.jaecs.2020.100018.

	2

	Kessler, Travis. CombustDB. Python. 2019. UMass Lowell Energy and
Combustion Research Laboratory, 2021. https://github.com/ecrl/combustdb.

	3

	Lehn, Florian vom, Benedict Brosius, Rafal Broda, Liming Cai, and
Heinz Pitsch. “Using Machine Learning with Target-Specific Feature Sets
for Structure-Property Relationship Modeling of Octane Numbers and
Octane Sensitivity.” Fuel 281 (December 1, 2020): 118772.
https://doi.org/10.1016/j.fuel.2020.118772.

	4

	Kessler, Travis, and John Hunter Mack. “ECNet: Large Scale Machine
Learning Projects for Fuel Property Prediction.” Journal of Open Source
Software 2, no. 17 (2017): 401.

Examples

>>> RON(CASRN='64-17-5')
108.6

	
chemicals.combustion.RON_methods(CASRN)

	Return all methods available to obtain the research octane number (RON)
for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the RON with the given
inputs.

See also

	RON
	

	
chemicals.combustion.RON_all_methods = ('FLORIAN_LIMING', 'COMBUSTDB', 'FLORIAN_LIMING_ANN', 'COMBUSTDB_PREDICTIONS')

	Tuple of method name keys. See the RON for the actual references

	
chemicals.combustion.MON(CASRN, method=None)

	This function handles the retrieval of a chemical’s motor octane
number (MON). Lookup is based on CASRNs. Will automatically select a data source
to use if no method is provided; returns None if the data is not available.

Function has data for approximately 1400 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	MONfloat
	Research octane number, [-]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
MON_methods

Notes

The available sources are as follows:

	‘FLORIAN_LIMING’, the experimental values compiled in [1].

	‘FLORIAN_LIMING_ANN’, a set of predicted values using a QSPR-ANN model
developed in the author’s earlier publication [3], from 260 comonents.

	‘COMBUSTDB’, a compilation of values from various sources [2].

	‘COMBUSTDB_PREDICTIONS’, a set of predicted values developed by the
author of CombustDB (Travis Kessler) using the tool [4].

References

	1

	Lehn, Florian vom, Liming Cai, Rupali Tripathi, Rafal Broda, and
Heinz Pitsch. “A Property Database of Fuel Compounds with Emphasis on
Spark-Ignition Engine Applications.” Applications in Energy and
Combustion Science 5 (March 1, 2021): 100018.
https://doi.org/10.1016/j.jaecs.2020.100018.

	2

	Kessler, Travis. CombustDB. Python. 2019. UMass Lowell Energy and
Combustion Research Laboratory, 2021. https://github.com/ecrl/combustdb.

	3

	Lehn, Florian vom, Benedict Brosius, Rafal Broda, Liming Cai, and
Heinz Pitsch. “Using Machine Learning with Target-Specific Feature Sets
for Structure-Property Relationship Modeling of Octane Numbers and
Octane Sensitivity.” Fuel 281 (December 1, 2020): 118772.
https://doi.org/10.1016/j.fuel.2020.118772.

	4

	Kessler, Travis, and John Hunter Mack. “ECNet: Large Scale Machine
Learning Projects for Fuel Property Prediction.” Journal of Open Source
Software 2, no. 17 (2017): 401.

Examples

>>> MON(CASRN='64-17-5')
89.7

	
chemicals.combustion.MON_methods(CASRN)

	Return all methods available to obtain the motor octane number (MON)
for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the MON with the given
inputs.

See also

	MON
	

	
chemicals.combustion.MON_all_methods = ('FLORIAN_LIMING', 'COMBUSTDB', 'FLORIAN_LIMING_ANN', 'COMBUSTDB_PREDICTIONS')

	Tuple of method name keys. See the MON for the actual references

	
chemicals.combustion.ignition_delay(CASRN, method=None)

	This function handles the retrieval of a chemical’s ignition delay time (IDT).
Lookup is based on CASRNs. Will automatically select a data source
to use if no method is provided; returns None if the data is not available.

Function has data for approximately 60 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	ignition_delayfloat
	Ignition delay time, [s]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
ignition_delay_all_methods

Notes

The available sources are as follows:

	‘DAHMEN_MARQUARDT’, the experimental values compiled in [1];
all timings come from the IQT tester device

Note that different measurement devices can give different results.

References

	1

	Dahmen, Manuel, and Wolfgang Marquardt. “A Novel Group Contribution Method
for the Prediction of the Derived Cetane Number of Oxygenated Hydrocarbons.”
Energy & Fuels 29, no. 9 (September 17, 2015): 5781-5801.
https://doi.org/10.1021/acs.energyfuels.5b01032.

Examples

>>> ignition_delay(CASRN='110-54-3')
0.0043

	
chemicals.combustion.ignition_delay_methods(CASRN)

	Return all methods available to obtain the ignition delay time (IDT)
for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the IDT with the given
inputs.

See also

	ignition_delay
	

	
chemicals.combustion.ignition_delay_all_methods = ('DAHMEN_MARQUARDT',)

	Tuple of method name keys. See the ignition_delay for the actual references

Critical Properties (chemicals.critical)

This module contains lookup functions for critical temperature,
critical pressure, critical volume, and critical compressibility factors.
It also includes a few relationships between the critical properties, and a
variety of critical mixture property estimation routines.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Critical Temperature

	Critical Pressure

	Critical Volume

	Critical Compressibility Factor

	Critical Property Relationships

	Critical Temperature of Mixtures

	Critical Volume of Mixtures

Critical Temperature

	
chemicals.critical.Tc(CASRN, method=None)

	This function handles the retrieval of a chemical’s critical
temperature. Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

Function has data for approximately 26000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Tcfloat
	Critical temperature, [K]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘IUPAC’, ‘MATTHEWS’, ‘CRC’,
‘PD’, ‘WEBBOOK’, ‘PSRK’, ‘PINAMARTINES’, ‘YAWS’, ‘WILSON_JASPERSON’,
‘JOBACK’, ‘HEOS’.
All valid values are also held in the list Tc_all_methods.

See also

	Tc_methods
	

Notes

The available sources are as follows:

	‘IUPAC’, a series of critically evaluated
experimental datum for organic compounds in [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], and [12].

	‘MATTHEWS’, a series of critically
evaluated data for inorganic compounds in [13].

	‘CRC’, a compillation of critically
evaluated data by the TRC as published in [14].

	‘PSRK’, a compillation of experimental and
estimated data published in [15].

	‘PD’, an older compillation of
data published in [16]

	‘YAWS’, a large compillation of data from a
variety of sources; no data points are sourced in the work of [17].

	‘WEBBOOK’, a NIST resource [18] containing mostly experimental
and averaged values

	‘JOBACK’, an estimation method for organic substances in [19]

	‘WILSON_JASPERSON’, an estimation method in [21]

	‘PINAMARTINES’, a series of values in the supporting material of [20]

	‘HEOS’, a series of values from the NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids
(and other high-precision fundamental equations of state)

References

	1

	Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical
Properties of Elements and Compounds. 1. An Introductory Survey.”
Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996):
154-154. doi:10.1021/je950378q.

	2

	Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid
Critical Properties of Elements and Compounds. 2. Normal Alkanes.”
Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

	3

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 3. Aromatic
Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3
(May 1, 1995): 547-58. doi:10.1021/je00019a002.

	4

	Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties
of Elements and Compounds. 4. Aliphatic Alkanols.” Journal of Chemical
& Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

	5

	Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements
and Compounds. 5. Branched Alkanes and Cycloalkanes.” Journal of
Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

	6

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic
Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4
(January 1, 1996): 645-56. doi:10.1021/je9501999.

	7

	Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos.
“Vapor-Liquid Critical Properties of Elements and Compounds. 7. Oxygen
Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical &
Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

	8

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 8. Organic Sulfur,
Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 480-85.
doi:10.1021/je000210r.

	9

	Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose,
and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 9. Organic Compounds Containing Nitrogen.”
Journal of Chemical & Engineering Data 51, no. 2 (March 1, 2006):
305-14. doi:10.1021/je050221q.

	10

	Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton,
Eugene Nikitin, Constantine Tsonopoulos, and Colin L. Young.
“Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data
52, no. 5 (September 1, 2007): 1509-38. doi:10.1021/je700336g.

	11

	Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin.
“Vapor-Liquid Critical Properties of Elements and Compounds. 11. Organic
Compounds Containing B + O; Halogens + N, + O, + O + S, + S, + Si;
N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54,
no. 3 (March 12, 2009): 669-89. doi:10.1021/je800580z.

	12

	Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David
W. Morton, and Kenneth N. Marsh. “Vapor-Liquid Critical Properties of
Elements and Compounds. 12. Review of Recent Data for Hydrocarbons and
Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5,
2015, 151005081500002. doi:10.1021/acs.jced.5b00571.

	13

	Mathews, Joseph F. “Critical Constants of Inorganic Substances.”
Chemical Reviews 72, no. 1 (February 1, 1972): 71-100.
doi:10.1021/cr60275a004.

	14

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	15

	Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and
Jürgen Gmehling. “PSRK Group Contribution Equation of State:
Comprehensive Revision and Extension IV, Including Critical Constants
and A-Function Parameters for 1000 Components.” Fluid Phase Equilibria
227, no. 2 (January 25, 2005): 157-64. doi:10.1016/j.fluid.2004.11.002.

	16

	Passut, Charles A., and Ronald P. Danner. “Acentric Factor. A
Valuable Correlating Parameter for the Properties of Hydrocarbons.”
Industrial & Engineering Chemistry Process Design and Development 12,
no. 3 (July 1, 1973): 365-68. doi:10.1021/i260047a026.

	17

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	18

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	19

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	20

	Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use
of 300,000 Pseudo-Experimental Data over 1800 Pure Fluids to Assess the
Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and
Tc-PR.” AIChE Journal n/a, no. n/a (n.d.): e17518.
https://doi.org/10.1002/aic.17518.

	21

	Wilson, G. M., and L. V. Jasperson. “Critical Constants Tc, Pc,
Estimation Based on Zero, First and Second Order Methods.” In
Proceedings of the AIChE Spring Meeting, 21, 1996.

	22

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

>>> Tc(CASRN='64-17-5')
514.71

	
chemicals.critical.Tc_methods(CASRN)

	Return all methods available to obtain the critical temperature for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Tc with the given inputs.

See also

	Tc
	

	
chemicals.critical.Tc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'PD', 'WEBBOOK', 'PSRK', 'PINAMARTINES', 'YAWS', 'WILSON_JASPERSON', 'JOBACK')

	Tuple of method name keys. See the Tc for the actual references

	
chemicals.critical.Tc_all_method_types = {'CRC': 'PROCESSED_EXPERIMENTAL', 'HEOS': 'EXPERIMENTAL_REVIEW', 'IUPAC': 'EXPERIMENTAL_REVIEW', 'JOBACK': 'PREDICTED_GC', 'MATTHEWS': 'EXPERIMENTAL_COMPILATION', 'PD': 'EXPERIMENTAL_COMPILATION_SECONDARY', 'PINAMARTINES': 'PROCESSED_EXPERIMENTAL_PREDICTED_SECONDARY', 'PSRK': 'PROCESSED_EXPERIMENTAL_PREDICTED', 'WEBBOOK': 'PROCESSED_EXPERIMENTAL', 'WILSON_JASPERSON': 'PREDICTED_GC', 'YAWS': 'PROCESSED_EXPERIMENTAL_PREDICTED'}

	

Critical Pressure

	
chemicals.critical.Pc(CASRN, method=None)

	This function handles the retrieval of a chemical’s critical
pressure. Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

Function has data for approximately 26000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Pcfloat
	Critical pressure, [Pa]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘IUPAC’, ‘MATTHEWS’, ‘CRC’,
‘PD’, ‘WEBBOOK’, ‘PSRK’, ‘PINAMARTINES’, ‘YAWS’, ‘WILSON_JASPERSON’,
‘JOBACK’, ‘HEOS’.
All valid values are also held in the list Pc_all_methods.

See also

	Pc_methods
	

Notes

The available sources are as follows:

	‘IUPAC’, a series of critically evaluated
experimental datum for organic compounds in [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], and [12].

	‘MATTHEWS’, a series of critically
evaluated data for inorganic compounds in [13].

	‘CRC’, a compillation of critically
evaluated data by the TRC as published in [14].

	‘PSRK’, a compillation of experimental and
estimated data published in [15].

	‘PD’, an older compillation of
data published in [16]

	‘YAWS’, a large compillation of data from a
variety of sources; no data points are sourced in the work of [17].

	‘WEBBOOK’, a NIST resource [18] containing mostly experimental
and averaged values

	‘JOBACK’, an estimation method for organic substances in [19]

	‘PINAMARTINES’, a series of values in the supporting material of [20]

	‘WILSON_JASPERSON’, an estimation method in [21]

	‘HEOS’, a series of values from the NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids
(and other high-precision fundamental equations of state)

References

	1

	Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical
Properties of Elements and Compounds. 1. An Introductory Survey.”
Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996):
154-154. doi:10.1021/je950378q.

	2

	Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid
Critical Properties of Elements and Compounds. 2. Normal Alkanes.”
Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

	3

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 3. Aromatic
Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3
(May 1, 1995): 547-58. doi:10.1021/je00019a002.

	4

	Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties
of Elements and Compounds. 4. Aliphatic Alkanols.” Journal of Chemical
& Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

	5

	Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements
and Compounds. 5. Branched Alkanes and Cycloalkanes.” Journal of
Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

	6

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic
Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4
(January 1, 1996): 645-56. doi:10.1021/je9501999.

	7

	Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos.
“Vapor-Liquid Critical Properties of Elements and Compounds. 7. Oxygen
Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical &
Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

	8

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 8. Organic Sulfur,
Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 480-85.
doi:10.1021/je000210r.

	9

	Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose,
and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 9. Organic Compounds Containing Nitrogen.”
Journal of Chemical & Engineering Data 51, no. 2 (March 1, 2006):
305-14. doi:10.1021/je050221q.

	10

	Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton,
Eugene Nikitin, Constantine Tsonopoulos, and Colin L. Young.
“Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data
52, no. 5 (September 1, 2007): 1509-38. doi:10.1021/je700336g.

	11

	Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin.
“Vapor-Liquid Critical Properties of Elements and Compounds. 11. Organic
Compounds Containing B + O; Halogens + N, + O, + O + S, + S, + Si;
N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54,
no. 3 (March 12, 2009): 669-89. doi:10.1021/je800580z.

	12

	Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David
W. Morton, and Kenneth N. Marsh. “Vapor-Liquid Critical Properties of
Elements and Compounds. 12. Review of Recent Data for Hydrocarbons and
Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5,
2015, 151005081500002. doi:10.1021/acs.jced.5b00571.

	13

	Mathews, Joseph F. “Critical Constants of Inorganic Substances.”
Chemical Reviews 72, no. 1 (February 1, 1972): 71-100.
doi:10.1021/cr60275a004.

	14

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	15

	Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and
Jürgen Gmehling. “PSRK Group Contribution Equation of State:
Comprehensive Revision and Extension IV, Including Critical Constants
and A-Function Parameters for 1000 Components.” Fluid Phase Equilibria
227, no. 2 (January 25, 2005): 157-64. doi:10.1016/j.fluid.2004.11.002.

	16

	Passut, Charles A., and Ronald P. Danner. “Acentric Factor. A
Valuable Correlating Parameter for the Properties of Hydrocarbons.”
Industrial & Engineering Chemistry Process Design and Development 12,
no. 3 (July 1, 1973): 365-68. doi:10.1021/i260047a026.

	17

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	18

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	19

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	20

	Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use
of 300,000 Pseudo-Experimental Data over 1800 Pure Fluids to Assess the
Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and
Tc-PR.” AIChE Journal n/a, no. n/a (n.d.): e17518.
https://doi.org/10.1002/aic.17518.

	21

	Wilson, G. M., and L. V. Jasperson. “Critical Constants Tc, Pc,
Estimation Based on Zero, First and Second Order Methods.” In
Proceedings of the AIChE Spring Meeting, 21, 1996.

	22

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

>>> Pc(CASRN='64-17-5')
6268000.0

	
chemicals.critical.Pc_methods(CASRN)

	Return all methods available to obtain the critical pressure for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Pc with the given inputs.

See also

	Pc
	

	
chemicals.critical.Pc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'PD', 'WEBBOOK', 'PSRK', 'PINAMARTINES', 'YAWS', 'WILSON_JASPERSON', 'JOBACK')

	Tuple of method name keys. See the Pc for the actual references

Critical Volume

	
chemicals.critical.Vc(CASRN, method=None)

	This function handles the retrieval of a chemical’s critical
volume. Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

Preferred sources are ‘IUPAC’ for organic chemicals, and ‘MATTHEWS’ for
inorganic chemicals. Function has data for approximately 25000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Vcfloat
	Critical volume, [m^3/mol]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘IUPAC’, ‘MATTHEWS’, ‘CRC’,
‘WEBBOOK’, ‘PSRK’, ‘PINAMARTINES’, ‘YAWS’, ‘FEDORS’, ‘JOBACK’, ‘HEOS’.
All valid values are also held in the list Vc_all_methods.

See also

	Vc_methods
	

Notes

The available sources are as follows:

	‘IUPAC’, a series of critically evaluated
experimental datum for organic compounds in [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], and [12].

	‘MATTHEWS’, a series of critically
evaluated data for inorganic compounds in [13].

	‘CRC’, a compillation of critically
evaluated data by the TRC as published in [14].

	‘PSRK’, a compillation of experimental and
estimated data published in [15].

	‘YAWS’, a large compillation of data from a
variety of sources; no data points are sourced in the work of [16].

	‘WEBBOOK’, a NIST resource [17] containing mostly experimental
and averaged values

	‘JOBACK’, an estimation method for organic substances in [18]

	‘FEDORS’, an estimation methid in [20]

	‘PINAMARTINES’, a series of values in the supporting material of [19]

	‘HEOS’, a series of values from the NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids
(and other high-precision fundamental equations of state)

References

	1

	Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical
Properties of Elements and Compounds. 1. An Introductory Survey.”
Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996):
154-154. doi:10.1021/je950378q.

	2

	Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid
Critical Properties of Elements and Compounds. 2. Normal Alkanes.”
Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

	3

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 3. Aromatic
Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3
(May 1, 1995): 547-58. doi:10.1021/je00019a002.

	4

	Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties
of Elements and Compounds. 4. Aliphatic Alkanols.” Journal of Chemical
& Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

	5

	Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements
and Compounds. 5. Branched Alkanes and Cycloalkanes.” Journal of
Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

	6

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic
Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4
(January 1, 1996): 645-56. doi:10.1021/je9501999.

	7

	Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos.
“Vapor-Liquid Critical Properties of Elements and Compounds. 7. Oxygen
Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical &
Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

	8

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 8. Organic Sulfur,
Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 480-85.
doi:10.1021/je000210r.

	9

	Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose,
and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 9. Organic Compounds Containing Nitrogen.”
Journal of Chemical & Engineering Data 51, no. 2 (March 1, 2006):
305-14. doi:10.1021/je050221q.

	10

	Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton,
Eugene Nikitin, Constantine Tsonopoulos, and Colin L. Young.
“Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data
52, no. 5 (September 1, 2007): 1509-38. doi:10.1021/je700336g.

	11

	Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin.
“Vapor-Liquid Critical Properties of Elements and Compounds. 11. Organic
Compounds Containing B + O; Halogens + N, + O, + O + S, + S, + Si;
N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54,
no. 3 (March 12, 2009): 669-89. doi:10.1021/je800580z.

	12

	Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David
W. Morton, and Kenneth N. Marsh. “Vapor-Liquid Critical Properties of
Elements and Compounds. 12. Review of Recent Data for Hydrocarbons and
Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5,
2015, 151005081500002. doi:10.1021/acs.jced.5b00571.

	13

	Mathews, Joseph F. “Critical Constants of Inorganic Substances.”
Chemical Reviews 72, no. 1 (February 1, 1972): 71-100.
doi:10.1021/cr60275a004.

	14

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	15

	Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and
Jürgen Gmehling. “PSRK Group Contribution Equation of State:
Comprehensive Revision and Extension IV, Including Critical Constants
and A-Function Parameters for 1000 Components.” Fluid Phase Equilibria
227, no. 2 (January 25, 2005): 157-64. doi:10.1016/j.fluid.2004.11.002.

	16

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	17

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	18

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	19

	Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use
of 300,000 Pseudo-Experimental Data over 1800 Pure Fluids to Assess the
Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and
Tc-PR.” AIChE Journal n/a, no. n/a (n.d.): e17518.
https://doi.org/10.1002/aic.17518.

	20

	Fedors, R. F. “A Method to Estimate Critical Volumes.” AIChE
Journal 25, no. 1 (1979): 202-202. https://doi.org/10.1002/aic.690250129.

	21

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

>>> Vc(CASRN='64-17-5')
0.000168634064081

	
chemicals.critical.Vc_methods(CASRN)

	Return all methods available to obtain the critical volume for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Vc with the given inputs.

See also

	Vc
	

	
chemicals.critical.Vc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'WEBBOOK', 'PSRK', 'PINAMARTINES', 'YAWS', 'FEDORS', 'JOBACK')

	Tuple of method name keys. See the Vc for the actual references

	
chemicals.critical.Mersmann_Kind_predictor(atoms, coeff=3.645, power=0.5, covalent_radii={'Br': 1.14, 'C': 0.77, 'Cl': 0.99, 'F': 0.71, 'H': 0.37, 'I': 1.33, 'N': 0.71, 'O': 0.6, 'S': 1.04, 'Si': 1.17})

	Predicts the critical molar volume of a chemical based only on its
atomic composition according to [1] and [2]. This is a crude approach,
but provides very reasonable
estimates in practice. Optionally, the coeff used and the power in the
fraction as well as the atomic contributions can be adjusted; this method
is general and atomic contributions can be regressed to predict other
properties with this routine.

\[\frac{\left(\frac{V_c}{n_a N_A}\right)^{1/3}}{d_a}
= \frac{3.645}{\left(\frac{r_a}{r_H}\right)^{1/2}}

r_a = d_a/2

d_a = 2 \frac{\sum_i (n_i r_i)}{n_a}\]

In the above equations, \(n_i\) is the number of atoms of species i in
the molecule, \(r_i\) is the covalent atomic radius of the atom, and
\(n_a\) is the total number of atoms in the molecule.

	Parameters

	
	atomsdict
	Dictionary of atoms and their counts, [-]

	coefffloat, optional
	Coefficient used in the relationship, [m^2]

	powerfloat, optional
	Power applied to the relative atomic radius, [-]

	covalent_radiidict or indexable, optional
	Object which can be indexed to atomic contrinbutions (by symbol), [-]

	Returns

	
	Vcfloat
	Predicted critical volume of the chemical, [m^3/mol]

Notes

Using the chemicals.elements.periodic_table covalent radii (from RDKit),
the coefficient and power should be 4.261206523632586 and 0.5597281770786228
respectively for best results.

References

	1

	Mersmann, Alfons, and Matthias Kind. “Correlation for the Prediction
of Critical Molar Volume.” Industrial & Engineering Chemistry Research,
October 16, 2017. https://doi.org/10.1021/acs.iecr.7b03171.

	2

	Mersmann, Alfons, and Matthias Kind. “Prediction of Mechanical and
Thermal Properties of Pure Liquids, of Critical Data, and of Vapor
Pressure.” Industrial & Engineering Chemistry Research, January 31,
2017. https://doi.org/10.1021/acs.iecr.6b04323.

Examples

Prediction of critical volume of decane:

>>> Mersmann_Kind_predictor({'C': 10, 'H': 22})
0.0005851858957767497

This is compared against the experimental value, 0.000624 (a 6.2% relative
error)

Using custom fitted coefficients we can do a bit better:

>>> from chemicals.critical import rcovs_regressed
>>> Mersmann_Kind_predictor({'C': 10, 'H': 22}, coeff=4.261206523632586,
... power=0.5597281770786228, covalent_radii=rcovs_regressed)
0.0005956870915974391

The relative error is only 4.5% now. This is compared to an experimental
uncertainty of 5.6%.

Evaluating 1321 critical volumes in the database, the average relative
error is 5.0%; standard deviation 6.8%; and worst value of 79% relative
error for phosphorus.

Critical Compressibility Factor

	
chemicals.critical.Zc(CASRN, method=None)

	This function handles the retrieval of a chemical’s critical
compressibility. Lookup is based on CASRNs. Will automatically select a
data source to use if no method is provided; returns None if the data is
not available.

Preferred sources are ‘IUPAC’ for organic chemicals, and ‘MATTHEWS’ for
inorganic chemicals. Function has data for approximately 25000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Zcfloat
	Critical compressibility, [-]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘IUPAC’, ‘MATTHEWS’,
‘CRC’, ‘PSRK’, ‘YAWS’, ‘HEOS’. All valid values are also held
in Zc_all_methods.

See also

	Zc_methods
	

Notes

The available sources are as follows:

	‘IUPAC’, a series of critically evaluated
experimental datum for organic compounds in [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], and [12].

	‘MATTHEWS’, a series of critically
evaluated data for inorganic compounds in [13].

	‘CRC’, a compillation of critically
evaluated data by the TRC as published in [14].

	‘PSRK’, a compillation of experimental and
estimated data published in [15].

	‘YAWS’, a large compillation of data from a
variety of sources; no data points are sourced in the work of [16].

	‘WEBBOOK’, a NIST resource [17] containing mostly experimental
and averaged values

	‘JOBACK’, an estimation method for organic substances in [18]

	‘PINAMARTINES’, a series of values in the supporting material of [19]

	‘HEOS’, a series of values from the NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids
(and other high-precision fundamental equations of state)

References

	1

	Ambrose, Douglas, and Colin L. Young. “Vapor-Liquid Critical
Properties of Elements and Compounds. 1. An Introductory Survey.”
Journal of Chemical & Engineering Data 41, no. 1 (January 1, 1996):
154-154. doi:10.1021/je950378q.

	2

	Ambrose, Douglas, and Constantine Tsonopoulos. “Vapor-Liquid
Critical Properties of Elements and Compounds. 2. Normal Alkanes.”
Journal of Chemical & Engineering Data 40, no. 3 (May 1, 1995): 531-46.
doi:10.1021/je00019a001.

	3

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 3. Aromatic
Hydrocarbons.” Journal of Chemical & Engineering Data 40, no. 3
(May 1, 1995): 547-58. doi:10.1021/je00019a002.

	4

	Gude, Michael, and Amyn S. Teja. “Vapor-Liquid Critical Properties
of Elements and Compounds. 4. Aliphatic Alkanols.” Journal of Chemical
& Engineering Data 40, no. 5 (September 1, 1995): 1025-36.
doi:10.1021/je00021a001.

	5

	Daubert, Thomas E. “Vapor-Liquid Critical Properties of Elements
and Compounds. 5. Branched Alkanes and Cycloalkanes.” Journal of
Chemical & Engineering Data 41, no. 3 (January 1, 1996): 365-72.
doi:10.1021/je9501548.

	6

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic
Hydrocarbons.” Journal of Chemical & Engineering Data 41, no. 4
(January 1, 1996): 645-56. doi:10.1021/je9501999.

	7

	Kudchadker, Arvind P., Douglas Ambrose, and Constantine Tsonopoulos.
“Vapor-Liquid Critical Properties of Elements and Compounds. 7. Oxygen
Compounds Other Than Alkanols and Cycloalkanols.” Journal of Chemical &
Engineering Data 46, no. 3 (May 1, 2001): 457-79. doi:10.1021/je0001680.

	8

	Tsonopoulos, Constantine, and Douglas Ambrose. “Vapor-Liquid
Critical Properties of Elements and Compounds. 8. Organic Sulfur,
Silicon, and Tin Compounds (C + H + S, Si, and Sn).” Journal of Chemical
& Engineering Data 46, no. 3 (May 1, 2001): 480-85.
doi:10.1021/je000210r.

	9

	Marsh, Kenneth N., Colin L. Young, David W. Morton, Douglas Ambrose,
and Constantine Tsonopoulos. “Vapor-Liquid Critical Properties of
Elements and Compounds. 9. Organic Compounds Containing Nitrogen.”
Journal of Chemical & Engineering Data 51, no. 2 (March 1, 2006):
305-14. doi:10.1021/je050221q.

	10

	Marsh, Kenneth N., Alan Abramson, Douglas Ambrose, David W. Morton,
Eugene Nikitin, Constantine Tsonopoulos, and Colin L. Young.
“Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic
Compounds Containing Halogens.” Journal of Chemical & Engineering Data
52, no. 5 (September 1, 2007): 1509-38. doi:10.1021/je700336g.

	11

	Ambrose, Douglas, Constantine Tsonopoulos, and Eugene D. Nikitin.
“Vapor-Liquid Critical Properties of Elements and Compounds. 11. Organic
Compounds Containing B + O; Halogens + N, + O, + O + S, + S, + Si;
N + O; and O + S, + Si.” Journal of Chemical & Engineering Data 54,
no. 3 (March 12, 2009): 669-89. doi:10.1021/je800580z.

	12

	Ambrose, Douglas, Constantine Tsonopoulos, Eugene D. Nikitin, David
W. Morton, and Kenneth N. Marsh. “Vapor-Liquid Critical Properties of
Elements and Compounds. 12. Review of Recent Data for Hydrocarbons and
Non-Hydrocarbons.” Journal of Chemical & Engineering Data, October 5,
2015, 151005081500002. doi:10.1021/acs.jced.5b00571.

	13

	Mathews, Joseph F. “Critical Constants of Inorganic Substances.”
Chemical Reviews 72, no. 1 (February 1, 1972): 71-100.
doi:10.1021/cr60275a004.

	14

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	15

	Horstmann, Sven, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, and
Jürgen Gmehling. “PSRK Group Contribution Equation of State:
Comprehensive Revision and Extension IV, Including Critical Constants
and A-Function Parameters for 1000 Components.” Fluid Phase Equilibria
227, no. 2 (January 25, 2005): 157-64. doi:10.1016/j.fluid.2004.11.002.

	16

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	17

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	18

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	19

	Piña-Martinez, Andrés, Romain Privat, and Jean-Noël Jaubert. “Use
of 300,000 Pseudo-Experimental Data over 1800 Pure Fluids to Assess the
Performance of Four Cubic Equations of State: SRK, PR, Tc-RK, and
Tc-PR.” AIChE Journal n/a, no. n/a (n.d.): e17518.
https://doi.org/10.1002/aic.17518.

	20

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

>>> Zc(CASRN='64-17-5')
0.247

	
chemicals.critical.Zc_methods(CASRN)

	Return all methods available to obtain the critical compressibility for
the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Zc with the given inputs.

See also

	Zc
	

	
chemicals.critical.Zc_all_methods = ('HEOS', 'IUPAC', 'MATTHEWS', 'CRC', 'WEBBOOK', 'PSRK', 'PINAMARTINES', 'YAWS', 'JOBACK')

	Tuple of method name keys. See the Zc for the actual references

Critical Property Relationships

	
chemicals.critical.critical_surface(Tc=None, Pc=None, Vc=None, method=None)

	Function for calculating a critical property of a substance from its
other two critical properties. Calls functions Ihmels, Meissner, and
Grigoras, each of which use a general ‘Critical surface’ type of equation.
Limited accuracy is expected due to very limited theoretical backing.

	Parameters

	
	Tcfloat
	Critical temperature of fluid (optional) [K].

	Pcfloat
	Critical pressure of fluid (optional) [Pa].

	Vcfloat
	Critical volume of fluid (optional) [m^3/mol].

	methodstring
	Request calculation uses the requested method.

	Returns

	
	Tc, Pc or Vcfloat
	Critical property of fluid [K], [Pa], or [m^3/mol].

See also

	critical_surface_methods_methods
	

Examples

Decamethyltetrasiloxane [141-62-8]

>>> critical_surface(Tc=599.4, Pc=1.19E6, method='IHMELS')
0.0010927333333333334

	
chemicals.critical.critical_surface_methods(Tc=None, Pc=None, Vc=None)

	Return all methods available to obtain the third critial property for the
desired chemical.

	Parameters

	
	Tcfloat
	Critical temperature of fluid (optional) [K].

	Pcfloat
	Critical pressure of fluid (optional) [Pa].

	Vcfloat
	Critical volume of fluid (optional) [m^3/mol].

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the third critical property with
the given inputs.

See also

	critical_surface
	

	
chemicals.critical.critical_surface_all_methods = ('IHMELS', 'MEISSNER', 'GRIGORAS')

	Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable’s items.

If the argument is a tuple, the return value is the same object.

	
chemicals.critical.third_property(CASRN=None, T=False, P=False, V=False)

	Function for calculating a critical property of a substance from its
other two critical properties, but retrieving the actual other critical
values for convenient calculation.
Calls functions Ihmels, Meissner, and
Grigoras, each of which use a general ‘Critical surface’ type of equation.
Limited accuracy is expected due to very limited theoretical backing.

	Parameters

	
	CASRNstr
	The CAS number of the desired chemical

	Tbool
	Estimate critical temperature

	Pbool
	Estimate critical pressure

	Vbool
	Estimate critical volume

	Returns

	
	Tc, Pc or Vcfloat
	Critical property of fluid [K], [Pa], or [m^3/mol]

Examples

Decamethyltetrasiloxane [141-62-8]

>>> third_property('141-62-8', V=True)
0.001135732

Succinic acid [110-15-6]

>>> third_property('110-15-6', P=True)
6095016.233766234

	
chemicals.critical.Ihmels(Tc=None, Pc=None, Vc=None)

	Most recent, and most recommended method of estimating critical
properties from each other. Two of the three properties are required.
This model uses the “critical surface”, a general plot of Tc vs Pc vs Vc.
The model used 421 organic compounds to derive equation.
The general equation is in [1]:

\[P_c = -0.025 + 2.215 \frac{T_c}{V_c}

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid (optional) [K]

	Pcfloat
	Critical pressure of fluid (optional) [Pa]

	Vcfloat
	Critical volume of fluid (optional) [m^3/mol]

	Returns

	
	Tc, Pc or Vcfloat
	Critical property of fluid [K], [Pa], or [m^3/mol]

Notes

The prediction of Tc from Pc and Vc is not tested, as this is not necessary
anywhere, but it is implemented.
Internal units are MPa, cm^3/mol, and K. A slight error occurs when
Pa, cm^3/mol and K are used instead, on the order of <0.2%.
Their equation was also compared with 56 inorganic and elements.
Devations of 20% for <200K or >1000K points.

References

	1

	Ihmels, E. Christian. “The Critical Surface.” Journal of Chemical
& Engineering Data 55, no. 9 (September 9, 2010): 3474-80.
doi:10.1021/je100167w.

Examples

Succinic acid [110-15-6]

>>> Ihmels(Tc=851.0, Vc=0.000308)
6095016.233766234

	
chemicals.critical.Meissner(Tc=None, Pc=None, Vc=None)

	Old (1942) relationship for estimating critical
properties from each other. Two of the three properties are required.
This model uses the “critical surface”, a general plot of Tc vs Pc vs Vc.
The model used 42 organic and inorganic compounds to derive the equation.
The general equation is in [1]:

\[P_c = \frac{2.08 T_c}{V_c-8}

\]

	Parameters

	
	Tcfloat, optional
	Critical temperature of fluid [K]

	Pcfloat, optional
	Critical pressure of fluid [Pa]

	Vcfloat, optional
	Critical volume of fluid [m^3/mol]

	Returns

	
	Tc, Pc or Vcfloat
	Critical property of fluid [K], [Pa], or [m^3/mol]

Notes

The prediction of Tc from Pc and Vc is not tested, as this is not necessary
anywhere, but it is implemented.
Internal units are atm, cm^3/mol, and K. A slight error occurs when
Pa, cm^3/mol and K are used instead, on the order of <0.2%.
This equation is less accurate than that of Ihmels, but surprisingly close.
The author also proposed means of estimated properties independently.

References

	1

	Meissner, H. P., and E. M. Redding. “Prediction of Critical
Constants.” Industrial & Engineering Chemistry 34, no. 5
(May 1, 1942): 521-26. doi:10.1021/ie50389a003.

Examples

Succinic acid [110-15-6]

>>> Meissner(Tc=851.0, Vc=0.000308)
5978445.199999999

	
chemicals.critical.Grigoras(Tc=None, Pc=None, Vc=None)

	Relatively recent (1990) relationship for estimating critical
properties from each other. Two of the three properties are required.
This model uses the “critical surface”, a general plot of Tc vs Pc vs Vc.
The model used 137 organic and inorganic compounds to derive the equation.
The general equation is in [1]:

\[P_c = 2.9 + 20.2 \frac{T_c}{V_c}

\]

	Parameters

	
	Tcfloat, optional
	Critical temperature of fluid [K]

	Pcfloat, optional
	Critical pressure of fluid [Pa]

	Vcfloat, optional
	Critical volume of fluid [m^3/mol]

	Returns

	
	Tc, Pc or Vcfloat
	Critical property of fluid [K], [Pa], or [m^3/mol]

Notes

The prediction of Tc from Pc and Vc is not tested, as this is not necessary
anywhere, but it is implemented.
Internal units are bar, cm^3/mol, and K. A slight error occurs when
Pa, cm^3/mol and K are used instead, on the order of <0.2%.
This equation is less accurate than that of Ihmels, but surprisingly close.
The author also investigated an early QSPR model.

References

	1

	Grigoras, Stelian. “A Structural Approach to Calculate Physical
Properties of Pure Organic Substances: The Critical Temperature,
Critical Volume and Related Properties.” Journal of Computational
Chemistry 11, no. 4 (May 1, 1990): 493-510.
doi:10.1002/jcc.540110408

Examples

Succinic acid [110-15-6]

>>> Grigoras(Tc=851.0, Vc=0.000308)
5871233.766233766

	
chemicals.critical.Hekayati_Raeissi(MW, V_sat=None, Tc=None, Pc=None, Vc=None)

	Estimation model for missing critical constants of a fluid
according to [1]. Based on the molecular weight and saturation
molar volume of a fluid, and requires one of Tc or Pc.
Optionally, Vc can be provided to increase the accuracy of
the prediction of Tc or Pc a little.

	Parameters

	
	MWfloat
	Molecular weight of fluid, [g/mol]

	V_satfloat, optional
	Molar volume of liquid at the saturation pressure of the fluid
at 298.15 K. Used if Vc is not provided. [m^3/mol]

	Tcfloat, optional
	Critical temperature of fluid (optional) [K]

	Pcfloat, optional
	Critical pressure of fluid (optional) [Pa]

	Vcfloat, optional
	Critical volume of fluid (optional) [m^3/mol]

	Returns

	
	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Vcfloat
	Critical volume of fluid [m^3/mol]

Notes

Internal units are kPa, m^3/kmol, and K.

References

	1

	Hekayati, Javad, and Sona Raeissi. “Estimation of the Critical
Properties of Compounds Using Volume-Based Thermodynamics.” AIChE Journal
n/a, no. n/a (n.d.): e17004. https://doi.org/10.1002/aic.17004.

Examples

Toluene

>>> Hekayati_Raeissi(MW=92.13842, V_sat=0.00010686, Pc=4108000.0)
(599.7965819136947, 4108000.0, 0.000314909150453723)

	
chemicals.critical.Tb_Tc_relationship(Tb=None, Tc=None, fit='Perry8E')

	This function relates the normal boiling point and the critical point
of a compound. It is inspired by the relationship shown in [1] on page
2-468 for inorganic compounds.

\[T_c = 1.64 T_b

\]

	Parameters

	
	Tbfloat, optional
	Normal boiling temperature of fluid [K]

	Tcfloat, optional
	Critical temperature of fluid [K]

	fitstr, optional
	One of ‘Perry8E’, ‘Chemicals2021FitInorganic’,
‘Chemicals2021FitElements’, ‘Chemicals2021FitBinary’,
‘Chemicals2021FitTernary’, Chemicals2021FitOrganic’,
‘Chemicals2021FitBr’,
‘Chemicals2021FitC’, ‘Chemicals2021FitCl’,
‘Chemicals2021FitF’, ‘Chemicals2021FitI’,
‘Chemicals2021FitN’, ‘Chemicals2021FitO’, ‘
‘Chemicals2021FitSi’.

	Returns

	
	Tc or Tbfloat
	The temperature variable not provided [K]

Notes

Chemicals2021FitBinary applies for inorganic compounds with two types of
atoms; Chemicals2021FitTernary for three; and the various models
Chemicals2021FitO, Chemicals2021FitC, etc apply for inorganic compounds
with those elements in them.

The quality of this relationship is low, but if no further information is
available it can be used to obtain an approximate value.

References

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

Examples

Tetrabromosilane has a known boiling point of 427.15 K and a critical
temperature of 663.0 K.

>>> Tb_Tc_relationship(Tb=427.15, fit='Perry8E')
700.526
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitBr')
668.0626
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitSi')
651.8309
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitBinary')
669.7712
>>> Tb_Tc_relationship(Tb=427.15, fit='Chemicals2021FitInorganic')
686.0029

The performance of the fits is fairly representative. However, because this
method should only be used on compounds that don’t have experimental
critical points measured, many of the worst outlier chemicals have already
been measured and the performance may be better than expected.

It is recommended to use the methods Chemicals2021FitElements,
Chemicals2021FitBinary, and Chemicals2021FitTernary.

Critical Temperature of Mixtures

	
chemicals.critical.Li(zs, Tcs, Vcs)

	Calculates critical temperature of a mixture according to
mixing rules in [1]. Better than simple mixing rules.

\[T_{cm} = \sum_{i=1}^n \Phi_i T_{ci}\\
\Phi = \frac{x_i V_{ci}}{\sum_{j=1}^n x_j V_{cj}}

\]

	Parameters

	
	zsarray-like
	Mole fractions of all components

	Tcsarray-like
	Critical temperatures of all components, [K]

	Vcsarray-like
	Critical volumes of all components, [m^3/mol]

	Returns

	
	Tcmfloat
	Critical temperatures of the mixture, [K]

Notes

Reviewed in many papers on critical mixture temperature.

Second example is from Najafi (2015), for ethylene, Benzene, ethylbenzene.
This is similar to but not identical to the result from the article. The
experimental point is 486.9 K.

2rd example is from Najafi (2015), for:
butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.
Its result is identical to that calculated in the article.

References

	1

	Li, C. C. “Critical Temperature Estimation for Simple Mixtures.”
The Canadian Journal of Chemical Engineering 49, no. 5
(October 1, 1971): 709-10. doi:10.1002/cjce.5450490529.

Examples

Nitrogen-Argon 50/50 mixture

>>> Li([0.5, 0.5], [126.2, 150.8], [8.95e-05, 7.49e-05])
137.40766423357667

butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.

>>> Li([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6],
... [0.000255, 0.000313, 0.000371])
449.68261498555444

	
chemicals.critical.Chueh_Prausnitz_Tc(zs, Tcs, Vcs, taus)

	Calculates critical temperature of a mixture according to
mixing rules in [1].

\[T_{cm} = \sum_i^n \theta_i Tc_i + \sum_i^n\sum_j^n(\theta_i \theta_j
\tau_{ij})T_{ref}

\theta = \frac{x_i V_{ci}^{2/3}}{\sum_{j=1}^n x_j V_{cj}^{2/3}}\]

For a binary mxiture, this simplifies to:

\[T_{cm} = \theta_1T_{c1} + \theta_2T_{c2} + 2\theta_1\theta_2\tau_{12}

\]

	Parameters

	
	zsarray-like
	Mole fractions of all components

	Tcsarray-like
	Critical temperatures of all components, [K]

	Vcsarray-like
	Critical volumes of all components, [m^3/mol]

	tausarray-like of shape zs by zs
	Interaction parameters, [-]

	Returns

	
	Tcmfloat
	Critical temperatures of the mixture, [K]

Notes

All parameters, even if zero, must be given to this function.

References

	1

	Chueh, P. L., and J. M. Prausnitz. “Vapor-Liquid Equilibria at High
Pressures: Calculation of Critical Temperatures, Volumes, and Pressures
of Nonpolar Mixtures.” AIChE Journal 13, no. 6 (November 1, 1967):
1107-13. doi:10.1002/aic.690130613.

	2

	Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati.
“Prediction of True Critical Temperature of Multi-Component Mixtures:
Extending Fast Estimation Methods.” Fluid Phase Equilibria 392
(April 25, 2015): 104-26. doi:10.1016/j.fluid.2015.02.001.

Examples

butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.

>>> Chueh_Prausnitz_Tc([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6],
... [0.000255, 0.000313, 0.000371], [[0, 1.92681, 6.80358],
... [1.92681, 0, 1.89312], [6.80358, 1.89312, 0]])
450.122576472349

	
chemicals.critical.Grieves_Thodos(zs, Tcs, Aijs)

	Calculates critical temperature of a mixture according to
mixing rules in [1].

\[T_{cm} = \sum_{i} \frac{T_{ci}}{1 + (1/x_i)\sum_j A_{ij} x_j}

\]

For a binary mxiture, this simplifies to:

\[T_{cm} = \frac{T_{c1}}{1 + (x_2/x_1)A_{12}} + \frac{T_{c2}}
{1 + (x_1/x_2)A_{21}}

\]

	Parameters

	
	zsarray-like
	Mole fractions of all components

	Tcsarray-like
	Critical temperatures of all components, [K]

	Aijsarray-like of shape zs by zs
	Interaction parameters

	Returns

	
	Tcmfloat
	Critical temperatures of the mixture, [K]

Notes

All parameters, even if zero, must be given to this function.
Giving 0s gives really bad results however.

References

	1

	Grieves, Robert B., and George Thodos. “The Critical Temperatures of
Multicomponent Hydrocarbon Systems.” AIChE Journal 8, no. 4
(September 1, 1962): 550-53. doi:10.1002/aic.690080426.

	2

	Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati.
“Prediction of True Critical Temperature of Multi-Component Mixtures:
Extending Fast Estimation Methods.” Fluid Phase Equilibria 392
(April 25, 2015): 104-26. doi:10.1016/j.fluid.2015.02.001.

Examples

butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.

>>> Grieves_Thodos([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6], [[0, 1.2503, 1.516], [0.799807, 0, 1.23843], [0.659633, 0.807474, 0]])
450.1839618758971

	
chemicals.critical.modified_Wilson_Tc(zs, Tcs, Aijs)

	Calculates critical temperature of a mixture according to
mixing rules in [1]. Equation

\[T_{cm} = \sum_i x_i T_{ci} + C\sum_i x_i \ln \left(x_i + \sum_j x_j A_{ij}\right)T_{ref}

\]

For a binary mxiture, this simplifies to:

\[T_{cm} = x_1 T_{c1} + x_2 T_{c2} + C[x_1 \ln(x_1 + x_2A_{12}) + x_2\ln(x_2 + x_1 A_{21})]

\]

	Parameters

	
	zsfloat
	Mole fractions of all components

	Tcsfloat
	Critical temperatures of all components, [K]

	Aijsmatrix
	Interaction parameters

	Returns

	
	Tcmfloat
	Critical temperatures of the mixture, [K]

Notes

The equation and original article has been reviewed.
[1] has 75 binary systems, and additional multicomponent mixture parameters.
All parameters, even if zero, must be given to this function.

2rd example is from [2], for:
butane/pentane/hexane 0.6449/0.2359/0.1192 mixture, exp: 450.22 K.
Its result is identical to that calculated in the article.

References

	1(1,2)

	Teja, Amyn S., Kul B. Garg, and Richard L. Smith. “A Method for the
Calculation of Gas-Liquid Critical Temperatures and Pressures of
Multicomponent Mixtures.” Industrial & Engineering Chemistry Process
Design and Development 22, no. 4 (1983): 672-76.

	2

	Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati.
“Prediction of True Critical Temperature of Multi-Component Mixtures:
Extending Fast Estimation Methods.” Fluid Phase Equilibria 392
(April 25, 2015): 104-26. doi:10.1016/j.fluid.2015.02.001.

Examples

>>> modified_Wilson_Tc([0.6449, 0.2359, 0.1192], [425.12, 469.7, 507.6],
... [[0, 1.174450, 1.274390], [0.835914, 0, 1.21038],
... [0.746878, 0.80677, 0]])
450.03059668230316

Critical Volume of Mixtures

	
chemicals.critical.Chueh_Prausnitz_Vc(zs, Vcs, nus)

	Calculates critical volume of a mixture according to
mixing rules in [1] with an interaction parameter.

\[V_{cm} = \sum_i^n \theta_i V_{ci} + \sum_i^n\sum_j^n(\theta_i \theta_j \nu_{ij})V_{ref}
\theta = \frac{x_i V_{ci}^{2/3}}{\sum_{j=1}^n x_j V_{cj}^{2/3}}

\]

	Parameters

	
	zsfloat
	Mole fractions of all components

	Vcsfloat
	Critical volumes of all components, [m^3/mol]

	nusmatrix
	Interaction parameters, [cm^3/mol]

	Returns

	
	Vcmfloat
	Critical volume of the mixture, [m^3/mol]

Notes

All parameters, even if zero, must be given to this function.
nu parameters are in cm^3/mol, but are converted to m^3/mol inside the function

References

	1

	Chueh, P. L., and J. M. Prausnitz. “Vapor-Liquid Equilibria at High
Pressures: Calculation of Critical Temperatures, Volumes, and Pressures
of Nonpolar Mixtures.” AIChE Journal 13, no. 6 (November 1, 1967):
1107-13. doi:10.1002/aic.690130613.

	2

	Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati.
“Prediction of True Critical Volume of Multi-Component Mixtures:
Extending Fast Estimation Methods.” Fluid Phase Equilibria 386
(January 25, 2015): 13-29. doi:10.1016/j.fluid.2014.11.008.

Examples

1-butanol/benzene 0.4271/0.5729 mixture, Vcm = 268.096 mL/mol.

>>> Chueh_Prausnitz_Vc([0.4271, 0.5729], [0.000273, 0.000256], [[0, 5.61847], [5.61847, 0]])
0.00026620503424517445

	
chemicals.critical.modified_Wilson_Vc(zs, Vcs, Aijs)

	Calculates critical volume of a mixture according to
mixing rules in [1] with parameters. Equation

\[V_{cm} = \sum_i x_i V_{ci} + C\sum_i x_i \ln \left(x_i + \sum_j x_j A_{ij}\right)V_{ref}

\]

For a binary mxiture, this simplifies to:

\[V_{cm} = x_1 V_{c1} + x_2 V_{c2} + C[x_1 \ln(x_1 + x_2A_{12}) + x_2\ln(x_2 + x_1 A_{21})]

\]

	Parameters

	
	zsfloat
	Mole fractions of all components

	Vcsfloat
	Critical volumes of all components, [m^3/mol]

	Aijsmatrix
	Interaction parameters, [cm^3/mol]

	Returns

	
	Vcmfloat
	Critical volume of the mixture, [m^3/mol]

Notes

The equation and original article has been reviewed.
All parameters, even if zero, must be given to this function.
C = -2500

All parameters, even if zero, must be given to this function.
nu parameters are in cm^3/mol, but are converted to m^3/mol inside the function

References

	1

	Teja, Amyn S., Kul B. Garg, and Richard L. Smith. “A Method for the
Calculation of Gas-Liquid Critical Temperatures and Pressures of
Multicomponent Mixtures.” Industrial & Engineering Chemistry Process
Design and Development 22, no. 4 (1983): 672-76.

	2

	Najafi, Hamidreza, Babak Maghbooli, and Mohammad Amin Sobati.
“Prediction of True Critical Temperature of Multi-Component Mixtures:
Extending Fast Estimation Methods.” Fluid Phase Equilibria 392
(April 25, 2015): 104-26. doi:10.1016/j.fluid.2015.02.001.

Examples

1-butanol/benzene 0.4271/0.5729 mixture, Vcm = 268.096 mL/mol.

>>> modified_Wilson_Vc([0.4271, 0.5729], [0.000273, 0.000256],
... [[0, 0.6671250], [1.3939900, 0]])
0.0002664335032706881

Dipole Moment (chemicals.dipole)

This module contains lookup functions for the property dipole moment.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Lookup Functions

Lookup Functions

	
chemicals.dipole.dipole_moment(CASRN, method=None)

	This function handles the retrieval of a chemical’s dipole moment.
Lookup is based on CASRNs. Will automatically select a data source to use
if no method is provided; returns None if the data is not available.

Preferred source is ‘CCCBDB’. Considerable variation in reported data has
found.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	dipolefloat
	Dipole moment, [debye]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘CCCBDB’, ‘MULLER’, or
‘POLING’, ‘PSI4_2022A’. All valid values are also held in the list
dipole_all_methods.

See also

	dipole_moment_methods
	

Notes

A total of three sources are available for this function. They are:

	‘CCCBDB’, a series of critically evaluated data for compounds in
[1], intended for use in predictive modeling.

	‘MULLER’, a collection of data in a
group-contribution scheme in [2].

	‘POLING’, in the appendix in [3].

	‘PSI4_2022A’, values computed using the Psi4 version 1.3.2 quantum
chemistry software, with initialized positions from rdkit’s EmbedMolecule
method, the basis set 6-31G** and the method mp2 [4].

This function returns dipole moment in units of Debye. This is actually
a non-SI unit; to convert to SI, multiply by 3.33564095198e-30 and its
units will be in ampere*second^2 or equivalently and more commonly given,
coulomb*second. The constant is the result of 1E-21/c, where c is the
speed of light.

References

	1

	NIST Computational Chemistry Comparison and Benchmark Database
NIST Standard Reference Database Number 101 Release 17b, September 2015,
Editor: Russell D. Johnson III http://cccbdb.nist.gov/

	2

	Muller, Karsten, Liudmila Mokrushina, and Wolfgang Arlt. “Second-
Order Group Contribution Method for the Determination of the Dipole
Moment.” Journal of Chemical & Engineering Data 57, no. 4 (April 12,
2012): 1231-36. doi:10.1021/je2013395.

	3

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	4

	Turney, Justin M., Andrew C. Simmonett, Robert M. Parrish, Edward G.
Hohenstein, Francesco A. Evangelista, Justin T. Fermann, Benjamin J.
Mintz, et al. “Psi4: An Open-Source Ab Initio Electronic Structure
Program.” WIREs Computational Molecular Science 2, no. 4 (2012): 556-65.
https://doi.org/10.1002/wcms.93.

Examples

>>> dipole_moment(CASRN='64-17-5')
1.44

	
chemicals.dipole.dipole_moment_methods(CASRN)

	Return all methods available to obtain the dipole moment for the desired
chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the dipole moment with the given
inputs.

See also

	dipole_moment
	

	
chemicals.dipole.dipole_moment_all_methods = ('CCCBDB', 'MULLER', 'POLING', 'PSI4_2022A')

	Tuple of method name keys. See the dipole for the actual references

DIPPR Fit Equations (chemicals.dippr)

This module contains implementations of various numered property equations
used by the DIPPR, the Design Institude for Physical Property Research.

No actual data is included in this module; it is just functional
implementations of the formulas and some of their derivatives/integrals.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Equations

	Jacobians (for fitting)

Equations

	
chemicals.dippr.EQ100(T, A=0, B=0, C=0, D=0, E=0, F=0, G=0, order=0)

	DIPPR Equation # 100. Used in calculating the molar heat capacities
of liquids and solids, liquid thermal conductivity, and solid density.
All parameters default to zero. As this is a straightforward polynomial,
no restrictions on parameters apply. Note that high-order polynomials like
this may need large numbers of decimal places to avoid unnecessary error.

\[Y = A + BT + CT^2 + DT^3 + ET^4 + FT^5 + GT^6

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Gfloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral
over T with respect to T are computed as follows. All derivatives and
integrals are easily computed with SymPy.

\[\frac{d Y}{dT} = B + 2 C T + 3 D T^{2} + 4 E T^{3} + 5 F T^{4}
+ 6 G T^{5}

\]

\[\int Y dT = A T + \frac{B T^{2}}{2} + \frac{C T^{3}}{3} + \frac{D
T^{4}}{4} + \frac{E T^{5}}{5} + \frac{F T^{6}}{6} + \frac{G T^{7}}{7}

\]

\[\int \frac{Y}{T} dT = A \ln{\left (T \right)} + B T + \frac{C T^{2}}
{2} + \frac{D T^{3}}{3} + \frac{E T^{4}}{4} + \frac{F T^{5}}{5}
+ \frac{G T^{6}}{6}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Water liquid heat capacity; DIPPR coefficients normally listed in J/kmol/K.

>>> EQ100(300, 276370., -2090.1, 8.125, -0.014116, 0.0000093701)
75355.81000000003

	
chemicals.dippr.EQ101(T, A, B, C=0.0, D=0.0, E=0.0, order=0)

	DIPPR Equation # 101. Used in calculating vapor pressure, sublimation
pressure, and liquid viscosity.
All 5 parameters are required. E is often an integer. As the model is
exponential, a sufficiently high temperature will cause an OverflowError.
A negative temperature (or just low, if fit poorly) may cause a math domain
error.

\[Y = \exp\left(A + \frac{B}{T} + C\cdot \ln T + D \cdot T^E\right)

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for n, the nth derivative of the property is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	Property [constant-specific]

Notes

This function is not integrable for either dT or Y/T dT.

\[\frac{d Y}{dT} = \left(- \frac{B}{T^{2}} + \frac{C}{T}
+ \frac{D E T^{E}}{T}\right) e^{A + \frac{B}{T}
+ C \log{\left(T \right)} + D T^{E}}

\]

\[\frac{d^2 Y}{dT^2} = \frac{\left(\frac{2 B}{T} - C + D E^{2} T^{E}
- D E T^{E} + \left(- \frac{B}{T} + C + D E T^{E}\right)^{2}\right)
e^{A + \frac{B}{T} + C \log{\left(T \right)} + D T^{E}}}{T^{2}}

\]

\[\frac{d^3 Y}{dT^3} = \frac{\left(- \frac{6 B}{T} + 2 C + D E^{3} T^{E}
- 3 D E^{2} T^{E} + 2 D E T^{E} + \left(- \frac{B}{T} + C
+ D E T^{E}\right)^{3} + 3 \left(- \frac{B}{T} + C + D E T^{E}\right)
\left(\frac{2 B}{T} - C + D E^{2} T^{E} - D E T^{E}\right)\right)
e^{A + \frac{B}{T} + C \log{\left(T \right)} + D T^{E}}}{T^{3}}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Water vapor pressure; DIPPR coefficients normally listed in Pa.

>>> EQ101(300, 73.649, -7258.2, -7.3037, 4.1653E-6, 2)
3537.44834545549

	
chemicals.dippr.EQ102(T, A, B, C=0.0, D=0.0, order=0)

	DIPPR Equation # 102. Used in calculating vapor viscosity, vapor
thermal conductivity, and sometimes solid heat capacity. High values of B
raise an OverflowError.
All 4 parameters are required. C and D are often 0.

\[Y = \frac{A\cdot T^B}{1 + \frac{C}{T} + \frac{D}{T^2}}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Dfloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral
over T with respect to T are computed as follows. The first derivative is
easily computed; the two integrals required Rubi to perform the integration.

\[\frac{d Y}{dT} = \frac{A B T^{B}}{T \left(\frac{C}{T} + \frac{D}{T^{2}}
+ 1\right)} + \frac{A T^{B} \left(\frac{C}{T^{2}} + \frac{2 D}{T^{3}}
\right)}{\left(\frac{C}{T} + \frac{D}{T^{2}} + 1\right)^{2}}

\]

\[\int Y dT = - \frac{2 A T^{B + 3} \operatorname{hyp2f1}{\left (1,B + 3,
B + 4,- \frac{2 T}{C - \sqrt{C^{2} - 4 D}} \right)}}{\left(B + 3\right)
\left(C + \sqrt{C^{2} - 4 D}\right) \sqrt{C^{2} - 4 D}} + \frac{2 A
T^{B + 3} \operatorname{hyp2f1}{\left (1,B + 3,B + 4,- \frac{2 T}{C
+ \sqrt{C^{2} - 4 D}} \right)}}{\left(B + 3\right) \left(C
- \sqrt{C^{2} - 4 D}\right) \sqrt{C^{2} - 4 D}}

\]

\[\int \frac{Y}{T} dT = - \frac{2 A T^{B + 2} \operatorname{hyp2f1}{\left
(1,B + 2,B + 3,- \frac{2 T}{C + \sqrt{C^{2} - 4 D}} \right)}}{\left(B
+ 2\right) \left(C + \sqrt{C^{2} - 4 D}\right) \sqrt{C^{2} - 4 D}}
+ \frac{2 A T^{B + 2} \operatorname{hyp2f1}{\left (1,B + 2,B + 3,
- \frac{2 T}{C - \sqrt{C^{2} - 4 D}} \right)}}{\left(B + 2\right)
\left(C - \sqrt{C^{2} - 4 D}\right) \sqrt{C^{2} - 4 D}}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Water vapor viscosity; DIPPR coefficients normally listed in Pa*s.

>>> EQ102(300, 1.7096E-8, 1.1146, 0, 0)
9.860384711890639e-06

	
chemicals.dippr.EQ104(T, A, B, C=0.0, D=0.0, E=0.0, order=0)

	DIPPR Equation #104. Often used in calculating second virial
coefficients of gases. All 5 parameters are required.
C, D, and E are normally large values.

\[Y = A + \frac{B}{T} + \frac{C}{T^3} + \frac{D}{T^8} + \frac{E}{T^9}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral
over T with respect to T are computed as follows. All expressions can be
obtained with SymPy readily.

\[\frac{d Y}{dT} = - \frac{B}{T^{2}} - \frac{3 C}{T^{4}}
- \frac{8 D}{T^{9}} - \frac{9 E}{T^{10}}

\]

\[\int Y dT = A T + B \ln{\left (T \right)} - \frac{1}{56 T^{8}}
\left(28 C T^{6} + 8 D T + 7 E\right)

\]

\[\int \frac{Y}{T} dT = A \ln{\left (T \right)} - \frac{1}{72 T^{9}}
\left(72 B T^{8} + 24 C T^{6} + 9 D T + 8 E\right)

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Water second virial coefficient; DIPPR coefficients normally dimensionless.

>>> EQ104(300, 0.02222, -26.38, -16750000, -3.894E19, 3.133E21)
-1.1204179007265156

	
chemicals.dippr.EQ105(T, A, B, C, D, order=0)

	DIPPR Equation #105. Often used in calculating liquid molar density.
All 4 parameters are required. C is sometimes the fluid’s critical
temperature.

\[Y = \frac{A}{B^{1 + \left(1-\frac{T}{C}\right)^D}}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Dfloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, 2, and 3, that derivative of the property is returned; No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	Property [constant-specific]

Notes

This expression can be integrated in terms of the incomplete gamma function
for dT, however nans are the only output from that function.
For Y/T dT no integral could be found.

\[\frac{d Y}{dT} = \frac{A B^{- \left(1 - \frac{T}{C}\right)^{D} - 1} D
\left(1 - \frac{T}{C}\right)^{D} \log{\left(B \right)}}{C \left(1
- \frac{T}{C}\right)}

\]

\[\frac{d^2 Y}{dT^2} = \frac{A B^{- \left(1 - \frac{T}{C}\right)^{D} - 1}
D \left(1 - \frac{T}{C}\right)^{D} \left(D \left(1 - \frac{T}{C}
\right)^{D} \log{\left(B \right)} - D + 1\right) \log{\left(B \right)}}
{C^{2} \left(1 - \frac{T}{C}\right)^{2}}

\]

\[\frac{d^3 Y}{dT^3} = \frac{A B^{- \left(1 - \frac{T}{C}\right)^{D} - 1}
D \left(1 - \frac{T}{C}\right)^{D} \left(D^{2} \left(1 - \frac{T}{C}
\right)^{2 D} \log{\left(B \right)}^{2} - 3 D^{2} \left(1 - \frac{T}{C}
\right)^{D} \log{\left(B \right)} + D^{2} + 3 D \left(1 - \frac{T}{C}
\right)^{D} \log{\left(B \right)} - 3 D + 2\right) \log{\left(B
\right)}}{C^{3} \left(1 - \frac{T}{C}\right)^{3}}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Hexane molar density; DIPPR coefficients normally in kmol/m^3.

>>> EQ105(300., 0.70824, 0.26411, 507.6, 0.27537)
7.593170096339237

	
chemicals.dippr.EQ106(T, Tc, A, B, C=0.0, D=0.0, E=0.0, order=0)

	DIPPR Equation #106. Often used in calculating liquid surface tension,
and heat of vaporization.
Only parameters A and B parameters are required; many fits include no
further parameters. Critical temperature is also required.

\[Y = A(1-T_r)^{B + C T_r + D T_r^2 + E T_r^3}

\]

\[Tr = \frac{T}{Tc}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Tcfloat
	Critical temperature, [K]

	A-Dfloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, 2, and 3, that derivative of the property is returned; No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	Property [constant-specific]

Notes

This form is used by Yaws with only the parameters A and B.

The integral could not be found, but the integral over T actually could,
again in terms of hypergeometric functions.

\[\frac{d Y}{dT} = A \left(- \frac{T}{T_{c}} + 1\right)^{B + \frac{C T}
{T_{c}} + \frac{D T^{2}}{T_{c}^{2}} + \frac{e T^{3}}{T_{c}^{3}}} \left(
\left(\frac{C}{T_{c}} + \frac{2 D T}{T_{c}^{2}} + \frac{3 e T^{2}}
{T_{c}^{3}}\right) \log{\left(- \frac{T}{T_{c}} + 1 \right)} - \frac{B
+ \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}} + \frac{e T^{3}}
{T_{c}^{3}}}{T_{c} \left(- \frac{T}{T_{c}} + 1\right)}\right)

\]

\[\frac{d^2 Y}{dT^2} = \frac{A \left(- \frac{T}{T_{c}} + 1\right)^{B
+ \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}} + \frac{e T^{3}}
{T_{c}^{3}}} \left(2 \left(D + \frac{3 e T}{T_{c}}\right) \log{\left(
- \frac{T}{T_{c}} + 1 \right)} + \left(\left(C + \frac{2 D T}{T_{c}}
+ \frac{3 e T^{2}}{T_{c}^{2}}\right) \log{\left(- \frac{T}{T_{c}}
+ 1 \right)} + \frac{B + \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}}
+ \frac{e T^{3}}{T_{c}^{3}}}{\frac{T}{T_{c}} - 1}\right)^{2}
+ \frac{2 \left(C + \frac{2 D T}{T_{c}} + \frac{3 e T^{2}}{T_{c}^{2}}
\right)}{\frac{T}{T_{c}} - 1} - \frac{B + \frac{C T}{T_{c}} + \frac{D
T^{2}}{T_{c}^{2}} + \frac{e T^{3}}{T_{c}^{3}}}{\left(\frac{T}{T_{c}}
- 1\right)^{2}}\right)}{T_{c}^{2}}

\]

\[\frac{d^3 Y}{dT^3} = \frac{A \left(- \frac{T}{T_{c}} + 1\right)^{B
+ \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}} + \frac{e T^{3}}
{T_{c}^{3}}} \left(\frac{6 \left(D + \frac{3 e T}{T_{c}}\right)}
{\frac{T}{T_{c}} - 1} + \left(\left(C + \frac{2 D T}{T_{c}}
+ \frac{3 e T^{2}}{T_{c}^{2}}\right) \log{\left(- \frac{T}{T_{c}}
+ 1 \right)} + \frac{B + \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}}
+ \frac{e T^{3}}{T_{c}^{3}}}{\frac{T}{T_{c}} - 1}\right)^{3}
+ 3 \left(\left(C + \frac{2 D T}{T_{c}} + \frac{3 e T^{2}}{T_{c}^{2}}
\right) \log{\left(- \frac{T}{T_{c}} + 1 \right)} + \frac{B
+ \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}} + \frac{e T^{3}}
{T_{c}^{3}}}{\frac{T}{T_{c}} - 1}\right) \left(2 \left(D + \frac{3 e T}
{T_{c}}\right) \log{\left(- \frac{T}{T_{c}} + 1 \right)} + \frac{2
\left(C + \frac{2 D T}{T_{c}} + \frac{3 e T^{2}}{T_{c}^{2}}\right)}
{\frac{T}{T_{c}} - 1} - \frac{B + \frac{C T}{T_{c}} + \frac{D T^{2}}
{T_{c}^{2}} + \frac{e T^{3}}{T_{c}^{3}}}{\left(\frac{T}{T_{c}}
- 1\right)^{2}}\right) + 6 e \log{\left(- \frac{T}{T_{c}} + 1 \right)}
- \frac{3 \left(C + \frac{2 D T}{T_{c}} + \frac{3 e T^{2}}{T_{c}^{2}}
\right)}{\left(\frac{T}{T_{c}} - 1\right)^{2}} + \frac{2 \left(B
+ \frac{C T}{T_{c}} + \frac{D T^{2}}{T_{c}^{2}} + \frac{e T^{3}}
{T_{c}^{3}}\right)}{\left(\frac{T}{T_{c}} - 1\right)^{3}}\right)}
{T_{c}^{3}}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Water surface tension; DIPPR coefficients normally in Pa*s.

>>> EQ106(300, 647.096, 0.17766, 2.567, -3.3377, 1.9699)
0.07231499373541

	
chemicals.dippr.EQ107(T, A=0, B=0, C=0, D=0, E=0, order=0)

	DIPPR Equation #107. Often used in calculating ideal-gas heat capacity.
All 5 parameters are required.
Also called the Aly-Lee equation.

\[Y = A + B\left[\frac{C/T}{\sinh(C/T)}\right]^2 + D\left[\frac{E/T}{
\cosh(E/T)}\right]^2

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral
over T with respect to T are computed as follows. The derivative is
obtained via SymPy; the integrals from Wolfram Alpha.

\[\frac{d Y}{dT} = \frac{2 B C^{3} \cosh{\left (\frac{C}{T} \right)}}
{T^{4} \sinh^{3}{\left (\frac{C}{T} \right)}} - \frac{2 B C^{2}}{T^{3}
\sinh^{2}{\left (\frac{C}{T} \right)}} + \frac{2 D E^{3} \sinh{\left
(\frac{E}{T} \right)}}{T^{4} \cosh^{3}{\left (\frac{E}{T} \right)}}
- \frac{2 D E^{2}}{T^{3} \cosh^{2}{\left (\frac{E}{T} \right)}}

\]

\[\int Y dT = A T + \frac{B C}{\tanh{\left (\frac{C}{T} \right)}}
- D E \tanh{\left (\frac{E}{T} \right)}

\]

\[\int \frac{Y}{T} dT = A \ln{\left (T \right)} + \frac{B C}{T \tanh{
\left (\frac{C}{T} \right)}} - B \ln{\left (\sinh{\left (\frac{C}{T}
\right)} \right)} - \frac{D E}{T} \tanh{\left (\frac{E}{T} \right)}
+ D \ln{\left (\cosh{\left (\frac{E}{T} \right)} \right)}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

	2

	Aly, Fouad A., and Lloyd L. Lee. “Self-Consistent Equations for
Calculating the Ideal Gas Heat Capacity, Enthalpy, and Entropy.” Fluid
Phase Equilibria 6, no. 3 (January 1, 1981): 169-79.
doi:10.1016/0378-3812(81)85002-9.

Examples

Water ideal gas molar heat capacity; DIPPR coefficients normally in
J/kmol/K

>>> EQ107(300., 33363., 26790., 2610.5, 8896., 1169.)
33585.90452768923

	
chemicals.dippr.EQ114(T, Tc, A, B, C, D, order=0)

	DIPPR Equation #114. Rarely used, normally as an alternate liquid
heat capacity expression. All 4 parameters are required, as well as
critical temperature.

\[Y = \frac{A^2}{\tau} + B - 2AC\tau - AD\tau^2 - \frac{1}{3}C^2\tau^3
- \frac{1}{2}CD\tau^4 - \frac{1}{5}D^2\tau^5

\]

\[\tau = 1 - \frac{T}{Tc}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Tcfloat
	Critical temperature, [K]

	A-Dfloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral
over T with respect to T are computed as follows. All expressions can be
obtained with SymPy readily.

\[\frac{d Y}{dT} = \frac{A^{2}}{T_{c} \left(- \frac{T}{T_{c}}
+ 1\right)^{2}} + \frac{2 A}{T_{c}} C + \frac{2 A}{T_{c}} D \left(
- \frac{T}{T_{c}} + 1\right) + \frac{C^{2}}{T_{c}} \left(
- \frac{T}{T_{c}} + 1\right)^{2} + \frac{2 C}{T_{c}} D \left(
- \frac{T}{T_{c}} + 1\right)^{3} + \frac{D^{2}}{T_{c}} \left(
- \frac{T}{T_{c}} + 1\right)^{4}

\]

\[\int Y dT = - A^{2} T_{c} \ln{\left (T - T_{c} \right)} + \frac{D^{2}
T^{6}}{30 T_{c}^{5}} - \frac{T^{5}}{10 T_{c}^{4}} \left(C D + 2 D^{2}
\right) + \frac{T^{4}}{12 T_{c}^{3}} \left(C^{2} + 6 C D + 6 D^{2}
\right) - \frac{T^{3}}{3 T_{c}^{2}} \left(A D + C^{2} + 3 C D
+ 2 D^{2}\right) + \frac{T^{2}}{2 T_{c}} \left(2 A C + 2 A D + C^{2}
+ 2 C D + D^{2}\right) + T \left(- 2 A C - A D + B - \frac{C^{2}}{3}
- \frac{C D}{2} - \frac{D^{2}}{5}\right)

\]

\[\int \frac{Y}{T} dT = - A^{2} \ln{\left (T + \frac{- 60 A^{2} T_{c}
+ 60 A C T_{c} + 30 A D T_{c} - 30 B T_{c} + 10 C^{2} T_{c}
+ 15 C D T_{c} + 6 D^{2} T_{c}}{60 A^{2} - 60 A C - 30 A D + 30 B
- 10 C^{2} - 15 C D - 6 D^{2}} \right)} + \frac{D^{2} T^{5}}
{25 T_{c}^{5}} - \frac{T^{4}}{8 T_{c}^{4}} \left(C D + 2 D^{2}
\right) + \frac{T^{3}}{9 T_{c}^{3}} \left(C^{2} + 6 C D + 6 D^{2}
\right) - \frac{T^{2}}{2 T_{c}^{2}} \left(A D + C^{2} + 3 C D
+ 2 D^{2}\right) + \frac{T}{T_{c}} \left(2 A C + 2 A D + C^{2}
+ 2 C D + D^{2}\right) + \frac{1}{30} \left(30 A^{2} - 60 A C
- 30 A D + 30 B - 10 C^{2} - 15 C D - 6 D^{2}\right) \ln{\left
(T + \frac{1}{60 A^{2} - 60 A C - 30 A D + 30 B - 10 C^{2} - 15 C D
- 6 D^{2}} \left(- 30 A^{2} T_{c} + 60 A C T_{c} + 30 A D T_{c}
- 30 B T_{c} + 10 C^{2} T_{c} + 15 C D T_{c} + 6 D^{2} T_{c}
+ T_{c} \left(30 A^{2} - 60 A C - 30 A D + 30 B - 10 C^{2} - 15 C D
- 6 D^{2}\right)\right) \right)}

\]

Strictly speaking, the integral over T has an imaginary component, but
only the real component is relevant and the complex part discarded.

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Hydrogen liquid heat capacity; DIPPR coefficients normally in J/kmol/K.

>>> EQ114(20, 33.19, 66.653, 6765.9, -123.63, 478.27)
19423.948911676463

	
chemicals.dippr.EQ115(T, A, B, C=0, D=0, E=0, order=0)

	DIPPR Equation #115. No major uses; has been used as an alternate
liquid viscosity expression, and as a model for vapor pressure.
Only parameters A and B are required.

\[Y = \exp\left(A + \frac{B}{T} + C\ln T + D T^2 + \frac{E}{T^2}\right)

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, 2, and 3, that derivative of the property is returned; No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	Property [constant-specific]

Notes

No coefficients found for this expression.
This function is not integrable for either dT or Y/T dT.

\[\frac{d Y}{dT} = \left(- \frac{B}{T^{2}} + \frac{C}{T} + 2 D T
- \frac{2 E}{T^{3}}\right) e^{A + \frac{B}{T} + C \log{\left(T \right)}
+ D T^{2} + \frac{E}{T^{2}}}

\]

\[\frac{d^2 Y}{dT^2} = \left(\frac{2 B}{T^{3}} - \frac{C}{T^{2}} + 2 D
+ \frac{6 E}{T^{4}} + \left(\frac{B}{T^{2}} - \frac{C}{T} - 2 D T
+ \frac{2 E}{T^{3}}\right)^{2}\right) e^{A + \frac{B}{T}
+ C \log{\left(T \right)} + D T^{2} + \frac{E}{T^{2}}}

\]

\[\frac{d^3 Y}{dT^3} =- \left(3 \left(\frac{2 B}{T^{3}} - \frac{C}{T^{2}}
+ 2 D + \frac{6 E}{T^{4}}\right) \left(\frac{B}{T^{2}} - \frac{C}{T}
- 2 D T + \frac{2 E}{T^{3}}\right) + \left(\frac{B}{T^{2}}
- \frac{C}{T} - 2 D T + \frac{2 E}{T^{3}}\right)^{3} + \frac{2 \left(
\frac{3 B}{T} - C + \frac{12 E}{T^{2}}\right)}{T^{3}}\right)
e^{A + \frac{B}{T} + C \log{\left(T \right)} + D T^{2} + \frac{E}{T^{2}}}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

	
chemicals.dippr.EQ116(T, Tc, A, B, C, D, E, order=0)

	DIPPR Equation #116. Used to describe the molar density of water fairly
precisely; no other uses listed. All 5 parameters are needed, as well as
the critical temperature.

\[Y = A + B\tau^{0.35} + C\tau^{2/3} + D\tau + E\tau^{4/3}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Tcfloat
	Critical temperature, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T and integral with respect to T are
computed as follows. The integral divided by T with respect to T has an
extremely complicated (but still elementary) integral which can be read
from the source. It was computed with Rubi; the other expressions can
readily be obtained with SymPy.

\[\frac{d Y}{dT} = - \frac{7 B}{20 T_c \left(- \frac{T}{T_c} + 1\right)^{
\frac{13}{20}}} - \frac{2 C}{3 T_c \sqrt[3]{- \frac{T}{T_c} + 1}}
- \frac{D}{T_c} - \frac{4 E}{3 T_c} \sqrt[3]{- \frac{T}{T_c} + 1}

\]

\[\int Y dT = A T - \frac{20 B}{27} T_c \left(- \frac{T}{T_c} + 1\right)^{
\frac{27}{20}} - \frac{3 C}{5} T_c \left(- \frac{T}{T_c} + 1\right)^{
\frac{5}{3}} + D \left(- \frac{T^{2}}{2 T_c} + T\right) - \frac{3 E}{7}
T_c \left(- \frac{T}{T_c} + 1\right)^{\frac{7}{3}}

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Water liquid molar density; DIPPR coefficients normally in kmol/m^3.

>>> EQ116(300., 647.096, 17.863, 58.606, -95.396, 213.89, -141.26)
55.17615446406527

	
chemicals.dippr.EQ127(T, A, B, C, D, E, F, G, order=0)

	DIPPR Equation #127. Rarely used, and then only in calculating
ideal-gas heat capacity. All 7 parameters are required.

\[Y = A+B\left[\frac{\left(\frac{C}{T}\right)^2\exp\left(\frac{C}{T}
\right)}{\left(\exp\frac{C}{T}-1 \right)^2}\right]
+D\left[\frac{\left(\frac{E}{T}\right)^2\exp\left(\frac{E}{T}\right)}
{\left(\exp\frac{E}{T}-1 \right)^2}\right]
+F\left[\frac{\left(\frac{G}{T}\right)^2\exp\left(\frac{G}{T}\right)}
{\left(\exp\frac{G}{T}-1 \right)^2}\right]

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Gfloat
	Parameter for the equation; chemical and property specific [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of the result itself;
for 1, the first derivative of the property is returned, for
-1, the indefinite integral of the property with respect to temperature
is returned; and for -1j, the indefinite integral of the property
divided by temperature with respect to temperature is returned. No
other integrals or derivatives are implemented, and an exception will
be raised if any other order is given.

	Returns

	
	Yfloat
	
	Property [constant-specific; if order == 1, property/K; if order == -1,
	property*K; if order == -1j, unchanged from default]

Notes

The derivative with respect to T, integral with respect to T, and integral
over T with respect to T are computed as follows. All expressions can be
obtained with SymPy readily.

\[\frac{d Y}{dT} = - \frac{B C^{3} e^{\frac{C}{T}}}{T^{4}
\left(e^{\frac{C}{T}} - 1\right)^{2}} + \frac{2 B C^{3}
e^{\frac{2 C}{T}}}{T^{4} \left(e^{\frac{C}{T}} - 1\right)^{3}}
- \frac{2 B C^{2} e^{\frac{C}{T}}}{T^{3} \left(e^{\frac{C}{T}}
- 1\right)^{2}} - \frac{D E^{3} e^{\frac{E}{T}}}{T^{4}
\left(e^{\frac{E}{T}} - 1\right)^{2}} + \frac{2 D E^{3}
e^{\frac{2 E}{T}}}{T^{4} \left(e^{\frac{E}{T}} - 1\right)^{3}}
- \frac{2 D E^{2} e^{\frac{E}{T}}}{T^{3} \left(e^{\frac{E}{T}}
- 1\right)^{2}} - \frac{F G^{3} e^{\frac{G}{T}}}{T^{4}
\left(e^{\frac{G}{T}} - 1\right)^{2}} + \frac{2 F G^{3}
e^{\frac{2 G}{T}}}{T^{4} \left(e^{\frac{G}{T}} - 1\right)^{3}}
- \frac{2 F G^{2} e^{\frac{G}{T}}}{T^{3} \left(e^{\frac{G}{T}}
- 1\right)^{2}}

\]

\[\int Y dT = A T + \frac{B C^{2}}{C e^{\frac{C}{T}} - C}
+ \frac{D E^{2}}{E e^{\frac{E}{T}} - E}
+ \frac{F G^{2}}{G e^{\frac{G}{T}} - G}

\]

\[\int \frac{Y}{T} dT = A \ln{\left (T \right)} + B C^{2} \left(
\frac{1}{C T e^{\frac{C}{T}} - C T} + \frac{1}{C T} - \frac{1}{C^{2}}
\ln{\left (e^{\frac{C}{T}} - 1 \right)}\right) + D E^{2} \left(
\frac{1}{E T e^{\frac{E}{T}} - E T} + \frac{1}{E T} - \frac{1}{E^{2}}
\ln{\left (e^{\frac{E}{T}} - 1 \right)}\right) + F G^{2} \left(
\frac{1}{G T e^{\frac{G}{T}} - G T} + \frac{1}{G T} - \frac{1}{G^{2}}
\ln{\left (e^{\frac{G}{T}} - 1 \right)}\right)

\]

References

	1

	Design Institute for Physical Properties, 1996. DIPPR Project 801
DIPPR/AIChE

Examples

Ideal gas heat capacity of methanol; DIPPR coefficients normally in
J/kmol/K

>>> EQ127(20., 3.3258E4, 3.6199E4, 1.2057E3, 1.5373E7, 3.2122E3, -1.5318E7, 3.2122E3)
33258.0

Jacobians (for fitting)

	
chemicals.dippr.EQ101_fitting_jacobian(Ts, A, B, C, D, E)

	Compute and return the Jacobian of the property predicted by
DIPPR Equation # 101 with respect to all the coefficients. This is used in
fitting parameters for chemicals.

	Parameters

	
	Tslist[float]
	Temperatures of the experimental data points, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	Returns

	
	jaclist[list[float, 5], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.dippr.EQ102_fitting_jacobian(Ts, A, B, C, D)

	Compute and return the Jacobian of the property predicted by
DIPPR Equation # 102 with respect to all the coefficients. This is used in
fitting parameters for chemicals.

	Parameters

	
	Tslist[float]
	Temperatures of the experimental data points, [K]

	A-Dfloat
	Parameter for the equation; chemical and property specific [-]

	Returns

	
	jaclist[list[float, 4], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.dippr.EQ105_fitting_jacobian(Ts, A, B, C, D)

	Compute and return the Jacobian of the property predicted by
DIPPR Equation # 105 with respect to all the coefficients. This is used in
fitting parameters for chemicals.

	Parameters

	
	Tslist[float]
	Temperatures of the experimental data points, [K]

	A-Dfloat
	Parameter for the equation; chemical and property specific [-]

	Returns

	
	jaclist[list[float, 4], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.dippr.EQ106_fitting_jacobian(Ts, Tc, A, B, C, D, E)

	Compute and return the Jacobian of the property predicted by
DIPPR Equation # 106 with respect to all the coefficients. This is used in
fitting parameters for chemicals.

	Parameters

	
	Tslist[float]
	Temperatures of the experimental data points, [K]

	Tcfloat
	Critical temperature, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	Returns

	
	jaclist[list[float, 5], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.dippr.EQ107_fitting_jacobian(Ts, A, B, C, D, E)

	Compute and return the Jacobian of the property predicted by
DIPPR Equation # 107 with respect to all the coefficients. This is used in
fitting parameters for chemicals.

	Parameters

	
	Tslist[float]
	Temperatures of the experimental data points, [K]

	A-Efloat
	Parameter for the equation; chemical and property specific [-]

	Returns

	
	jaclist[list[float, 5], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

Periodic Table (chemicals.elements)

This module contains a complete periodic table, routines for working with
chemical formulas, computing molecular weight, computing mass fractions and
atom fractions, and assorted other tasks.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Periodic Table and Elements

	Working with Formulas

	Working with Parsed Formulas

Periodic Table and Elements

	
chemicals.elements.periodic_table = <chemicals.elements.PeriodicTable object>

	Single instance of the PeriodicTable class. Use this, not the PeriodicTable
class directly.

A brief overview of using the periodic table and its elements:

>>> periodic_table.Na
<Element Sodium (Na), number 11, MW=22.98977>
>>> periodic_table.U.MW
238.02891
>>> periodic_table['Th'].CAS
'7440-29-1'
>>> periodic_table.lead.protons
82
>>> periodic_table['7440-57-5'].symbol
'Au'
>>> len(periodic_table)
118
>>> 'gold' in periodic_table
True
>>> periodic_table.He.protons, periodic_table.He.neutrons, periodic_table.He.electrons # Standard number of protons, neutrons, electrons
(2, 2, 2)
>>> periodic_table.He.phase # Phase of the element in the standard state
'g'
>>> periodic_table.He.Hf # Heat of formation in standard state in J/mol - by definition 0
0.0
>>> periodic_table.He.S0 # Absolute entropy (J/(mol*K) in standard state - non-zero)
126.2
>>> periodic_table.Kr.block, periodic_table.Kr.period, periodic_table.Kr.group
('p', 4, 18)
>>> periodic_table.Rn.InChI
'Rn'
>>> periodic_table.Rn.smiles
'[Rn]'
>>> periodic_table.Pu.number
94
>>> periodic_table.Pu.PubChem
23940
>>> periodic_table.Bi.InChI_key
'JCXGWMGPZLAOME-UHFFFAOYSA-N'

	
class chemicals.elements.Element(number, symbol, name, MW, CAS, AReneg, rcov, rvdw, maxbonds, elneg, ionization, elaffinity, period, group, PubChem, phase, Hf, S0, InChI_key=None)

	Class for storing data on chemical elements. Supports most common
properties. If a property is not available, it is set to None.

The elements are created automatically and should be accessed via the
periodic_table interface.

	Attributes

	
	numberint
	Atomic number, [-]

	namestr
	name, [-]

	symbolstr
	Elemental symbol, [-]

	MWfloat
	Molecular weight, [g/mol]

	CASstr
	CAS number, [-]

	periodstr
	Period in the periodic table, [-]

	groupstr
	Group in the periodic table, [-]

	blockstr
	Which block of the periodic table the element is in.

	ARenegfloat
	Allred and Rochow electronegativity, [-]

	rcovfloat
	Covalent radius, [Angstrom]

	rvdwfloat
	Van der Waals radius, [Angstrom]

	maxbondsfloat
	Maximum valence of a bond with this element, [-]

	elnegfloat
	Pauling electronegativity, [-]

	ionizationfloat
	Ionization potential, [eV]

	ionizationfloat
	elaffinity affinity, [eV]

	protonsint
	The number of protons of the element.

	electronsint
	The number of electrons of the element.

	InChIstr
	The InChI identifier of the element.

	InChI_keystr
	25-character hash of the compound’s InChI, [-]

	smilesstr
	The SMILES identification string of the element.

	PubChemint
	PubChem Compound identifier (CID) of the chemical, [-]

	phasestr
	Standard state at 1 atm and 298.15 K, [-]

	Hffloat
	Enthalpy of formation of the element in its standard state (0 by
definition), [J/mol]

	S0float
	Standard absolute entropy of the element in its standard state (1 bar,
298.15 K), [J/mol/K]

	
class chemicals.elements.PeriodicTable(elements)

	Periodic Table object for use in dealing with elements.

As there is only one periodic table of elements, this is automatically
initialized into the object periodic_table; there is no need to
construct a new instance of this class.

	Parameters

	
	elementslist[Element]
	List of Element objects, [-]

See also

	periodic_table
	

	Element
	

Notes

Can be checked to sese if an element in in this, can be iterated over,
and as a current length of 118 elements.

References

	1

	N M O’Boyle, M Banck, C A James, C Morley, T Vandermeersch, and
G R Hutchison. “Open Babel: An open chemical toolbox.” J. Cheminf.
(2011), 3, 33. DOI:10.1186/1758-2946-3-33

Working with Formulas

	
chemicals.elements.simple_formula_parser(formula)

	Basic formula parser, primarily for obtaining element counts from
formulas as formated in PubChem. Handles formulas with integer or decimal
counts (with period separator), but no brackets, no hydrates, no charges,
no isotopes, and no group multipliers.

Strips charges from the end of a formula first. Accepts repeated chemical
units. Performs no sanity checking that elements are actually elements.
As it uses regular expressions for matching, errors are mostly just ignored.

	Parameters

	
	formulastr
	Formula string, very simply formats only.

	Returns

	
	atomsdict
	dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

Notes

Inspiration taken from the thermopyl project, at
https://github.com/choderalab/thermopyl.

Examples

>>> simple_formula_parser('CO2')
{'C': 1, 'O': 2}

	
chemicals.elements.nested_formula_parser(formula, check=True)

	Improved formula parser which handles braces and their multipliers,
as well as rational element counts.

Strips charges from the end of a formula first. Accepts repeated chemical
units. Performs no sanity checking that elements are actually elements.
As it uses regular expressions for matching, errors are mostly just ignored.

	Parameters

	
	formulastr
	Formula string, very simply formats only.

	checkbool
	If check is True, a simple check will be performed to determine if
a formula is not a formula and an exception will be raised if it is
not, [-]

	Returns

	
	atomsdict
	dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

Notes

Inspired by the approach taken by CrazyMerlyn on a reddit DailyProgrammer
challenge, at https://www.reddit.com/r/dailyprogrammer/comments/6eerfk/20170531_challenge_317_intermediate_counting/

Examples

>>> nested_formula_parser('Pd(NH3)4.0001+2')
{'Pd': 1, 'N': 4.0001, 'H': 12.0003}

	
chemicals.elements.charge_from_formula(formula)

	Basic formula parser to determine the charge from a formula - given
that the charge is already specified as one element of the formula.

Performs no sanity checking that elements are actually elements.

	Parameters

	
	formulastr
	Formula string, very simply formats only, ending in one of ‘+x’,
‘-x’, n*’+’, or n*’-’ or any of them surrounded by brackets but always
at the end of a formula.

	Returns

	
	chargeint
	Charge of the molecule, [faraday]

Examples

>>> charge_from_formula('Br3-')
-1
>>> charge_from_formula('Br3(-)')
-1

	
chemicals.elements.serialize_formula(formula)

	Basic formula serializer to construct a consistently-formatted formula.
This is necessary for handling user-supplied formulas, which are not always
well formatted.

Performs no sanity checking that elements are actually elements.

	Parameters

	
	formulastr
	Formula string as parseable by the method nested_formula_parser, [-]

	Returns

	
	formulastr
	A consistently formatted formula to describe a molecular formula, [-]

Examples

>>> serialize_formula('Pd(NH3)4+3')
'H12N4Pd+3'

	
chemicals.elements.atoms_to_Hill(atoms)

	Determine the Hill formula of a compound, given a dictionary of its
atoms and their counts, in the format {symbol: count}.

	Parameters

	
	atomsdict
	dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

	Returns

	
	Hill_formulastr
	Hill formula, [-]

Notes

The Hill system is as follows:

If the chemical has ‘C’ in it, this is listed first, and then if it has
‘H’ in it as well as ‘C’, then that goes next. All elements are sorted
alphabetically afterwards, including ‘H’ if ‘C’ is not present.
All elements are followed by their count, unless it is 1.

References

	1

	Hill, Edwin A.”“ON A SYSTEM OF INDEXING CHEMICAL LITERATURE;
ADOPTED BY THE CLASSIFICATION DIVISION OF THE U. S. PATENT OFFICE.1.”
Journal of the American Chemical Society 22, no. 8 (August 1, 1900):
478-94. doi:10.1021/ja02046a005.

Examples

>>> atoms_to_Hill({'H': 5, 'C': 2, 'Br': 1})
'C2H5Br'

Working with Parsed Formulas

	
chemicals.elements.molecular_weight(atoms)

	Calculates molecular weight of a molecule given a dictionary of its
atoms and their counts, in the format {symbol: count}.

\[MW = \sum_i n_i MW_i

\]

	Parameters

	
	atomsdict
	Dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

	Returns

	
	MWfloat
	Calculated molecular weight [g/mol]

Notes

Elemental data is from rdkit, with CAS numbers added. An exception is
raised if an incorrect element symbol is given. Elements up to 118 are
supported, as are deutreium and tritium.

References

	1

	RDKit: Open-source cheminformatics; http://www.rdkit.org

Examples

>>> molecular_weight({'H': 12, 'C': 20, 'O': 5}) # DNA
332.30628

	
chemicals.elements.similarity_variable(atoms, MW=None)

	Calculates the similarity variable of an compound, as defined in [1].
Currently only applied for certain heat capacity estimation routines.

\[\alpha = \frac{N}{MW} = \frac{\sum_i n_i}{\sum_i n_i MW_i}

\]

	Parameters

	
	atomsdict
	dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

	MWfloat, optional
	Molecular weight, [g/mol]

	Returns

	
	similarity_variablefloat
	Similarity variable as defined in [1], [mol/g]

Notes

Molecular weight is optional, but speeds up the calculation slightly. It
is calculated using the function molecular_weight if not specified.

References

	1(1,2)

	Laštovka, Václav, Nasser Sallamie, and John M. Shaw. “A Similarity
Variable for Estimating the Heat Capacity of Solid Organic Compounds:
Part I. Fundamentals.” Fluid Phase Equilibria 268, no. 1-2
(June 25, 2008): 51-60. doi:10.1016/j.fluid.2008.03.019.

Examples

>>> similarity_variable({'H': 32, 'C': 15})
0.2212654140784498

	
chemicals.elements.index_hydrogen_deficiency(atoms)

	Calculate the index of hydrogen deficiency of a compound, given a
dictionary of its atoms and their counts, in the format {symbol: count}.

	Parameters

	
	atomsdict
	dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

	Returns

	
	HDIfloat
	Hydrogen deficiency index, [-]

Notes

The calculation is according to:

\[\text{IDH} = 0.5\left(2C + 2 + N - H -X + 0O \right)

\]

where X is the number of halogen atoms. The number of oxygen atoms does
not impact this calculation.

References

	1

	Brown, William H., and Thomas Poon. Introduction to Organic
Chemistry. 4th edition. Hoboken, NJ: Wiley, 2010.

Examples

Agelastatin A:

>>> index_hydrogen_deficiency({'C': 12, 'H': 13, 'Br': 1, 'N': 4, 'O': 3})
8.0

	
chemicals.elements.atom_fractions(atoms)

	Calculates the atomic fractions of each element in a compound,
given a dictionary of its atoms and their counts, in the format
{symbol: count}.

\[a_i = \frac{n_i}{\sum_i n_i}

\]

	Parameters

	
	atomsdict
	dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

	Returns

	
	afracsdict
	dictionary of atomic fractions of individual atoms, indexed by symbol
with proper capitalization, [-]

Notes

No actual data on the elements is used, so incorrect or custom compounds
would not raise an error.

References

	1

	RDKit: Open-source cheminformatics; http://www.rdkit.org

Examples

>>> atom_fractions({'H': 12, 'C': 20, 'O': 5})
{'H': 0.32432432432432434, 'C': 0.5405405405405406, 'O': 0.13513513513513514}

	
chemicals.elements.mass_fractions(atoms, MW=None)

	Calculates the mass fractions of each element in a compound,
given a dictionary of its atoms and their counts, in the format
{symbol: count}.

\[w_i = \frac{n_i MW_i}{\sum_i n_i MW_i}

\]

	Parameters

	
	atomsdict
	Dictionary of counts of individual atoms, indexed by symbol with
proper capitalization, [-]

	MWfloat, optional
	Molecular weight, [g/mol]

	Returns

	
	mfracsdict
	Dictionary of mass fractions of individual atoms, indexed by symbol
with proper capitalization, [-]

Notes

Molecular weight is optional, but speeds up the calculation slightly. It
is calculated using the function molecular_weight if not specified.

Elemental data is from rdkit, with CAS numbers added. An exception is
raised if an incorrect element symbol is given. Elements up to 118 are
supported.

References

	1

	RDKit: Open-source cheminformatics; http://www.rdkit.org

Examples

>>> mass_fractions({'H': 12, 'C': 20, 'O': 5})
{'H': 0.03639798802478244, 'C': 0.7228692758981262, 'O': 0.24073273607709128}

	
chemicals.elements.mixture_atomic_composition(atomss, zs)

	Simple function to calculate the atomic average composition of a
mixture, using the mole fractions of each species and their own atomic
compositions.

	Parameters

	
	atomsslist[dict[(str, int)]]
	List of dictionaries of atomic compositions, [-]

	zslist[float]
	Mole fractions of each component, [-]

	Returns

	
	atomsdict[(str, int)]
	Atomic composition

Examples

>>> mixture_atomic_composition([{'O': 2}, {'N': 1, 'O': 2}, {'C': 1, 'H': 4}], [0.95, 0.025, .025])
{'O': 1.95, 'N': 0.025, 'C': 0.025, 'H': 0.1}

	
chemicals.elements.mixture_atomic_composition_ordered(atomss, zs)

	Simple function to calculate the atomic average composition of a
mixture, using the mole fractions of each species and their own atomic
compositions. Returns the result as a sorted list with atomic numbers from
low to high.

	Parameters

	
	atomsslist[dict[(str, int)]]
	List of dictionaries of atomic compositions, [-]

	zslist[float]
	Mole fractions of each component; this can also be a molar flow rate
and then the abundances will be flows, [-]

	Returns

	
	abundanceslist[float]
	Number of atoms of each element per mole of the feed, [-]

	atom_keyslist[str]
	Atomic elements, sorted from lowest atomic number to highest

Notes

Useful to ensure a matrix order is consistent in multiple steps.

Examples

>>> mixture_atomic_composition_ordered([{'O': 2}, {'N': 1, 'O': 2}, {'C': 1, 'H': 4}], [0.95, 0.025, .025])
([0.1, 0.025, 0.025, 1.95], ['H', 'C', 'N', 'O'])

	
chemicals.elements.atom_matrix(atomss, atom_IDs=None)

	Simple function to create a matrix of elements in each compound, where
each row has the same elements.

	Parameters

	
	atomsslist[dict[(str, int)]]
	List of dictionaries of atomic compositions, [-]

	atom_IDslist[str], optional
	Optionally, a subset (or simply ordered differently) of elements to
consider, [-]

	Returns

	
	matrixlist[list[float]]
	The number of each element in each compound as a matrix, indexed as
[compound][element], [-]

Examples

>>> atom_matrix([{'C': 1, 'H': 4}, {'C': 2, 'H': 6}, {'N': 2}, {'O': 2}, {'H': 2, 'O': 1}, {'C': 1, 'O': 2}])
[[4, 1, 0.0, 0.0], [6, 2, 0.0, 0.0], [0.0, 0.0, 2, 0.0], [0.0, 0.0, 0.0, 2], [2, 0.0, 0.0, 1], [0.0, 1, 0.0, 2]]

Environmental Properties (chemicals.environment)

This module contains lookup functions for three important environmental
properties - Global Warming Potential, Ozone Depletion Potential, and
octanol-water partition coefficient.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Global Warming Potential

	Ozone Depletion Potential

	Octanol-Water Partition Coefficient

Global Warming Potential

	
chemicals.environment.GWP(CASRN, method=None)

	This function handles the retrieval of a chemical’s Global Warming
Potential, relative to CO2. Lookup is based on CASRNs.

There are three sources of data:

	IPCC Fifth Assessment Report (AR5) from 2014 [2]

	IPCC Fourth Assessment Report (AR4) from 2007 [1]

	IPCC Second Assesment Report or (SAR) from 1995 [1]

This function returns the GWP for the 20yr outlook from the AR5 by default.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	GWPfloat
	Global warming potential, [(impact/mass chemical)/(impact/mass CO2)]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are (‘IPCC (2014) 100yr’,
‘IPCC (2014) 20yr’, ‘IPCC (2007) 100yr’, ‘IPCC (2007) 20yr’,
‘IPCC (2007) 500yr’, ‘IPCC (1995) 100yr’).
All valid values are also held in the variable GWP_all_methods.

See also

	GWP_methods
	

Notes

“Fossil methane” is included in the IPCC reports to take into account
different isotopic composition, but as that has the same CAS number it
is not included in this function.

Six of the entries in [2] are actually duplicates; the entries
with data similar to more recent data [3] were prefered.

References

	1(1,2)

	IPCC. “2.10.2 Direct Global Warming Potentials - AR4 WGI Chapter 2:
Changes in Atmospheric Constituents and in Radiative Forcing.” 2007.
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html.

	2(1,2)

	IPCC. “Climate Change 2013: The Physical Science Basis. - AR5 WGI Chapter 8:
Anthropogenic and Natural Radiative Forcing.” 2013.
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf

	3

	Hodnebrog, Ø., B. Aamaas, J. S. Fuglestvedt, G. Marston, G. Myhre, C.
J. Nielsen, M. Sandstad, K. P. Shine, and T. J. Wallington. “Updated
Global Warming Potentials and Radiative Efficiencies of Halocarbons and
Other Weak Atmospheric Absorbers.” Reviews of Geophysics 58, no. 3
(2020): e2019RG000691. https://doi.org/10.1029/2019RG000691.

Examples

Methane, 20-yr outlook AR5

>>> GWP(CASRN='74-82-8')
84.0

Methane, specifying the default method explicitly (this is recommended
the default data source may be updated in the future)

>>> GWP(CASRN='74-82-8', method='IPCC (2014) 100yr')
28.0

Methane, 20-year values from 1995 and 2007

>>> (GWP(CASRN='74-82-8', method='IPCC (1995) 100yr'), GWP(CASRN='74-82-8', method='IPCC (2007) 100yr'))
(21.0, 25.0)

	
chemicals.environment.GWP_methods(CASRN)

	Return all methods available to obtain GWP for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain GWP with the given inputs.

See also

	GWP
	

	
chemicals.environment.GWP_all_methods = ('IPCC (2014) 100yr', 'IPCC (2014) 20yr', 'IPCC (2007) 100yr', 'IPCC (2007) 20yr', 'IPCC (2007) 500yr', 'IPCC (1995) 100yr')

	Tuple of method name keys. See the GWP for the actual references

Ozone Depletion Potential

	
chemicals.environment.ODP(CASRN, method=None)

	This function handles the retrieval of a chemical’s Ozone Depletion
Potential, relative to CFC-11 (trichlorofluoromethane). Lookup is based on
CASRNs. Will automatically select a data source to use if no method is
provided; returns None if the data is not available.

Returns the ODP of a chemical according to [2] when a method is not
specified. If a range is provided in [2], the highest value is returned.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	ODPfloat or str
	Ozone Depletion potential, [(impact/mass chemical)/(impact/mass CFC-11)];
if method selected has string in it, this will be returned as a
string regardless of if a range is given or a number

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘ODP2 Max’, ‘ODP2 Min’,
‘ODP2 string’, ‘ODP2 logarithmic average’, and methods for older values
are ‘ODP1 Max’, ‘ODP1 Min’, ‘ODP1 string’, and ‘ODP1 logarithmic average’.
All valid values are also held in the list ODP_methods.

Notes

Values are tabulated only for a small number of halogenated hydrocarbons,
responsible for the largest impact. The original values of ODP as defined
in the Montreal Protocol are also available, as methods with the ODP1
prefix.

All values are somewhat emperical, as actual reaction rates of chemicals
with ozone depend on temperature which depends on latitude, longitude,
time of day, weather, and the concentrations of other pollutants.

All data is from [1]. Several mixtures listed in [1] are not included
here as they are not pure species.
Methods for values in [2] are ‘ODP2 Max’, ‘ODP2 Min’, ‘ODP2 string’,
‘ODP2 logarithmic average’, and methods for older values are ‘ODP1 Max’,
‘ODP1 Min’, ‘ODP1 string’, and ‘ODP1 logarithmic average’.

References

	1(1,2)

	US EPA, OAR. “Ozone-Depleting Substances.” Accessed April 26, 2016.
https://www.epa.gov/ozone-layer-protection/ozone-depleting-substances.

	2(1,2,3,4)

	WMO (World Meteorological Organization), 2011: Scientific Assessment
of Ozone Depletion: 2010. Global Ozone Research and Monitoring
Project-Report No. 52, Geneva, Switzerland, 516 p.
https://www.wmo.int/pages/prog/arep/gaw/ozone_2010/documents/Ozone-Assessment-2010-complete.pdf

Examples

Dichlorotetrafluoroethane, according to [2].

>>> ODP(CASRN='76-14-2')
0.58

	
chemicals.environment.ODP_methods(CASRN)

	Return all methods available to obtain ODP for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain ODP with the given inputs.

See also

	ODP
	

	
chemicals.environment.ODP_all_methods = ('ODP2 Max', 'ODP1 Max', 'ODP2 logarithmic average', 'ODP1 logarithmic average', 'ODP2 Min', 'ODP1 Min', 'ODP2 string', 'ODP1 string')

	Tuple of method name keys. See the ODP for the actual references

Octanol-Water Partition Coefficient

	
chemicals.environment.logP(CASRN, method=None)

	This function handles the retrieval of a chemical’s octanol-water
partition coefficient. Lookup is based on CASRNs. Will automatically
select a data source to use if no method is provided; returns None if the
data is not available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	logPfloat
	Octanol-water partition coefficient, [-]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘SYRRES’, ‘CRC’, and ‘WIKIDATA’.
All valid values are also held in the list logP_methods.

Notes

Although matimatically this could be expressed with a logarithm in any
base, reported values are published using a base 10 logarithm.

\[\log_{10} P_{ oct/wat} = \log_{10}\left(\frac{\left[{solute}
\right]_{ octanol}^{un-ionized}}{\left[{solute}
\right]_{ water}^{ un-ionized}}\right)

\]

References

	1

	Syrres. 2006. KOWWIN Data, SrcKowData2.zip.
http://esc.syrres.com/interkow/Download/SrcKowData2.zip

	2

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

Examples

>>> logP('67-56-1')
-0.74
>>> logP('100-66-3', 'WIKIDATA')
2.11

	
chemicals.environment.logP_methods(CASRN)

	Return all methods available to obtain logP for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain logP with the given inputs.

See also

	logP
	

	
chemicals.environment.logP_all_methods = ('SYRRES', 'CRC', 'WIKIDATA')

	Tuple of method name keys. See the logP for the actual references

Exceptions Generated by Chemicals (chemicals.exceptions)

This module contains various exception classes that may be raised by chemicals.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	
class chemicals.exceptions.UnderspecifiedError

	Generic error to raise when not enough values are given.

	Attributes

	
	args
	

Methods

	with_traceback

	Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.

	
class chemicals.exceptions.OverspeficiedError

	Generic error to raise when too many values are given.

	Attributes

	
	args
	

Methods

	with_traceback

	Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.

	
class chemicals.exceptions.TrivialSolutionError(message, comp_difference=None, iterations=None, err=None)

	Error raised SS converges to trivial solution.

	Attributes

	
	args
	

Methods

	with_traceback

	Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.

	
class chemicals.exceptions.PhaseCountReducedError(message, zs=None, Ks=None)

	Error raised SS inner flash loop says all Ks are under 1 or above 1.

	Attributes

	
	args
	

Methods

	with_traceback

	Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.

	
class chemicals.exceptions.PhaseExistenceImpossible(message, zs=None, T=None, P=None)

	Error raised SS inner flash loop says all Ks are under 1 or above 1.

	Attributes

	
	args
	

Methods

	with_traceback

	Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.

Ideal VLE and Flash Initialization (chemicals.flash_basic)

This module contains the ideal flash solver; two flash initialization routines;
a vapor-liquid equilibrium constant correlation; a liquid-water equilibrium
constant correlation, and a definition function to show the commonly used calculation
frameworks.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Ideal Flash Function

	Flash Initialization

	Equilibrium Constants

Ideal Flash Function

	
chemicals.flash_basic.flash_ideal(zs, funcs, Tcs=None, T=None, P=None, VF=None)

	PVT flash model using ideal, composition-independent equation.
Solves the various cases of composition-independent models.

Capable of solving with two of T, P, and VF for the other one;
that results in three solve modes, but for VF=1 and VF=0, there are
additional solvers; for a total of seven solvers implemented.

The function takes a list of callables that take T in Kelvin as an argument,
and return vapor pressure. The callables can include the effect of
non-ideal pure component fugacity coefficients. For the (T, P) and
(P, VF) cases, the Poynting correction factor can be easily included as
well but not the (T, VF) case as the callable only takes T as an
argument. Normally the Poynting correction factor is used with activity
coefficient models with composition dependence.

Both flash_wilson and flash_Tb_Tc_Pc are specialized cases of this
function and have the same functionality but with the model built right in.

Even when using more complicated models, this is useful for obtaining initial

This model uses flash_inner_loop to solve the Rachford-Rice problem.

	Parameters

	
	zslist[float]
	Mole fractions of the phase being flashed, [-]

	funcslist[Callable]
	Functions to calculate ideal or real vapor pressures, take temperature
in Kelvin and return pressure in Pa, [-]

	Tcslist[float], optional
	Critical temperatures of all species; uses as upper bounds and only
for the case that T is not specified; if they are needed and not
given, it is assumed a method solve_prop exists in each of funcs
which will accept P in Pa and return temperature in K, [K]

	Tfloat, optional
	Temperature, [K]

	Pfloat, optional
	Pressure, [Pa]

	VFfloat, optional
	Molar vapor fraction, [-]

	Returns

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	VFfloat
	Molar vapor fraction, [-]

	xslist[float]
	Mole fractions of liquid phase, [-]

	yslist[float]
	Mole fractions of vapor phase, [-]

Notes

For the cases where VF is 1 or 0 and T is known, an explicit solution is
used. For the same cases where P and VF are known, there is no explicit
solution available.

There is an internal Tmax parameter, set to 50000 K; which, in the event
of convergence of the Secant method, is used as a bounded for a bounded
solver. It is used in the PVF solvers.

Examples

Basic case with four compounds, usingthe Antoine equation as a model and
solving for vapor pressure:

>>> from chemicals import Antoine, Ambrose_Walton
>>> Tcs = [369.83, 425.12, 469.7, 507.6]
>>> Antoine_As = [8.92828, 8.93266, 8.97786, 9.00139]
>>> Antoine_Bs = [803.997, 935.773, 1064.84, 1170.88]
>>> Antoine_Cs = [-26.11, -34.361, -41.136, -48.833]
>>> Psat_funcs = []
>>> for i in range(4):
... def Psat_func(T, A=Antoine_As[i], B=Antoine_Bs[i], C=Antoine_Cs[i]):
... return Antoine(T, A, B, C)
... Psat_funcs.append(Psat_func)
>>> zs = [.4, .3, .2, .1]
>>> T, P, VF, xs, ys = flash_ideal(T=330.55, P=1e6, zs=zs, funcs=Psat_funcs, Tcs=Tcs)
>>> round(VF, 10)
1.00817e-05

Similar case, using the Ambrose-Walton corresponding states method to estimate
vapor pressures:

>>> Tcs = [369.83, 425.12, 469.7, 507.6]
>>> Pcs = [4248000.0, 3796000.0, 3370000.0, 3025000.0]
>>> omegas = [0.152, 0.193, 0.251, 0.2975]
>>> Psat_funcs = []
>>> for i in range(4):
... def Psat_func(T, Tc=Tcs[i], Pc=Pcs[i], omega=omegas[i]):
... return Ambrose_Walton(T, Tc, Pc, omega)
... Psat_funcs.append(Psat_func)
>>> _, P, VF, xs, ys = flash_ideal(T=329.151, VF=0, zs=zs, funcs=Psat_funcs, Tcs=Tcs)
>>> round(P, 3)
1000013.343

Case with fugacities in the liquid phase, vapor phase, activity coefficients
in the liquid phase, and Poynting correction factors.

>>> Tcs = [647.14, 514.0]
>>> Antoine_As = [10.1156, 10.3368]
>>> Antoine_Bs = [1687.54, 1648.22]
>>> Antoine_Cs = [-42.98, -42.232]
>>> gammas = [1.1, .75]
>>> fugacities_gas = [.995, 0.98]
>>> fugacities_liq = [.9999, .9998]
>>> Poyntings = [1.000001, .999999]
>>> zs = [.5, .5]
>>> funcs = []
>>> for i in range(2):
... def K_over_P(T, A=Antoine_As[i], B=Antoine_Bs[i], C=Antoine_Cs[i], fl=fugacities_liq[i],
... fg=fugacities_gas[i], gamma=gammas[i], poy=Poyntings[i]):
... return Antoine(T, A, B, C)*gamma*poy*fl/fg
... funcs.append(K_over_P)
>>> _, _, VF, xs, ys = flash_ideal(zs, funcs, Tcs=Tcs, P=1e5, T=364.0)
>>> VF, xs, ys
(0.5108639717, [0.55734934039, 0.44265065960], [0.44508982795, 0.554910172040])

Note that while this works for PT composition independent flashes - an
outer iterating loop is needed for composition dependence!

Flash Initialization

	
chemicals.flash_basic.flash_wilson(zs, Tcs, Pcs, omegas, T=None, P=None, VF=None)

	PVT flash model using Wilson’s equation - useful for obtaining initial
guesses for more rigorous models, or it can be used as its own model.
Capable of solving with two of T, P, and VF for the other one;
that results in three solve modes, but for VF=1 and VF=0, there are
additional solvers; for a total of seven solvers implemented.

This model uses flash_inner_loop to solve the Rachford-Rice problem.

\[K_i = \frac{P_c}{P} \exp\left(5.37(1+\omega)\left[1 - \frac{T_c}{T}
\right]\right)

\]

	Parameters

	
	zslist[float]
	Mole fractions of the phase being flashed, [-]

	Tcslist[float]
	Critical temperatures of all species, [K]

	Pcslist[float]
	Critical pressures of all species, [Pa]

	omegaslist[float]
	Acentric factors of all species, [-]

	Tfloat, optional
	Temperature, [K]

	Pfloat, optional
	Pressure, [Pa]

	VFfloat, optional
	Molar vapor fraction, [-]

	Returns

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	VFfloat
	Molar vapor fraction, [-]

	xslist[float]
	Mole fractions of liquid phase, [-]

	yslist[float]
	Mole fractions of vapor phase, [-]

Notes

For the cases where VF is 1 or 0 and T is known, an explicit solution is
used. For the same cases where P and VF are known, there is no explicit
solution available.

There is an internal Tmax parameter, set to 50000 K; which, in the event
of convergence of the Secant method, is used as a bounded for a bounded
solver. It is used in the PVF solvers. This typically allows pressures
up to 2 GPa to be converged to. However, for narrow-boiling mixtures, the
PVF failure may occur at much lower pressures.

Examples

>>> Tcs = [305.322, 540.13]
>>> Pcs = [4872200.0, 2736000.0]
>>> omegas = [0.099, 0.349]
>>> zs = [0.4, 0.6]
>>> flash_wilson(zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas, T=300, P=1e5)
(300, 100000.0, 0.422194532936, [0.02093881508003, 0.979061184919], [0.918774185622, 0.0812258143])

	
chemicals.flash_basic.flash_Tb_Tc_Pc(zs, Tbs, Tcs, Pcs, T=None, P=None, VF=None)

	PVT flash model using a model published in [1], which provides a PT
surface using only each compound’s boiling temperature and critical
temperature and pressure. This is useful for obtaining initial
guesses for more rigorous models, or it can be used as its own model.
Capable of solving with two of T, P, and VF for the other one;
that results in three solve modes, but for VF=1 and VF=0, there are
additional solvers; for a total of seven solvers implemented.

This model uses flash_inner_loop to solve the Rachford-Rice problem.

\[K_i = \frac{P_{c,i}^{\left(\frac{1}{T} - \frac{1}{T_{b,i}} \right) /
\left(\frac{1}{T_{c,i}} - \frac{1}{T_{b,i}} \right)}}{P}

\]

	Parameters

	
	zslist[float]
	Mole fractions of the phase being flashed, [-]

	Tbslist[float]
	Boiling temperatures of all species, [K]

	Tcslist[float]
	Critical temperatures of all species, [K]

	Pcslist[float]
	Critical pressures of all species, [Pa]

	Tfloat, optional
	Temperature, [K]

	Pfloat, optional
	Pressure, [Pa]

	VFfloat, optional
	Molar vapor fraction, [-]

	Returns

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	VFfloat
	Molar vapor fraction, [-]

	xslist[float]
	Mole fractions of liquid phase, [-]

	yslist[float]
	Mole fractions of vapor phase, [-]

Notes

For the cases where VF is 1 or 0 and T is known, an explicit solution is
used. For the same cases where P and VF are known, there is no explicit
solution available.

There is an internal Tmax parameter, set to 50000 K; which, in the event
of convergence of the Secant method, is used as a bounded for a bounded
solver. It is used in the PVF solvers. This typically allows pressures
up to 2 MPa to be converged to. Failures may still occur for other
conditions.

This model is based on [1], which aims to estimate dew and bubble points
using the same K value formulation as used here. While this implementation
uses a numerical solver to provide an exact bubble/dew point estimate,
[1] suggests a sequential substitution and flowchart based solver with
loose tolerances. That model was also implemented, but found to be slower
and less reliable than this implementation.

References

	1(1,2,3)

	Kandula, Vamshi Krishna, John C. Telotte, and F. Carl Knopf. “It`s
Not as Easy as It Looks: Revisiting Peng—Robinson Equation of State
Convergence Issues for Dew Point, Bubble Point and Flash Calculations.”
International Journal of Mechanical Engineering Education 41, no. 3
(July 1, 2013): 188-202. https://doi.org/10.7227/IJMEE.41.3.2.

Examples

>>> Tcs = [305.322, 540.13]
>>> Pcs = [4872200.0, 2736000.0]
>>> Tbs = [184.55, 371.53]
>>> zs = [0.4, 0.6]
>>> flash_Tb_Tc_Pc(zs=zs, Tcs=Tcs, Pcs=Pcs, Tbs=Tbs, T=300, P=1e5)
(300, 100000.0, 0.3807040748145, [0.0311578430365, 0.968842156963], [0.9999999998827, 1.1729141887e-10])

Equilibrium Constants

	
chemicals.flash_basic.K_value(P=None, Psat=None, phi_l=None, phi_g=None, gamma=None, Poynting=1.0)

	Calculates the equilibrium K-value assuming Raoult’s law,
or an equation of state model, or an activity coefficient model,
or a combined equation of state-activity model.

The calculation procedure will use the most advanced approach with the
provided inputs:

	If P, Psat, phi_l, phi_g, and gamma are provided, use the
combined approach.

	If P, Psat, and gamma are provided, use the modified Raoult’s
law.

	If phi_l and phi_g are provided, use the EOS only method.

	If P and Psat are provided, use Raoult’s law.

Definitions:

\[K_i=\frac{y_i}{x_i}

\]

Raoult’s law:

\[K_i = \frac{P_{i}^{sat}}{P}

\]

Activity coefficient, no EOS (modified Raoult’s law):

\[K_i = \frac{\gamma_i P_{i}^{sat}}{P}

\]

Equation of state only:

\[K_i = \frac{\phi_i^l}{\phi_i^v} = \frac{f_i^l y_i}{f_i^v x_i}

\]

Combined approach (liquid reference fugacity coefficient is normally
calculated the saturation pressure for it as a pure species; vapor fugacity
coefficient calculated normally):

\[K_i = \frac{\gamma_i P_i^{sat} \phi_i^{l,ref}}{\phi_i^v P}

\]

Combined approach, with Poynting Correction Factor (liquid molar volume in
the integral is for i as a pure species only):

\[K_i = \frac{\gamma_i P_i^{sat} \phi_i^{l, ref} \exp\left[\frac{
\int_{P_i^{sat}}^P V_i^l dP}{RT}\right]}{\phi_i^v P}

\]

	Parameters

	
	Pfloat
	System pressure, optional

	Psatfloat
	Vapor pressure of species i, [Pa]

	phi_lfloat
	Fugacity coefficient of species i in the liquid phase, either
at the system conditions (EOS-only case) or at the saturation pressure
of species i as a pure species (reference condition for the combined
approach), optional [-]

	phi_gfloat
	Fugacity coefficient of species i in the vapor phase at the system
conditions, optional [-]

	gammafloat
	Activity coefficient of species i in the liquid phase, optional [-]

	Poyntingfloat
	Poynting correction factor, optional [-]

	Returns

	
	Kfloat
	Equilibrium K value of component i, calculated with an approach
depending on the provided inputs [-]

Notes

The Poynting correction factor is normally simplified as follows, due to
a liquid’s low pressure dependency:

\[K_i = \frac{\gamma_i P_i^{sat} \phi_i^{l, ref} \exp\left[\frac{V_l
(P-P_i^{sat})}{RT}\right]}{\phi_i^v P}

\]

References

	1

	Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey.
Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim:
Wiley-VCH, 2012.

	2

	Skogestad, Sigurd. Chemical and Energy Process Engineering. 1st
edition. Boca Raton, FL: CRC Press, 2008.

Examples

Raoult’s law:

>>> K_value(101325, 3000.)
0.029607698001480384

Modified Raoult’s law:

>>> K_value(P=101325, Psat=3000, gamma=0.9)
0.026646928201332347

EOS-only approach:

>>> K_value(phi_l=1.6356, phi_g=0.88427)
1.8496613025433408

Gamma-phi combined approach:

>>> K_value(P=1E6, Psat=1938800, phi_l=1.4356, phi_g=0.88427, gamma=0.92)
2.8958055544121137

Gamma-phi combined approach with a Poynting factor:

>>> K_value(P=1E6, Psat=1938800, phi_l=1.4356, phi_g=0.88427, gamma=0.92,
... Poynting=0.999)
2.8929097488577016

	
chemicals.flash_basic.Wilson_K_value(T, P, Tc, Pc, omega)

	Calculates the equilibrium K-value for a component using Wilson’s
heuristic mode. This is very useful for initialization of stability tests
and flashes.

\[K_i = \frac{P_c}{P} \exp\left(5.37(1+\omega)\left[1 - \frac{T_c}{T}
\right]\right)

\]

	Parameters

	
	Tfloat
	System temperature, [K]

	Pfloat
	System pressure, [Pa]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Kfloat
	Equilibrium K value of component, calculated via the Wilson heuristic
[-]

Notes

There has been little literature exploration of other formlulas for the
same purpose. This model may be useful even for activity coefficient
models.

Note the K-values are independent of composition; the correlation is
applicable up to 3.5 MPa.

A description for how this function was generated can be found in [2].

References

	1

	Wilson, Grant M. “A Modified Redlich-Kwong Equation of State,
Application to General Physical Data Calculations.” In 65th National
AIChE Meeting, Cleveland, OH, 1969.

	2

	Peng, Ding-Yu, and Donald B. Robinson. “Two and Three Phase
Equilibrium Calculations for Systems Containing Water.” The Canadian
Journal of Chemical Engineering, December 1, 1976.
https://doi.org/10.1002/cjce.5450540620.

Examples

Ethane at 270 K and 76 bar:

>>> Wilson_K_value(270.0, 7600000.0, 305.4, 4880000.0, 0.098)
0.2963932297479371

The “vapor pressure” predicted by this equation can be calculated by
multiplying by pressure:

>>> Wilson_K_value(270.0, 7600000.0, 305.4, 4880000.0, 0.098)*7600000.0
2252588.546084322

	
chemicals.flash_basic.PR_water_K_value(T, P, Tc, Pc)

	Calculates the equilibrium K-value for a component against water
according to the Peng and Robinson (1976) heuristic.

\[K_i = 10^6 \frac{P_{ri}}{T_{ri}}

\]

	Parameters

	
	Tfloat
	System temperature, [K]

	Pfloat
	System pressure, [Pa]

	Tcfloat
	Critical temperature of chemical [K]

	Pcfloat
	Critical pressure of chemical [Pa]

	Returns

	
	Kfloat
	Equilibrium K value of component with water as the other phase (
not as the reference), calculated via this heuristic [-]

Notes

Note the K-values are independent of composition.

References

	1

	Peng, Ding-Yu, and Donald B. Robinson. “Two and Three Phase
Equilibrium Calculations for Systems Containing Water.” The Canadian
Journal of Chemical Engineering, December 1, 1976.
https://doi.org/10.1002/cjce.5450540620.

Examples

Octane at 300 K and 1 bar:

>>> PR_water_K_value(300, 1e5, 568.7, 2490000.0)
76131.19143239626

Heat Capacity (chemicals.heat_capacity)

This module contains many heat capacity model equations, heat capacity estimation
equations, enthalpy and entropy integrals of those heat capacity equations,
enthalpy/entropy flash initialization routines, and many dataframes of
coefficients.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Gas Heat Capacity Model Equations

	Gas Heat Capacity Estimation Models

	Gas Heat Capacity Theory

	Liquid Heat Capacity Model Equations

	Liquid Heat Capacity Estimation Models

	Solid Heat Capacity Estimation Models

	Utility methods

	Fit Coefficients

Gas Heat Capacity Model Equations

	
chemicals.heat_capacity.TRCCp(T, a0, a1, a2, a3, a4, a5, a6, a7)

	Calculates ideal gas heat capacity using the model developed in [1].
The ideal gas heat capacity is given by:

\[C_p = R\left(a_0 + (a_1/T^2) \exp(-a_2/T) + a_3 y^2
+ (a_4 - a_5/(T-a_7)^2)y^j \right)

\]

\[y = \frac{T-a_7}{T+a_6} \text{ for } T > a_7 \text{ otherwise } 0

\]

	Parameters

	
	Tfloat
	Temperature [K]

	a1-a7float
	Coefficients

	Returns

	
	Cpfloat
	Ideal gas heat capacity , [J/mol/K]

Notes

j is set to 8. Analytical integrals are available for this expression.

References

	1

	Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds
in the Gas State, Volume II: V. 2. College Station, Tex: CRC Press, 1994.

Examples

>>> TRCCp(300, 4.0, 7.65E5, 720., 3.565, -0.052, -1.55E6, 52., 201.)
42.065271080974654

	
chemicals.heat_capacity.TRCCp_integral(T, a0, a1, a2, a3, a4, a5, a6, a7, I=0)

	Integrates ideal gas heat capacity using the model developed in [1].
Best used as a delta only.
The difference in enthalpy with respect to 0 K is given by:

\[\frac{H(T) - H^{ref}}{RT} = a_0 + a_1x(a_2)/(a_2T) + I/T + h(T)/T

\]

\[h(T) = (a_5 + a_7)\left[(2a_3 + 8a_4)\ln(1-y)+ \left\{a_3\left(1 +
\frac{1}{1-y}\right) + a_4\left(7 + \frac{1}{1-y}\right)\right\}y
+ a_4\left\{3y^2 + (5/3)y^3 + y^4 + (3/5)y^5 + (1/3)y^6\right\}
+ (1/7)\left\{a_4 - \frac{a_5}{(a_6+a_7)^2}\right\}y^7\right]

\]

\[h(T) = 0 \text{ for } T \le a_7
y = \frac{T-a_7}{T+a_6} \text{ for } T > a_7 \text{ otherwise } 0

\]

	Parameters

	
	Tfloat
	Temperature [K]

	a1-a7float
	Coefficients

	Ifloat, optional
	Integral offset

	Returns

	
	H-H(0)float
	Difference in enthalpy from 0 K , [J/mol]

Notes

Analytical integral as provided in [1] and verified with numerical
integration.

References

	1(1,2)

	Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds
in the Gas State, Volume II: V. 2. College Station, Tex: CRC Press, 1994.

Examples

>>> TRCCp_integral(298.15, 4.0, 7.65E5, 720., 3.565, -0.052, -1.55E6, 52.,
... 201., 1.2)
10802.536262068483

	
chemicals.heat_capacity.TRCCp_integral_over_T(T, a0, a1, a2, a3, a4, a5, a6, a7, J=0)

	Integrates ideal gas heat capacity over T using the model developed in
[1]. Best used as a delta only.
The difference in ideal-gas entropy with respect to 0 K is given by:

\[\frac{S^\circ}{R} = J + a_0\ln T + \frac{a_1}{a_2^2}\left(1
+ \frac{a_2}{T}\right)x(a_2) + s(T)
s(T) = \left[\left\{a_3 + \left(\frac{a_4 a_7^2 - a_5}{a_6^2}\right)
\left(\frac{a_7}{a_6}\right)^4\right\}\left(\frac{a_7}{a_6}\right)^2
\ln z + (a_3 + a_4)\ln\left(\frac{T+a_6}{a_6+a_7}\right)
+\sum_{i=1}^7 \left\{\left(\frac{a_4 a_7^2 - a_5}{a_6^2}\right)\left(
\frac{-a_7}{a_6}\right)^{6-i} - a_4\right\}\frac{y^i}{i}
- \left\{\frac{a_3}{a_6}(a_6 + a_7) + \frac{a_5 y^6}{7a_7(a_6+a_7)}
\right\}y\right]

\]

\[s(T) = 0 \text{ for } T \le a_7

\]

\[z = \frac{T}{T+a_6} \cdot \frac{a_7 + a_6}{a_7}

\]

\[y = \frac{T-a_7}{T+a_6} \text{ for } T > a_7 \text{ otherwise } 0

\]

	Parameters

	
	Tfloat
	Temperature [K]

	a1-a7float
	Coefficients

	Jfloat, optional
	Integral offset

	Returns

	
	S-S(0)float
	Difference in entropy from 0 K , [J/mol/K]

Notes

Analytical integral as provided in [1] and verified with numerical
integration.

References

	1(1,2)

	Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds
in the Gas State, Volume II: V. 2. College Station, Tex: CRC Press, 1994.

Examples

>>> TRCCp_integral_over_T(300, 4.0, 124000, 245, 50.539, -49.469,
... 220440000, 560, 78)
213.80156219151888

	
chemicals.heat_capacity.Shomate(T, A, B, C, D, E)

	Calculates heat capacity using the Shomate polynomial model [1].
The heat capacity is given by:

\[C_p = A + BT + CT^2 + DT^3 + \frac{E}{T^2}

\]

	Parameters

	
	Tfloat
	Temperature [K]

	Afloat
	Parameter, [J/(mol*K)]

	Bfloat
	Parameter, [J/(mol*K^2)]

	Cfloat
	Parameter, [J/(mol*K^3)]

	Dfloat
	Parameter, [J/(mol*K^4)]

	Efloat
	Parameter, [J*K/(mol)]

	Returns

	
	Cpfloat
	Heat capacity , [J/mol/K]

Notes

Analytical integrals are available for this expression. In some sources
such as [1], the equation is written with temperature in units of
kilokelvin. The coefficients can be easily adjusted to be in the proper
SI form.

References

	1(1,2,3)

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

Coefficients for water vapor from [1]:

>>> water_low_gas_coeffs = [30.09200, 6.832514/1e3, 6.793435/1e6, -2.534480/1e9, 0.082139*1e6]
>>> Shomate(500, *water_low_gas_coeffs)
35.21836175

	
chemicals.heat_capacity.Shomate_integral(T, A, B, C, D, E)

	Calculates the enthalpy integral using the Shomate polynomial model [1].
The difference in enthalpy with respect to 0 K is given by:

\[{H(T) - H^{0}} = A T + \frac{B T^{2}}{2} + \frac{C T^{3}}{3}
+ \frac{D T^{4}}{4} - \frac{E}{T}

\]

	Parameters

	
	Tfloat
	Temperature [K]

	Afloat
	Parameter, [J/(mol*K)]

	Bfloat
	Parameter, [J/(mol*K^2)]

	Cfloat
	Parameter, [J/(mol*K^3)]

	Dfloat
	Parameter, [J/(mol*K^4)]

	Efloat
	Parameter, [J*K/(mol)]

	Returns

	
	H-H(0)float
	Difference in enthalpy from 0 K , [J/mol]

References

	1(1,2)

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

Coefficients for water vapor from [1]:

>>> water_low_gas_coeffs = [30.09200, 6.832514/1e3, 6.793435/1e6, -2.534480/1e9, 0.082139*1e6]
>>> Shomate_integral(500, *water_low_gas_coeffs)
15979.2447

	
chemicals.heat_capacity.Shomate_integral_over_T(T, A, B, C, D, E)

	Integrates the heat capacity over T using the model developed in
[1].
The difference in entropy with respect to 0 K is given by:

\[s(T) = A \log{\left(T \right)} + B T + \frac{C T^{2}}{2}
+ \frac{D T^{3}}{3} - \frac{E}{2 T^{2}}

\]

	Parameters

	
	Tfloat
	Temperature [K]

	Afloat
	Parameter, [J/(mol*K)]

	Bfloat
	Parameter, [J/(mol*K^2)]

	Cfloat
	Parameter, [J/(mol*K^3)]

	Dfloat
	Parameter, [J/(mol*K^4)]

	Efloat
	Parameter, [J*K/(mol)]

	Returns

	
	S-S(0)float
	Difference in entropy from 0 K , [J/mol/K]

References

	1(1,2)

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

Coefficients for water vapor from [1]:

>>> water_low_gas_coeffs = [30.09200, 6.832514/1e3, 6.793435/1e6, -2.534480/1e9, 0.082139*1e6]
>>> Shomate_integral_over_T(500, *water_low_gas_coeffs)
191.00554

	
class chemicals.heat_capacity.ShomateRange(coeffs, Tmin, Tmax)

	Implementation of a range of the Shomate equation presented in [1] for
calculating the heat capacity of a chemical.
Implements the enthalpy and entropy integrals as well.

	Parameters

	
	coeffslist[float]
	Six coefficients for the equation, [-]

	Tminfloat
	Minimum temperature any experimental data was available at, [K]

	Tmaxfloat
	Maximum temperature any experimental data was available at, [K]

References

	1

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Methods

	calculate(T)

	Return heat capacity as a function of temperature.

	calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	
calculate(T)

	Return heat capacity as a function of temperature.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Cpfloat
	Liquid heat capacity as T, [J/mol/K]

	
calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	Parameters

	
	Tafloat
	Initial temperature, [K]

	Tbfloat
	Final temperature, [K]

	Returns

	
	dHfloat
	Enthalpy difference between Ta and Tb, [J/mol]

	
calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	Parameters

	
	Tafloat
	Initial temperature, [K]

	Tbfloat
	Final temperature, [K]

	Returns

	
	dSfloat
	Entropy difference between Ta and Tb, [J/mol/K]

	
chemicals.heat_capacity.Poling(T, a, b, c, d, e)

	Return the ideal-gas molar heat capacity of a chemical using
polynomial regressed coefficients as described by Poling et. al. [1].

	Parameters

	
	Tfloat
	Temperature, [K]

	a,b,c,d,efloat
	Regressed coefficients.

	Returns

	
	Cpgmfloat
	Gas molar heat capacity, [J/mol/K]

See also

	Poling_integral
	

	Poling_integral_over_T
	

Notes

The ideal gas heat capacity is given by:

\[C_n = R*(a + bT + cT^2 + dT^3 + eT^4)

\]

The data is based on the Poling data bank.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Compute the gas heat capacity of Methane at 300 K:

>>> Poling(T=300., a=4.568, b=-0.008975, c=3.631e-05, d=-3.407e-08, e=1.091e-11)
35.850973388425

	
chemicals.heat_capacity.Poling_integral(T, a, b, c, d, e)

	Return the integral of the ideal-gas constant-pressure heat capacity
of a chemical using polynomial regressed coefficients as described by
Poling et. al. [1].

	Parameters

	
	Tfloat
	Temperature, [K]

	a,b,c,d,efloat
	Regressed coefficients.

	Returns

	
	Hfloat
	Difference in enthalpy from 0 K, [J/mol]

See also

	Poling
	

	Poling_integral_over_T
	

Notes

Integral was computed with SymPy.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Compute the gas enthalpy of Methane at 300 K (with reference to 0 K):

>>> Poling_integral(T=300., a=4.568, b=-0.008975, c=3.631e-05, d=-3.407e-08, e=1.091e-11)
10223.67533722261

	
chemicals.heat_capacity.Poling_integral_over_T(T, a, b, c, d, e)

	Return the integral over temperature of the ideal-gas constant-pressure
heat capacity of a chemical using polynomial regressed coefficients as
described by Poling et. al. [1].

	Parameters

	
	Tfloat
	Temperature, [K]

	a,b,c,d,efloat
	Regressed coefficients.

	Returns

	
	Sfloat
	Difference in entropy from 0 K, [J/mol/K]

See also

	Poling
	

	Poling_integral
	

Notes

Integral was computed with SymPy.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Compute the gas entropy of Methane at 300 K (with reference to 0 K):

>>> Poling_integral_over_T(T=300., a=4.568, b=-0.008975, c=3.631e-05, d=-3.407e-08, e=1.091e-11)
205.46526328058

	
chemicals.heat_capacity.PPDS2(T, Ts, C_low, C_inf, a1, a2, a3, a4, a5)

	Calculates the ideal-gas heat capacity using the [1]
emperical (parameter-regressed) method, called the PPDS 2 equation for
heat capacity.

\[\frac{C_p^0}{R} = C_{low} + (C_\inf - C_{low})y^2\left(1 + (y-1)
\left[\sum_{i=0}^4 a_i y^i\right]\right)

\]

\[y = \frac{T}{T + T_s}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tsfloat
	Fit temperature; no physical meaning [K]

	C_lowfloat
	Fit parameter equal to Cp/R at a low temperature, [-]

	C_inffloat
	Fit parameter equal to Cp/R at a high temperature, [-]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	a5float
	Regression parameter, [-]

	Returns

	
	Cpgmfloat
	Gas molar heat capacity, [J/mol/K]

References

	1(1,2)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Cp0/PPDS2Cp0.htm.

Examples

n-pentane at 350 K from [1]

>>> PPDS2(T=350.0, Ts=462.493, C_low=4.54115, C_inf=9.96847, a1=-103.419, a2=695.484, a3=-2006.1, a4=2476.84, a5=-1186.47)
136.46338956689

Gas Heat Capacity Estimation Models

	
chemicals.heat_capacity.Lastovka_Shaw(T, similarity_variable, cyclic_aliphatic=False, MW=None, term_A=None)

	Calculate ideal-gas constant-pressure heat capacity with the similarity
variable concept and method as shown in [1].

\[term_A = A1 + A2*a \text{ if cyclic aliphatic}

\]

\[term_A = \left(A_2 + \frac{A_1 - A_2}{1 + \exp(\frac{\alpha-A_3}{A_4})}\right) \text{ if not cyclic aliphatic}

\]

\[C_p^0 = term_A
+ (B_{11} + B_{12}\alpha)\left(-\frac{(C_{11} + C_{12}\alpha)}{T}\right)^2
\frac{\exp(-(C_{11} + C_{12}\alpha)/T)}{[1-\exp(-(C_{11}+C_{12}\alpha)/T)]^2}
+ (B_{21} + B_{22}\alpha)\left(-\frac{(C_{21} + C_{22}\alpha)}{T}\right)^2
\frac{\exp(-(C_{21} + C_{22}\alpha)/T)}{[1-\exp(-(C_{21}+C_{22}\alpha)/T)]^2}

\]

	Parameters

	
	Tfloat
	Temperature of gas [K]

	similarity_variablefloat
	Similarity variable as defined in [1], [mol/g]

	cyclic_aliphatic: bool, optional
	Whether or not chemical is cyclic aliphatic, [-]

	MWfloat, optional
	Molecular weight, [g/mol]

	term_Afloat, optional
	Term A in Lastovka-Shaw equation, [J/g]

	Returns

	
	Cpgfloat
	Gas constant-pressure heat capacity, J/mol/K if MW given;
J/kg/K otherwise

Notes

Original model is in terms of J/g/K.

A1 = -0.1793547 text{ if cyclic aliphatic}

A1 = 0.58 text{ if not cyclic aliphatic}

A2 = 3.86944439 text{ if cyclic aliphatic}

A2 = 1.25 text{ if not cyclic aliphatic}

A3 = 0.17338003

A4 = 0.014

B11 = 0.73917383

B12 = 8.88308889

C11 = 1188.28051

C12 = 1813.04613

B21 = 0.0483019

B22 = 4.35656721

C21 = 2897.01927

C22 = 5987.80407

References

	1(1,2)

	Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for
Ideal Gas Heat Capacities of Pure Hydrocarbons and Petroleum Fractions.”
Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Examples

Estimate the heat capacity of n-decane gas in J/kg/K:

>>> Lastovka_Shaw(1000.0, 0.22491)
3730.2807601773725

Estimate the heat capacity of n-decane gas in J/mol/K:

>>> Lastovka_Shaw(1000.0, 0.22491, MW=142.28)
530.7443465580366

	
chemicals.heat_capacity.Lastovka_Shaw_integral(T, similarity_variable, cyclic_aliphatic=False, MW=None, term_A=None)

	Calculate the integral of ideal-gas constant-pressure heat capacity
with the similarity variable concept and method as shown in [1].

	Parameters

	
	Tfloat
	Temperature of gas [K]

	cyclic_aliphatic: bool, optional
	Whether or not chemical is cyclic aliphatic, [-]

	MWfloat, optional
	Molecular weight, [g/mol]

	term_Afloat, optional
	Term A in Lastovka-Shaw equation, [J/g]

	Returns

	
	Hfloat
	Difference in enthalpy from 0 K, J/mol if MW given; J/kg otherwise

See also

	Lastovka_Shaw
	

	Lastovka_Shaw_integral_over_T
	

Notes

Original model is in terms of J/g/K.
Integral was computed with SymPy.

References

	1

	Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for
Ideal Gas Heat Capacities of Pure Hydrocarbons and Petroleum Fractions.”
Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Examples

>>> Lastovka_Shaw_integral(300.0, 0.1333)
5283095.816018478

	
chemicals.heat_capacity.Lastovka_Shaw_integral_over_T(T, similarity_variable, cyclic_aliphatic=False, MW=None, term_A=None)

	Calculate the integral over temperature of ideal-gas constant-pressure
heat capacity with the similarity variable concept and method as shown in
[1].

	Parameters

	
	Tfloat
	Temperature of gas [K]

	similarity_variablefloat
	Similarity variable as defined in [1], [mol/g]

	cyclic_aliphatic: bool, optional
	Whether or not chemical is cyclic aliphatic, [-]

	MWfloat, optional
	Molecular weight, [g/mol]

	term_Afloat, optional
	Term A in Lastovka-Shaw equation, [J/g]

	Returns

	
	Sfloat
	Difference in entropy from 0 K, [J/mol/K if MW given; J/kg/K otherwise]

See also

	Lastovka_Shaw
	

	Lastovka_Shaw_integral
	

Notes

Original model is in terms of J/g/K. Note that the model is for predicting
mass heat capacity, not molar heat capacity like most other methods!
Integral was computed with SymPy.

References

	1(1,2)

	Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for
Ideal Gas Heat Capacities of Pure Hydrocarbons and Petroleum Fractions.”
Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Examples

>>> Lastovka_Shaw_integral_over_T(300.0, 0.1333)
3609.791928945323

	
chemicals.heat_capacity.Lastovka_Shaw_T_for_Hm(Hm, MW, similarity_variable, T_ref=298.15, factor=1.0, cyclic_aliphatic=None, term_A=None)

	Uses the Lastovka-Shaw ideal-gas heat capacity correlation to solve for
the temperature which has a specified Hm, as is required in PH flashes,
as shown in [1].

	Parameters

	
	Hmfloat
	Molar enthalpy spec, [J/mol]

	MWfloat
	Molecular weight of the pure compound or mixture average, [g/mol]

	similarity_variablefloat
	Similarity variable as defined in [1], [mol/g]

	T_reffloat, optional
	Reference enthlapy temperature, [K]

	factorfloat, optional
	A factor to increase or decrease the predicted value of the
method, [-]

	cyclic_aliphatic: bool, optional
	Whether or not chemical is cyclic aliphatic, [-]

	term_Afloat, optional
	Term A in Lastovka-Shaw equation, [J/g]

	Returns

	
	Tfloat
	Temperature of gas to meet the molar enthalpy spec, [K]

See also

	Lastovka_Shaw
	

	Lastovka_Shaw_integral
	

	Lastovka_Shaw_integral_over_T
	

References

	1(1,2)

	Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for
Ideal Gas Heat Capacities of Pure Hydrocarbons and Petroleum Fractions.”
Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Examples

>>> Lastovka_Shaw_T_for_Hm(Hm=55000, MW=80.0, similarity_variable=0.23)
600.0943429567602

	
chemicals.heat_capacity.Lastovka_Shaw_T_for_Sm(Sm, MW, similarity_variable, T_ref=298.15, factor=1.0, cyclic_aliphatic=None, term_A=None)

	Uses the Lastovka-Shaw ideal-gas heat capacity correlation to solve for
the temperature which has a specified Sm, as is required in PS flashes,
as shown in [1].

	Parameters

	
	Smfloat
	Molar entropy spec, [J/mol/K]

	MWfloat
	Molecular weight of the pure compound or mixture average, [g/mol]

	similarity_variablefloat
	Similarity variable as defined in [1], [mol/g]

	T_reffloat, optional
	Reference enthlapy temperature, [K]

	factorfloat, optional
	A factor to increase or decrease the predicted value of the
method, [-]

	cyclic_aliphatic: bool, optional
	Whether or not chemical is cyclic aliphatic, [-]

	term_Afloat, optional
	Term A in Lastovka-Shaw equation, [J/g]

	Returns

	
	Tfloat
	Temperature of gas to meet the molar entropy spec, [K]

See also

	Lastovka_Shaw
	

	Lastovka_Shaw_integral
	

	Lastovka_Shaw_integral_over_T
	

References

	1(1,2)

	Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for
Ideal Gas Heat Capacities of Pure Hydrocarbons and Petroleum Fractions.”
Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Examples

>>> Lastovka_Shaw_T_for_Sm(Sm=112.80, MW=72.151, similarity_variable=0.2356)
603.4298291570276

	
chemicals.heat_capacity.Lastovka_Shaw_term_A(similarity_variable, cyclic_aliphatic)

	Return Term A in Lastovka-Shaw equation.

	Parameters

	
	similarity_variablefloat
	Similarity variable as defined in [1], [mol/g]

	cyclic_aliphatic: bool, optional
	Whether or not chemical is cyclic aliphatic, [-]

	Returns

	
	term_Afloat
	Term A in Lastovka-Shaw equation, [J/g]

See also

	Lastovka_Shaw
	

	Lastovka_Shaw_integral
	

	Lastovka_Shaw_integral_over_T
	

References

	1

	Lastovka, Vaclav, and John M. Shaw. “Predictive Correlations for
Ideal Gas Heat Capacities of Pure Hydrocarbons and Petroleum Fractions.”
Fluid Phase Equilibria 356 (October 25, 2013): 338-370.
doi:10.1016/j.fluid.2013.07.023.

Gas Heat Capacity Theory

	
chemicals.heat_capacity.Cpg_statistical_mechanics(T, thetas, linear=False)

	Calculates the ideal-gas heat capacity using of a molecule using
its characteristic temperatures, themselves calculated from each of the
frequencies of vibration of the molecule. These can be obtained from
spectra or quantum mechanical calculations.

\[\frac{C_p^{0}}{R} = \frac{C_p^{0}}{R} \text{rotational}
+ \frac{C_p^{0}}{R} \text{translational}
+ \frac{C_p^{0}}{R} \text{vibrational}

\]

\[\frac{C_p^{0}}{R} \text{rotational} = 2.5

\]

\[\frac{C_p^{0}}{R} \text{translational} = 1 \text{ if linear else } 1.5

\]

\[\frac{C_p^{0}}{R} \text{vibrational} = \sum_{i=1}^{3n_A-6+\delta}
\left(\frac{\theta_i}{T}\right)^2
\left[\frac{\exp(\theta_i/T)}
{\left(\exp(\theta_i/T)-1\right)^2}\right]

\]

In the above equation, \(delta\) is 1 if the molecule is linear
otherwise 0.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	thetaslist[float]
	Characteristic temperatures, [K]

	Returns

	
	Cpgmfloat
	Gas molar heat capacity at specified temperature, [J/mol/K]

Notes

This equation implies that there is a maximum heat capacity for an ideal
gas, and all diatomic or larger gases

Monoatomic gases have a simple heat capacity of 2.5R, the lower limit for
ideal gas heat capacity. This function does not cover that type of a gas.
At very low temperatures hydrogen behaves like a monoatomic gas as well.

References

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

Examples

Sample calculation in [1] for ammonia:

>>> thetas = [1360, 2330, 2330, 4800, 4880, 4880]
>>> Cpg_statistical_mechanics(300.0, thetas)
35.55983440173097

	
chemicals.heat_capacity.Cpg_statistical_mechanics_integral(T, thetas, linear=False)

	Calculates the integral of ideal-gas heat capacity using of a molecule
using its characteristic temperatures.

\[\int {C_p^{0}} = 2.5RT + RT \text{ if linear else } 1.5RT
+ \int C_p^{0}\text{vibrational}

\]

\[\int {C_p^{0}} \text{vibrational} = R\sum_{i=1}^{3n_A-6+\delta}
\frac{\theta_i}{\exp(\theta_i/T)-1}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	thetaslist[float]
	Characteristic temperatures, [K]

	Returns

	
	Hfloat
	Integrated gas molar heat capacity at specified temperature, [J/mol]

Examples

>>> thetas = [1360, 2330, 2330, 4800, 4880, 4880]
>>> Cpg_statistical_mechanics_integral(300.0, thetas)
10116.6053294

	
chemicals.heat_capacity.Cpg_statistical_mechanics_integral_over_T(T, thetas, linear=False)

	
	Calculates the integral over T of ideal-gas heat capacity using of a
	molecule using its characteristic temperatures.

\[\int \frac{C_p^{0}}{T} = 2.5R\log(T) + 1R\log(T)
\text{ if linear else } 1.5R\log(T)
+ \int \frac{C_p^{0}}{T}\text{vibrational}

\]

\[\int \frac{C_p^{0}}{T} \text{vibrational} = \sum_{i=1}^{3n_A-6+\delta}
\frac{\theta_i}{T\exp(\theta_i/T)-T} - \log(\exp(\theta_i/T)-1)
+ \theta_i/T

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	thetaslist[float]
	Characteristic temperatures, [K]

	Returns

	
	Sfloat
	Entropy integral of gas molar heat capacity at specified temperature,
[J/mol/K]

Examples

>>> thetas = [1360, 2330, 2330, 4800, 4880, 4880]
>>> Cpg_statistical_mechanics_integral_over_T(300.0, thetas)
190.25658088

	
chemicals.heat_capacity.vibration_frequency_cm_to_characteristic_temperature(frequency, scale=1)

	Convert a vibrational frequency in units of 1/cm to a characteristic
temperature for use in calculating heat capacity.

\[\theta = \frac{100\cdot h\cdot c\cdot \text{scale}}{k}

\]

	Parameters

	
	frequencyfloat
	Vibrational frequency, [1/cm]

	scalefloat
	A scale factor used to adjust the frequency for differences in
experimental vs. calculated values, [-]

	Returns

	
	thetafloat
	Characteristic temperature [K]

Notes

In the equation, k is Boltzmann’s constant, c is the speed of light,
and h is the Planck constant.

A scale factor for the MP2/6-31G** method recommended by NIST is 0.9365.
Using this scale factor will not improve results in all cases however.

Examples

>>> vibration_frequency_cm_to_characteristic_temperature(667)
959.6641613636505

Liquid Heat Capacity Model Equations

	
chemicals.heat_capacity.Zabransky_quasi_polynomial(T, Tc, a1, a2, a3, a4, a5, a6)

	Calculates liquid heat capacity using the model developed in [1].

\[\frac{C}{R}=A_1\ln(1-T_r) + \frac{A_2}{1-T_r}
+ \sum_{j=0}^m A_{j+3} T_r^j

\]

	Parameters

	
	Tfloat
	Temperature [K]

	Tcfloat
	Critical temperature of fluid, [K]

	a1-a6float
	Coefficients

	Returns

	
	Cpfloat
	Liquid heat capacity, [J/mol/K]

Notes

Used only for isobaric heat capacities, not saturation heat capacities.
Designed for reasonable extrapolation behavior caused by using the reduced
critical temperature. Used by the authors of [1] when critical temperature
was available for the fluid.
Analytical integrals are available for this expression.

References

	1(1,2)

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Examples

>>> Zabransky_quasi_polynomial(330, 591.79, -3.12743, 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
165.472878778683

	
chemicals.heat_capacity.Zabransky_quasi_polynomial_integral(T, Tc, a1, a2, a3, a4, a5, a6)

	Calculates the integral of liquid heat capacity using the
quasi-polynomial model developed in [1].

	Parameters

	
	Tfloat
	Temperature [K]

	a1-a6float
	Coefficients

	Returns

	
	Hfloat
	Difference in enthalpy from 0 K, [J/mol]

Notes

The analytical integral was derived with SymPy; it is a simple polynomial
plus some logarithms.

References

	1

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Examples

>>> H2 = Zabransky_quasi_polynomial_integral(300, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> H1 = Zabransky_quasi_polynomial_integral(200, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> H2 - H1
14662.031376528757

	
chemicals.heat_capacity.Zabransky_quasi_polynomial_integral_over_T(T, Tc, a1, a2, a3, a4, a5, a6)

	Calculates the integral of liquid heat capacity over T using the
quasi-polynomial model developed in [1].

	Parameters

	
	Tfloat
	Temperature [K]

	a1-a6float
	Coefficients

	Returns

	
	Sfloat
	Difference in entropy from 0 K, [J/mol/K]

Notes

The analytical integral was derived with Sympy. It requires the
Polylog(2,x) function, which is unimplemented in SciPy. A very accurate
numerical approximation was implemented as fluids.numerics.polylog2.
Relatively slow due to the use of that special function.

References

	1

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Examples

>>> S2 = Zabransky_quasi_polynomial_integral_over_T(300, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> S1 = Zabransky_quasi_polynomial_integral_over_T(200, 591.79, -3.12743,
... 0.0857315, 13.7282, 1.28971, 6.42297, 4.10989)
>>> S2 - S1
59.16999297436473

	
chemicals.heat_capacity.Zabransky_cubic(T, a1, a2, a3, a4)

	Calculates liquid heat capacity using the model developed in [1].

\[\frac{C}{R}=\sum_{j=0}^3 A_{j+1} \left(\frac{T}{100 \text{K}}\right)^j

\]

	Parameters

	
	Tfloat
	Temperature [K]

	a1float
	Coefficient, [-]

	a2float
	Coefficient, [-]

	a3float
	Coefficient, [-]

	a4float
	Coefficient, [-]

	Returns

	
	Cpfloat
	Liquid heat capacity, [J/mol/K]

Notes

Most often form used in [1].
Analytical integrals are available for this expression.

References

	1(1,2)

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Examples

>>> Zabransky_cubic(298.15, 20.9634, -10.1344, 2.8253, -0.256738)
75.31465144297

	
chemicals.heat_capacity.Zabransky_cubic_integral(T, a1, a2, a3, a4)

	Calculates the integral of liquid heat capacity using the model
developed in [1].

	Parameters

	
	Tfloat
	Temperature [K]

	a1float
	Coefficient, [-]

	a2float
	Coefficient, [-]

	a3float
	Coefficient, [-]

	a4float
	Coefficient, [-]

	Returns

	
	Hfloat
	Difference in enthalpy from 0 K, [J/mol]

Notes

The analytical integral was derived with Sympy; it is a simple polynomial.

References

	1

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Examples

>>> Zabransky_cubic_integral(298.15, 20.9634, -10.1344, 2.8253, -0.256738)
31051.690370364

	
chemicals.heat_capacity.Zabransky_cubic_integral_over_T(T, a1, a2, a3, a4)

	Calculates the integral of liquid heat capacity over T using the model
developed in [1].

	Parameters

	
	Tfloat
	Temperature [K]

	a1float
	Coefficient, [-]

	a2float
	Coefficient, [-]

	a3float
	Coefficient, [-]

	a4float
	Coefficient, [-]

	Returns

	
	Sfloat
	Difference in entropy from 0 K, [J/mol/K]

Notes

The analytical integral was derived with Sympy; it is a simple polynomial,
plus a logarithm

References

	1

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Examples

>>> Zabransky_cubic_integral_over_T(298.15, 20.9634, -10.1344, 2.8253,
... -0.256738)
24.732465342840

	
class chemicals.heat_capacity.ZabranskySpline(coeffs, Tmin, Tmax)

	Implementation of the cubic spline method presented in [1] for
calculating the heat capacity of a chemical.
Implements the enthalpy and entropy integrals as well.

\[\frac{C}{R}=\sum_{j=0}^3 A_{j+1} \left(\frac{T}{100}\right)^j

\]

	Parameters

	
	coeffslist[float]
	Six coefficients for the equation, [-]

	Tminfloat
	Minimum temperature any experimental data was available at, [K]

	Tmaxfloat
	Maximum temperature any experimental data was available at, [K]

References

	1

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Methods

	calculate(T)

	Return heat capacity as a function of temperature.

	calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	
calculate(T)

	Return heat capacity as a function of temperature.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Cpfloat
	Liquid heat capacity as T, [J/mol/K]

	
calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	Parameters

	
	Tafloat
	Initial temperature, [K]

	Tbfloat
	Final temperature, [K]

	Returns

	
	dHfloat
	Enthalpy difference between Ta and Tb, [J/mol]

	
calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	Parameters

	
	Tafloat
	Initial temperature, [K]

	Tbfloat
	Final temperature, [K]

	Returns

	
	dSfloat
	Entropy difference between Ta and Tb, [J/mol/K]

	
class chemicals.heat_capacity.ZabranskyQuasipolynomial(coeffs, Tc, Tmin, Tmax)

	Quasi-polynomial object for calculating the heat capacity of a chemical.
Implements the enthalpy and entropy integrals as well.

\[\frac{C}{R}=A_1\ln(1-T_r) + \frac{A_2}{1-T_r}
+ \sum_{j=0}^m A_{j+3} T_r^j

\]

	Parameters

	
	coeffslist[float]
	Six coefficients for the equation, [-]

	Tcfloat
	Critical temperature of the chemical, as used in the formula, [K]

	Tminfloat
	Minimum temperature any experimental data was available at, [K]

	Tmaxfloat
	Maximum temperature any experimental data was available at, [K]

References

	1

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

Methods

	calculate(T)

	Return the heat capacity as a function of temperature.

	calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	
calculate(T)

	Return the heat capacity as a function of temperature.

	Parameters

	
	Tfloat
	Temperature, [K]

	Returns

	
	Cpfloat
	Liquid heat capacity as T, [J/mol/K]

	
calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	Parameters

	
	Tafloat
	Initial temperature, [K]

	Tbfloat
	Final temperature, [K]

	Returns

	
	dHfloat
	Enthalpy difference between Ta and Tb, [J/mol]

	
calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	Parameters

	
	Tafloat
	Initial temperature, [K]

	Tbfloat
	Final temperature, [K]

	Returns

	
	dSfloat
	Entropy difference between Ta and Tb, [J/mol/K]

	
chemicals.heat_capacity.PPDS15(T, Tc, a0, a1, a2, a3, a4, a5)

	Calculates the saturation liquid heat capacity using the [1]
emperical (parameter-regressed) method, called the PPDS 15 equation for
heat capacity.

\[\frac{C_{p,l}}{R} = \frac{a_0}{\tau} + a_1 + a_2\tau + a_3\tau^2
+ a_4\tau^3 + a_5\tau^4

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a0float
	Regression parameter, [-]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	a5float
	Regression parameter, [-]

	Returns

	
	Cplmfloat
	Liquid molar saturation heat capacity, [J/mol/K]

References

	1(1,2)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-CsatL/PPDS15-Csat.htm.

Examples

Benzene at 400 K from [1]

>>> PPDS15(T=400.0, Tc=562.05, a0=0.198892, a1=24.1389, a2=-20.2301, a3=5.72481, a4=4.43613e-7, a5=-3.10751e-7)
161.8983143509

	
chemicals.heat_capacity.TDE_CSExpansion(T, Tc, b, a1, a2=0.0, a3=0.0, a4=0.0)

	Calculates the saturation liquid heat capacity using the [1]
CSExpansion method from NIST’s TDE:

\[C_{p,l}= \frac{b}{\tau} + a_1 + a_2T + a_3 T^2 + a_4 T^3

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	bfloat
	Regression parameter, [-]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	Returns

	
	Cplmfloat
	Liquid molar saturation heat capacity, [J/mol/K]

References

	1(1,2)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-CsatL/CSExpansion.htm

Examples

2-methylquinoline at 550 K from [1]

>>> TDE_CSExpansion(550.0, 778.0, 0.626549, 120.705, 0.255987, 0.000381027, -3.03077e-7)
328.472042686

Liquid Heat Capacity Estimation Models

	
chemicals.heat_capacity.Rowlinson_Poling(T, Tc, omega, Cpgm)

	Calculate liquid constant-pressure heat capacity with the [1] CSP method.
This equation is not terrible accurate.

The heat capacity of a liquid is given by:

\[\frac{Cp^{L} - Cp^{g}}{R} = 1.586 + \frac{0.49}{1-T_r} +
\omega\left[4.2775 + \frac{6.3(1-T_r)^{1/3}}{T_r} + \frac{0.4355}{1-T_r}\right]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor for fluid, [-]

	Cpgmfloat
	Constant-pressure gas heat capacity, [J/mol/K]

	Returns

	
	Cplmfloat
	Liquid constant-pressure heat capacity, [J/mol/K]

Notes

Poling compared 212 substances, and found error at 298K larger than 10%
for 18 of them, mostly associating. Of the other 194 compounds, AARD is 2.5%.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Rowlinson_Poling(350.0, 435.5, 0.203, 91.21)
143.80196224081436

	
chemicals.heat_capacity.Rowlinson_Bondi(T, Tc, omega, Cpgm)

	Calculate liquid constant-pressure heat capacity with the CSP method
shown in [1].

The heat capacity of a liquid is given by:

\[\frac{Cp^L - Cp^{ig}}{R} = 1.45 + 0.45(1-T_r)^{-1} + 0.25\omega
[17.11 + 25.2(1-T_r)^{1/3}T_r^{-1} + 1.742(1-T_r)^{-1}]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor for fluid, [-]

	Cpgmfloat
	Constant-pressure gas heat capacity, [J/mol/K]

	Returns

	
	Cplmfloat
	Liquid constant-pressure heat capacity, [J/mol/K]

Notes

Less accurate than Rowlinson_Poling.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	2

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

	3

	J.S. Rowlinson, Liquids and Liquid Mixtures, 2nd Ed.,
Butterworth, London (1969).

Examples

>>> Rowlinson_Bondi(T=373.28, Tc=535.55, omega=0.323, Cpgm=119.342)
175.3976263003074

	
chemicals.heat_capacity.Dadgostar_Shaw(T, similarity_variable, MW=None, terms=None)

	Calculate liquid constant-pressure heat capacity with the similarity
variable concept and method as shown in [1].

\[C_{p} = 24.5(a_{11}\alpha + a_{12}\alpha^2)+ (a_{21}\alpha
+ a_{22}\alpha^2)T +(a_{31}\alpha + a_{32}\alpha^2)T^2

\]

	Parameters

	
	Tfloat
	Temperature of liquid [K]

	similarity_variablefloat
	similarity variable as defined in [1], [mol/g]

	MWfloat, optional
	Molecular weight of the pure compound or mixture average, [g/mol]

	termsfloat, optional
	Terms in Dadgostar-Shaw equation as computed by Dadgostar_Shaw_terms

	Returns

	
	Cplfloat
	Liquid constant-pressure heat capacity, J/mol/K if MW given;
J/kg/K otherwise

Notes

Many restrictions on its use.
Original model is in terms of J/g/K. Note that the model is for predicting
mass heat capacity, not molar heat capacity like most other methods!
a11 = -0.3416; a12 = 2.2671; a21 = 0.1064; a22 = -0.3874l;
a31 = -9.8231E-05; a32 = 4.182E-04

References

	1(1,2)

	Dadgostar, Nafiseh, and John M. Shaw. “A Predictive Correlation for
the Constant-Pressure Specific Heat Capacity of Pure and Ill-Defined
Liquid Hydrocarbons.” Fluid Phase Equilibria 313 (January 15, 2012):
211-226. doi:10.1016/j.fluid.2011.09.015.

Examples

>>> Dadgostar_Shaw(355.6, 0.139)
1802.5291501191516

	
chemicals.heat_capacity.Dadgostar_Shaw_integral(T, similarity_variable, MW=None, terms=None)

	Calculate the integral of liquid constant-pressure heat capacity
with the similarity variable concept and method as shown in [1].

	Parameters

	
	Tfloat
	Temperature of gas [K]

	similarity_variablefloat
	similarity variable as defined in [1], [mol/g]

	MWfloat, optional
	Molecular weight of the pure compound or mixture average, [g/mol]

	termsfloat, optional
	Terms in Dadgostar-Shaw equation as computed by Dadgostar_Shaw_terms

	Returns

	
	Hfloat
	Difference in enthalpy from 0 K, J/mol if MW given; J/kg otherwise

See also

	Dadgostar_Shaw
	

	Dadgostar_Shaw_integral_over_T
	

Notes

Original model is in terms of J/g/K. Note that the model is for predicting
mass heat capacity, not molar heat capacity like most other methods!
Integral was computed with SymPy.

References

	1(1,2)

	Dadgostar, Nafiseh, and John M. Shaw. “A Predictive Correlation for
the Constant-Pressure Specific Heat Capacity of Pure and Ill-Defined
Liquid Hydrocarbons.” Fluid Phase Equilibria 313 (January 15, 2012):
211-226. doi:10.1016/j.fluid.2011.09.015.

Examples

>>> Dadgostar_Shaw_integral(300.0, 0.1333)
238908.15142664989

	
chemicals.heat_capacity.Dadgostar_Shaw_integral_over_T(T, similarity_variable, MW=None, terms=None)

	Calculate the integral of liquid constant-pressure heat capacity
with the similarity variable concept and method as shown in [1].

	Parameters

	
	Tfloat
	Temperature of gas [K]

	similarity_variablefloat
	similarity variable as defined in [1], [mol/g]

	MWfloat, optional
	Molecular weight of the pure compound or mixture average, [g/mol]

	termsfloat, optional
	Terms in Dadgostar-Shaw equation as computed by Dadgostar_Shaw_terms

	Returns

	
	Sfloat
	Difference in entropy from 0 K, J/mol/K if MW given; J/kg/K otherwise

See also

	Dadgostar_Shaw
	

	Dadgostar_Shaw_integral
	

Notes

Original model is in terms of J/g/K. Note that the model is for predicting
mass heat capacity, not molar heat capacity like most other methods!
Integral was computed with SymPy.

References

	1(1,2)

	Dadgostar, Nafiseh, and John M. Shaw. “A Predictive Correlation for
the Constant-Pressure Specific Heat Capacity of Pure and Ill-Defined
Liquid Hydrocarbons.” Fluid Phase Equilibria 313 (January 15, 2012):
211-226. doi:10.1016/j.fluid.2011.09.015.

Examples

>>> Dadgostar_Shaw_integral_over_T(300.0, 0.1333)
1201.1409113147918

	
chemicals.heat_capacity.Dadgostar_Shaw_terms(similarity_variable)

	Return terms for the computation of Dadgostar-Shaw heat capacity equation.

	Parameters

	
	similarity_variablefloat
	Similarity variable, [mol/g]

	Returns

	
	firstfloat
	First term, [-]

	secondfloat
	Second term, [-]

	thirdfloat
	Third term, [-]

See also

	Dadgostar_Shaw
	

Solid Heat Capacity Estimation Models

	
chemicals.heat_capacity.Perry_151(T, a, b, c, d)

	Return the solid molar heat capacity of a chemical using the Perry 151 method,
as described in [1].

	Parameters

	
	a,b,c,dfloat
	Regressed coefficients.

	Returns

	
	Cpsfloat
	Solid constant-pressure heat capacity, [J/mol/K]

Notes

The solid heat capacity is given by:

\[C_n = 4.184 (a + bT + \frac{c}{T^2} + dT^2)

\]

Coefficients are listed in section 2, table 151 of [1]. Note that the
original model was in a Calorie basis, but has been translated to Joules.

References

	1(1,2)

	Green, Don, and Robert Perry.
Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

Examples

Heat capacity of solid aluminum at 300 K:

>>> Perry_151(300, 4.8, 0.00322, 0., 0.)
24.124944

	
chemicals.heat_capacity.Lastovka_solid(T, similarity_variable, MW=None)

	Calculate solid constant-pressure heat capacity with the similarity
variable concept and method as shown in [1].

\[C_p = 3(A_1\alpha + A_2\alpha^2)R\left(\frac{\theta}{T}\right)^2
\frac{\exp(\theta/T)}{[\exp(\theta/T)-1]^2}
+ (C_1\alpha + C_2\alpha^2)T + (D_1\alpha + D_2\alpha^2)T^2

\]

	Parameters

	
	Tfloat
	Temperature of solid [K]

	similarity_variablefloat
	similarity variable as defined in [1], [mol/g]

	MWfloat, optional
	Molecular weight of the pure compound or mixture average, [g/mol]

	Returns

	
	Cpsfloat
	Solid constant-pressure heat capacity, J/mol/K if MW given; J/kg/K
otherwise

Notes

Many restrictions on its use. Trained on data with MW from 12.24 g/mol
to 402.4 g/mol, C mass fractions from 61.3% to 95.2%,
H mass fractions from 3.73% to 15.2%, N mass fractions from 0 to 15.4%,
O mass fractions from 0 to 18.8%, and S mass fractions from 0 to 29.6%.
Recommended for organic compounds with low mass fractions of hetero-atoms
and especially when molar mass exceeds 200 g/mol. This model does not show
and effects of phase transition but should not be used passed the triple
point.
Original model is in terms of J/g/K. Note that the model s for predicting
mass heat capacity, not molar heat capacity like most other methods!

A1 = 0.013183

A2 = 0.249381

\(\theta\) = 151.8675

C1 = 0.026526

C2 = -0.024942

D1 = 0.000025

D2 = -0.000123

References

	1(1,2)

	Laštovka, Václav, Michal Fulem, Mildred Becerra, and John M. Shaw.
“A Similarity Variable for Estimating the Heat Capacity of Solid Organic
Compounds: Part II. Application: Heat Capacity Calculation for
Ill-Defined Organic Solids.” Fluid Phase Equilibria 268, no. 1-2
(June 25, 2008): 134-41. doi:10.1016/j.fluid.2008.03.018.

Examples

>>> Lastovka_solid(300, 0.2139)
1682.0637469909211

	
chemicals.heat_capacity.Lastovka_solid_integral(T, similarity_variable, MW=None)

	Integrates solid constant-pressure heat capacity with the similarity
variable concept and method as shown in [1].

uses an explicit form as derived with Sympy.

	Parameters

	
	Tfloat
	Temperature of solid [K]

	similarity_variablefloat
	similarity variable as defined in [1], [mol/g]

	MWfloat, optional
	Molecular weight of the pure compound or mixture average, [g/mol]

	Returns

	
	Hfloat
	Difference in enthalpy from 0 K, J/mol if MW given; J/kg otherwise

See also

	Lastovka_solid
	

Notes

Original model is in terms of J/g/K. Note that the model is for predicting
mass heat capacity, not molar heat capacity like most other methods!

References

	1(1,2)

	Laštovka, Václav, Michal Fulem, Mildred Becerra, and John M. Shaw.
“A Similarity Variable for Estimating the Heat Capacity of Solid Organic
Compounds: Part II. Application: Heat Capacity Calculation for
Ill-Defined Organic Solids.” Fluid Phase Equilibria 268, no. 1-2
(June 25, 2008): 134-41. doi:10.1016/j.fluid.2008.03.018.

Examples

>>> Lastovka_solid_integral(300, 0.2139)
283246.1519409122

	
chemicals.heat_capacity.Lastovka_solid_integral_over_T(T, similarity_variable, MW=None)

	Integrates over T solid constant-pressure heat capacity with the
similarity variable concept and method as shown in [1].

uses an explicit form as derived with Sympy.

	Parameters

	
	Tfloat
	Temperature of solid [K]

	similarity_variablefloat
	similarity variable as defined in [1], [mol/g]

	MWfloat, optional
	Molecular weight of the pure compound or mixture average, [g/mol]

	Returns

	
	Sfloat
	Difference in entropy from 0 K, J/mol/K if MW given; J/kg/K otherwise

See also

	Lastovka_solid
	

Notes

Original model is in terms of J/g/K. Note that the model is for predicting
mass heat capacity, not molar heat capacity like most other methods!

References

	1(1,2)

	Laštovka, Václav, Michal Fulem, Mildred Becerra, and John M. Shaw.
“A Similarity Variable for Estimating the Heat Capacity of Solid Organic
Compounds: Part II. Application: Heat Capacity Calculation for
Ill-Defined Organic Solids.” Fluid Phase Equilibria 268, no. 1-2
(June 25, 2008): 134-41. doi:10.1016/j.fluid.2008.03.018.

Examples

>>> Lastovka_solid_integral_over_T(300, 0.2139)
1947.5537561495564

Utility methods

	
class chemicals.heat_capacity.PiecewiseHeatCapacity(models)

	Create a PiecewiseHeatCapacity object for calculating heat capacity and the
enthalpy and entropy integrals using piecewise models.

	Parameters

	
	modelsIterable[HeatCapacity]
	Piecewise heat capacity objects, [-]

	Attributes

	
	Tmax
	

	Tmin
	

	models
	

Methods

	calculate(T)

	Return the heat capacity as a function of temperature.

	calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

	force_calculate(T)

	Return the heat capacity as a function of temperature.

	force_calculate_integral(Ta, Tb)

	Return the enthalpy integral of heat capacity from Ta to Tb.

	force_calculate_integral_over_T(Ta, Tb)

	Return the entropy integral of heat capacity from Ta to Tb.

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.heat_capacity.Cp_data_Poling

	Constains data for gases and liquids from [3].
Simple polynomials for gas heat capacity (not suitable for extrapolation) are available for 308 chemicals. Additionally, constant values in at 298.15 K are available for 348 gases. Constant values in at 298.15 K are available for 245 liquids.

	
chemicals.heat_capacity.TRC_gas_data

	A rigorous expression from [1] for modeling gas heat capacity.
Coefficients for 1961 chemicals are available.

	
chemicals.heat_capacity.CRC_standard_data

	Constant values tabulated in [4] at 298.15 K. Data is available for
533 gases. Data is available for 433 liquids. Data is available for 529
solids.

	
chemicals.heat_capacity.Cp_dict_PerryI

	Simple polynomials from [5] with vaious exponents selected for each expression.
Coefficients are in units of calories/mol/K. The full expression is
\(C_p = a + bT + c/T^2 + dT^2\). Data is available for 284 compounds.
Some compounds have gas data, some have liquid data, and have solid
(crystal structure) data, sometimes multiple coefficients for different
solid phases.

	
chemicals.heat_capacity.zabransky_dicts

	Complicated fits covering different cases and with different forms from [2].

	
chemicals.heat_capacity.Cp_dict_characteristic_temperatures_adjusted_psi4_2022a

	Theoretically calculated chatacteristic temperatures from vibrational
frequencies using psi4

	
chemicals.heat_capacity.Cp_dict_characteristic_temperatures_psi4_2022a

	Theoretically calculated chatacteristic temperatures from vibrational
frequencies using psi4, adjusted using a recommended coefficient

	1

	Kabo, G. J., and G. N. Roganov. Thermodynamics of Organic Compounds
in the Gas State, Volume II: V. 2. College Station, Tex: CRC Press, 1994.

	2

	Zabransky, M., V. Ruzicka Jr, V. Majer, and Eugene S. Domalski.
Heat Capacity of Liquids: Critical Review and Recommended Values.
2 Volume Set. Washington, D.C.: Amer Inst of Physics, 1996.

	3

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	4

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	5

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

In [1]: import chemicals

In [2]: chemicals.heat_capacity.Cp_data_Poling
Out[2]:
 Chemical Tmin ... Cpg Cpl
CAS ...
56-23-5 tetrachloromethane 200.0 ... 83.43 131.60
60-29-7 diethyl ether 100.0 ... 119.46 172.60
62-53-3 benzeneamine (aniline) 50.0 ... 107.90 191.90
64-17-5 ethanol 50.0 ... 65.21 112.25
64-18-6 methanoic acid (formic acid) 50.0 ... 53.45 99.17
...
14940-65-9 tritium oxide NaN ... 34.96 NaN
16747-38-9 2,3,3,4-tetramethylpentane 200.0 ... 218.30 275.70
20291-95-6 2,2,5-trimethylheptane 200.0 ... 229.20 306.40
800000-51-5 hydrogen, normal NaN ... 28.83 NaN
800000-54-8 deuterium, normal NaN ... 29.20 NaN

[368 rows x 10 columns]

In [3]: chemicals.heat_capacity.TRC_gas_data
Out[3]:
 Chemical Tmin ... J Hfg
CAS ...
50-00-0 Methanal 50.0 ... 3.46 -104700.0
50-32-8 Benzo[a]pyrene 298.0 ... 13.44 324000.0
53-70-3 Dibenz[a,h]anthracene 298.0 ... 16.63 375000.0
56-23-5 Tetrachloromethane 200.0 ... 9.58 -93700.0
56-55-3 Benz[a]anthracene 298.0 ... 11.45 328000.0
...
800000-46-8 2,2,(3RS,4RS)-Tetramethylhexane 200.0 ... 22.45 -188600.0
800000-47-9 2,(3RS,4SR),5-Tetramethylhexane 200.0 ... 22.32 193700.0
800000-48-0 2,(3RS,4RS),5-Tetramethylhexane 200.0 ... 22.14 -194600.0
800000-56-0 1-Methylbutyl radical 200.0 ... 22.25 54600.0
800002-32-8 Propenoic acid (Dimer) 50.0 ... 13.83 -686000.0

[1961 rows x 14 columns]

In [4]: chemicals.heat_capacity.CRC_standard_data
Out[4]:
 Chemical Hfs ... S0g Cpg
CAS ...
50-00-0 Formaldehyde NaN ... 218.8 35.4
50-32-8 Benzo[a]pyrene NaN ... NaN 254.8
50-69-1 D-Ribose -1047200.0 ... NaN NaN
50-78-2 2-(Acetyloxy)benzoic acid -815600.0 ... NaN NaN
50-81-7 L-Ascorbic acid -1164600.0 ... NaN NaN
...
92141-86-1 Cesium metaborate -972000.0 ... NaN NaN
99685-96-8 Carbon [fullerene-C60] 2327000.0 ... 544.0 512.0
114489-96-2 Isobutyl 2-chloropropanoate NaN ... NaN NaN
115383-22-7 Carbon [fullerene-C70] 2555000.0 ... 614.0 585.0
116836-32-9 sec-Butyl pentanoate NaN ... NaN NaN

[2470 rows x 13 columns]

In [5]: chemicals.heat_capacity.Cp_dict_PerryI['124-38-9'] # gas only
Out[5]:
{'g': {'Formula': 'CO2',
 'Phase': 'g',
 'Subphase': None,
 'Const': 10.34,
 'Lin': 0.00274,
 'Quadinv': -195500.0,
 'Quad': 0,
 'Tmin': 273.0,
 'Tmax': 1200.0,
 'Error': '1a'}}

In [6]: chemicals.heat_capacity.Cp_dict_PerryI['7704-34-9'] # crystal and gas
Out[6]:
{'g': {'Formula': 'H2S',
 'Phase': 'g',
 'Subphase': None,
 'Const': 7.2,
 'Lin': 0.0036,
 'Quadinv': 0,
 'Quad': 0,
 'Tmin': 300.0,
 'Tmax': 600.0,
 'Error': 8.0},
 'c': {'Formula': 'S',
 'Phase': 'c',
 'Subphase': 'monoclinic',
 'Const': 4.38,
 'Lin': 0.0044,
 'Quadinv': 0,
 'Quad': 0,
 'Tmin': 368.0,
 'Tmax': 392.0,
 'Error': 3.0}}

In [7]: chemicals.heat_capacity.Cp_dict_PerryI['7440-57-5'] # crystal and liquid
Out[7]:
{'c': {'Formula': 'Au',
 'Phase': 'c',
 'Subphase': None,
 'Const': 5.61,
 'Lin': 0.00144,
 'Quadinv': 0,
 'Quad': 0,
 'Tmin': 273.0,
 'Tmax': 1336.0,
 'Error': 2.0},
 'l': {'Formula': 'Au',
 'Phase': 'l',
 'Subphase': None,
 'Const': 7.0,
 'Lin': 0,
 'Quadinv': 0,
 'Quad': 0,
 'Tmin': 1336.0,
 'Tmax': 1573.0,
 'Error': 5.0}}

In [8]: chemicals.heat_capacity.zabransky_dicts.keys()
Out[8]: dict_keys(['Zabransky spline, averaged heat capacity', 'Zabransky quasipolynomial, averaged heat capacity', 'Zabransky spline, constant-pressure', 'Zabransky quasipolynomial, constant-pressure', 'Zabransky spline, saturation', 'Zabransky quasipolynomial, saturation'])

IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)

This module contains the core of the IAPWS-95 and IAPWS-97 standards.
The objective of this module is to contain extremely fast functions to
calculate several basic properties of water.

The simplest interfaces are iapws95_rho for density calculation only and
iapws95_properties for some basic properties.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	IAPWS-95 Basic Solvers

	IAPWS-97 Basic Solvers

	IAPWS-95 Properties

	IAPWS Saturation Pressure/Temperature

	IAPWS Saturation Density

	IAPWS Constants

	IAPWS-97 Region 1

	IAPWS-97 Region 2

	IAPWS-97 Region 3

	IAPWS-97 Region 3 PT Backwards Equation Boundaries

	IAPWS-97 Region 3 PT Backwards Equations

	IAPWS-97 Region 5

	IAPWS-95 Ideal Gas Terms

	IAPWS-95 Residual Terms

IAPWS-95 Basic Solvers

	
chemicals.iapws.iapws95_rho(T, P)

	Calculate the density of water according to the IAPWS-95
standard given a temperature T and pressure P. The phase is determined
in this calculation.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water, [kg/m^3]

See also

	iapws95_rhol_sat
	

	iapws95_rhog_sat
	

Notes

There is a sudden transition at the saturation pressure between liquid and
vapor density, by design.

This solution is iterative due to the nature of the equation.
The solution procedure begins with IAPWS-97’s explicit equations as an
initial guess, extrapolating when out of range. If the temperature is under
the critical temperature, the saturation density is calculated, and used
to ensure the solver begins in the feasible region. Newton’s method
converges extremely, normally after 2 or 3 iterations.

Temperatures under 273.15 K are not officially supported by [1], but a
solution is still attempted down to 235 K.

References

	1(1,2)

	Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” Journal of Physical and Chemical Reference Data 31, no.
2 (2002): 387-535.

Examples

>>> iapws95_rho(T=300.0, P=1e6)
996.96002269499

1 GPa and 5000 K are suggested as upper limits of [1] although there are
no hardcoded limits for temperature and pressure.

>>> iapws95_rho(T=5000.0, P=1e9)
326.79451662743

	
chemicals.iapws.iapws95_P(T, rho)

	Calculate the pressure of water according to the IAPWS-95
standard given a temperature T and mass density rho.

	Parameters

	
	Tfloat
	Temperature, [K]

	rhofloat
	Mass density of water, [kg/m^3]

	Returns

	
	Pfloat
	Pressure, [Pa]

Notes

The IAPWS-95 model is explicit with inputs of temperature and density,
so this is a direct calculation with no iteration required.

References

	1

	Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” Journal of Physical and Chemical Reference Data 31, no.
2 (2002): 387-535.

Examples

>>> iapws95_P(330.0, iapws95_rho(T=330.0, P=8e5))
8e5
>>> iapws95_P(823.0, 40.393893559703734)
14e6

Not all temperature and density inputs provide a stable solution; for
example anything between the vapor and gas saturation curves. In some but
not all of these cases a negative pressure is returned:

>>> iapws95_P(T=300, rho=300)
-1.526394720e+23

	
chemicals.iapws.iapws95_T(P, rho)

	Calculate the temperature of water according to the IAPWS-95
standard given a density rho and pressure P.

	Parameters

	
	Pfloat
	Pressure, [Pa]

	rhofloat
	Mass density of water, [kg/m^3]

	Returns

	
	Tfloat
	Temperature, [K]

Notes

This solution is iterative due to the nature of the equation.
The solution procedure begins with IAPWS-97’s equations as an
initial guess, extrapolating when out of range. Newton’s method
converges extremely, normally after 2 or 3 iterations.

Due to water’s unique density curve, there is a temperature region
spanning 273.15 K to 280.005 K where there are two solutions. No guarantee
is made as to which solution will be returned.

References

	1

	Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” Journal of Physical and Chemical Reference Data 31, no.
2 (2002): 387-535.

Examples

>>> iapws95_T(P=1e6, rho=995.0)
306.461547194

IAPWS-97 Basic Solvers

	
chemicals.iapws.iapws97_rho(T, P, use_95_boundary=False)

	Calculate the density of water in kg/m^3 according to the IAPWS-97
standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	use_95_boundarybool, optional
	If True, respect the IAPWS-95 vapor pressure curve instead of the IF-97
one, [-]

	Returns

	
	rhofloat
	Mass density of water, [kg/m^3]

Notes

The range of validity of this formulation is as follows:

For \(P \le 100 \text{ MPa}\):

\[273.15 \text{ K} \le T \le 1073.15 \text{ K}

\]

For \(P \le 50 \text{ MPa}\):

\[1073.15 \text{ K} \le T \le 2273.15 \text{ K}

\]

A ValueError is raised if the temperature or the pressure is out of bounds.

IAPWS is implemented in four regions in the T-P domain:
Region 1 (liquid), region 2 (gas and supercritical gas), region 5
(high temperature gas), and region 3 (near-critical).
Significant discontinuities exist between the transitions of each regions.
In region 3, there are 26 sub-regions and the correlation has the least
accuracy.

For many applications, the discontinuities in IF-97 can be problematic and
the slower IAPWS-95 must be used. IAPWS-95 also has a wider range of
applicability.

References

	1

	Cooper, JR, and RB Dooley. “Revised Release on the IAPWS Industrial
Formulation 1997 for the Thermodynamic Properties of Water and Steam.”
The International Association for the Properties of Water and Steam 1
(2007): 48.

Examples

>>> iapws97_rho(648.6, 22.5e6)
353.06081088726
>>> iapws97_rho(330.0, 8e5)
985.10498080770
>>> iapws97_rho(823.0, 14e6)
40.39293607288123
>>> iapws97_rho(2000.0, 3e7)
32.11456228328856

	
chemicals.iapws.iapws97_P(T, rho)

	Calculate the pressure of water according to the IAPWS-97
standard given a temperature T and mass density rho.

	Parameters

	
	Tfloat
	Temperature, [K]

	rhofloat
	Mass density of water, [kg/m^3]

	Returns

	
	Pfloat
	Pressure, [Pa]

Notes

The range of validity of this formulation is as follows:

For \(P \le 100 \text{ MPa}\):

\[273.15 \text{ K} \le T \le 1073.15 \text{ K}

\]

For \(P \le 50 \text{ MPa}\):

\[1073.15 \text{ K} \le T \le 2273.15 \text{ K}

\]

A ValueError is raised if the temperature or density is out of bounds.

Newton’s method with analytical derivatives is used here to solve these
equations. The solver tolerance is as tight as it can be without causing
wasted iterations that do not improve the result at all. Pressure changes
quickly with density however, and some discrepancy between solvers is to be
expected.

For region 3, there are really two formulations present in IAPWS-97. There
is a Helmholtz energy equation (Temperature and density dependent), and
also 26 separate backwards equations for rho which depend on T and P.
The Helmholtz energy equation is much more accurate and does not have
discontinuities. The two sets of equations agree closely not not perfectly.
By design, iapws97_rho implements the 26 T-P equations and this
implements the Helmholtz energy equation. This means that in region 3
solutions will not be consistent. For consistency requirements, IAPWS-95
is recommended.

This solver does not have any issues with multiple solutions. The solvers
have been checked to achieve a relative solution tolerance of 5e-9 on
100 million points.

References

	1

	Cooper, JR, and RB Dooley. “Revised Release on the IAPWS Industrial
Formulation 1997 for the Thermodynamic Properties of Water and Steam.”
The International Association for the Properties of Water and Steam 1
(2007): 48.

Examples

>>> iapws97_P(330.0, iapws97_rho(T=330.0, P=8e5))
8e5
>>> iapws97_P(823.0, 40.39293607288123)
14e6
>>> iapws97_P(T=2000.0, rho=32.11456228328856)
3e7

Region 3 point - does not implement the same equations as
iapws97_rho!

>>> iapws97_P(648.6, iapws97_rho(T=648.6, P=22.5e6))
22499974.093936257

	
chemicals.iapws.iapws97_T(P, rho)

	Calculate the temperature of water according to the IAPWS-97
standard given a pressure P and mass density rho.

	Parameters

	
	Pfloat
	Pressure, [Pa]

	rhofloat
	Mass density of water, [kg/m^3]

	Returns

	
	Tfloat
	Temperature, [K]

Notes

The range of validity of this formulation is as follows:

For \(P \le 100 \text{ MPa}\):

\[273.15 \text{ K} \le T \le 1073.15 \text{ K}

\]

For \(P \le 50 \text{ MPa}\):

\[1073.15 \text{ K} \le T \le 2273.15 \text{ K}

\]

A ValueError is raised if the pressure or density is out of bounds.

Newton’s method with analytical derivatives is used here to solve these
equations. The solver tolerance is as tight as it can be without causing
wasted iterations that do not improve the result at all.

Due to water’s unique density curve, there is a temperature region
spanning 273.15 K to 280.005 K where there are two solutions. No guarantee
is made as to which solution will be returned.

References

	1

	Cooper, JR, and RB Dooley. “Revised Release on the IAPWS Industrial
Formulation 1997 for the Thermodynamic Properties of Water and Steam.”
The International Association for the Properties of Water and Steam 1
(2007): 48.

Examples

>>> iapws97_T(8e5, iapws97_rho(T=330.0, P=8e5))
330.0
>>> iapws97_T(14e6, 40.39293607288123)
823.0
>>> iapws97_T(P=3e7, rho=32.11456228328856)
2000.0

IAPWS-95 Properties

	
chemicals.iapws.iapws95_properties(T, P)

	Calculate some basic properties of water according to the IAPWS-95
standard given a temperature T and pressure P.

The properties are density rho, internal energy U, entropy S,
enthalpy H, isochoric heat capacity Cv, isobaric heat capacity Cp,
speed of sound w,
Joule-Thomson coefficient JT, isothermal throttling coefficient delta_T,
isentropic temperature-pressure coefficient beta_s, and the derivative of
mass density with respect to pressure at constant temperature drho_dP.

This function is intended as a demonstration of how to use the IAPWS-95
equations. For that reason, mass-units are used in all returned variables.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water, [kg/m^3]

	Ufloat
	Internal energy of water, [J/(kg)]

	Sfloat
	Entropy of water, [J/(kg*K)]

	Hfloat
	Enthalpy of water, [J/(kg)]

	Cvfloat
	Isochoric heat capacity, [J/(kg*K)]

	Cpfloat
	Isobaric heat capacity, [J/(kg*K)]

	wfloat
	Speed of sound, [m/s]

	JTfloat
	Joule-Thomson coefficient, [K/Pa]

	delta_Tfloat
	Isothermal throttling coefficient, [J/(kg*Pa)]

	beta_sfloat
	Isentropic temperature-pressure coefficient, [K/Pa]

	drho_dPfloat
	Derivative of mass density with respect to pressure at constant
temperature, [kg/(m^3*Pa)]

Notes

Hundreds of useful properties can be obtained from the IAPWS-95 model. It
is intended for this function to serve as a useful starting point to those.
Calculating every property with every set of units is beyond the scope of
chemicals. The functions like iapws95_dAr_ddelta can be used
directly in your own implementation - where you can calculate only those
properties which are necessary, for maximum speed.

The formulas are as follows:

\[\frac{u(\delta, \tau)}{R T}=\tau\left(\phi_{\tau}^{\mathrm{o}}
+\phi_{\tau}^{\mathrm{r}}\right)

\]

\[\frac{s(\delta, \tau)}{R}=\tau\left(\phi_{\tau}^{\mathrm{o}}
+\phi_{\tau}^{\mathrm{r}}\right)-\phi^{\mathrm{o}}-\phi^{\mathrm{r}}

\]

\[\frac{h(\delta, \tau)}{R T}=1+\tau\left(\phi_{\tau}^{\mathrm{o}}
+\phi_{\tau}^{\mathrm{r}}\right)+\delta \phi_{\delta}^{\mathrm{r}}

\]

\[\frac{c_{v}(\delta, \tau)}{R}=-\tau^{2}\left(\phi_{\tau \tau}^{\mathrm{o}}
+\phi_{\tau \tau}^{\mathrm{r}}\right)

\]

\[\frac{c_{p}(\delta, \tau)}{R}=-\tau^{2}\left(\phi_{\tau \tau}^{\mathrm{o}}
+\phi_{\tau \tau}^{\mathrm{r}}\right)+\frac{\left(1+\delta
\phi_{\delta}^{\mathrm{r}}-\delta \tau \phi_{\delta \tau}^{\mathrm{r}}
\right)^{2}}{1+2 \delta \phi_{\delta}^{\mathrm{r}}+\delta^{2}
\phi_{\delta \delta}^{\mathrm{r}}}

\]

\[\frac{w^{2}(\delta, \tau)}{R T}=1+2 \delta \phi_{\delta}^{\mathrm{r}}
+\delta^{2} \phi_{\delta \delta}^{\mathrm{r}}-\frac{\left(1+\delta
\phi_{\delta}^{\mathrm{r}}-\delta \tau \phi_{\delta \tau}^{\mathrm{r}}
\right)^{2}}{\tau^{2}\left(\phi_{\tau \tau}^{\mathrm{o}}+\phi_{\tau
\tau}^{\mathrm{r}}\right)}

\]

\[\mu R \rho=\frac{-\left(\delta \phi_{\delta}^{\mathrm{r}}+\delta^{2}
\phi_{\delta \delta}^{\mathrm{r}}+\delta \tau \phi_{\delta \tau}^{
\mathrm{r}}\right)}{\left(1+\delta \phi_{\delta}^{\mathrm{r}}-\delta
\tau \phi_{\delta \tau}^{\mathrm{r}}\right)^{2}-\tau^{2}\left(
\phi_{\tau \tau}^{\mathrm{o}}+\phi_{\tau \tau}^{\mathrm{r}}\right)
\left(1+2 \delta \phi_{\delta}^{\mathrm{r}}+\delta^{2} \phi_{\delta
\delta}^{\mathrm{r}}\right)}

\]

\[\delta_{T} \rho=1-\frac{1+\delta \phi_{\delta}^{\mathrm{r}}-\delta \tau
\phi_{\delta \tau}^{\mathrm{r}}}{1+2 \delta \phi_{\delta}^{\mathrm{r}}
+\delta^{2} \phi_{\delta \delta}^{\mathrm{r}}}

\]

\[\beta_{S} \rho R=\frac{1+\delta \phi_{\delta}^{\mathrm{r}}-\delta \tau
\phi_{\delta \tau}^{\mathrm{r}}}{\left(1+\delta \phi_{\delta}^{
\mathrm{r}}-\delta \tau \phi_{\delta \tau}^{\mathrm{r}}\right)^{2}
-\tau^{2}\left(\phi_{\tau \tau}^{\mathrm{o}}+\phi_{\tau \tau}^{
\mathrm{r}}\right)\left(1+2 \delta \phi_{\delta}^{\mathrm{r}}
+\delta^{2} \phi_{\delta \delta}^{\mathrm{r}}\right)}

\]

This derivative isn’t part of the same table of properties, but it is
needed by the transport calculation routines:

\[\left(\frac{\partial \rho}{\partial P}\right)_{T} = \frac{1}{
R T\left(1+2 \delta \alpha_{\delta}^{\mathrm{r}}+\delta^{2}
\alpha_{\delta \delta}^{\mathrm{r}}\right)}

\]

References

	1

	Wagner, Wolfgang, and Andreas Pruß. “The IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” Journal of Physical and Chemical Reference Data 31, no.
2 (2002): 387-535.

Examples

>>> iapws95_properties(T=300.0, P=1e6)
(996.96002269, 112478.998245, 392.813902893, 113482.047492, 4127.21730497, 4178.103605593, 1503.035983829, -2.202166728257e-07, 0.000920088074745, 1.985617879134e-08, 4.48108429028e-07)

>>> rho, U, S, H, Cv, Cp, w, JT, delta_T, beta_s, drho_dP = iapws95_properties(T=500.0, P=1e5)
>>> w
548.3138393244

IAPWS Saturation Pressure/Temperature

	
chemicals.iapws.iapws95_Psat(T)

	Compute the saturation pressure of the IAPWS-95 equation using high-
fidelity polynomial fits. These have a relative accuracy of under 1e-12,
and are generated by solving the saturation equations under the
high-precision environment of mpmath. The range of the fit is 235 K to
647.096 K, the critical point.

\[P_{sat} = P_c \exp(\text{polynomial}(a (T - b)))

\]

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition, [K]

	Returns

	
	Psatfloat
	Saturation vapor pressure, [Pa]

See also

	iapws95_saturation
	

Notes

This method should be used in preference to iapws95_saturation.
Although using mpmath generates slightly different results than using
plain floating point numbers, the requirement for the saturation curve is
to be smooth, and continuous; mpmath makes this easy and the saturation
equations were solved extremely high precision, well under a floating
point’s error.

The polynomial coefficients have been carefully chosen to be able to be
evaluated accurately with horner’s method, although they are derived as a
Chebyshev approximation originally.

Examples

>>> iapws95_Psat(400.0)
245769.3455

	
chemicals.iapws.iapws95_dPsat_dT(T)

	Compute the temperature derivative of saturation pressure of the
IAPWS-95 equation using high-
fidelity polynomial fits. The range of the fit is 235 K to
647.096 K, the critical point.

\[P_{sat} = P_c \exp(\text{polynomial}(a (T - b)))

\]

\[\frac{\partial P_{sat}}{\partial T} = a P_c \exp(\text{polynomial}(a (T - b)))
 \exp\left(\frac{\partial \text{polynomial}(a (T - b))}{\partial T}\right)

\]

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition and
its temperature derivative, [K]

	Returns

	
	dPsat_dTfloat
	First temperature derivative of Saturation vapor pressure, [Pa/K]

	Psatfloat
	Saturation vapor pressure, [Pa]

Notes

Psat must be calculated in the calculation of the derivative, so it is
returned as well which may be useful in some applications.

Examples

>>> iapws95_dPsat_dT(400.0)
(7483.62075827, 245769.3455657)

	
chemicals.iapws.iapws92_Psat(T)

	Compute the saturation pressure of the IAPWS-92 equation.

\[P_{sat} = P_c \exp\left(\frac{T_c}{T}[a_1\tau + a_2\tau^{1.5} + a_3\tau^3 + a_4\tau^{3.5}
a_5\tau^4 + a_6\tau^{7.5}]\right)

\]

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition and
its temperature derivative, [K]

	Returns

	
	Psatfloat
	Saturation vapor pressure, [Pa]

Notes

The coefficients are [-7.85951783, 1.84408259, -11.7866497, 22.6807411,
-15.9618719, 1.80122502]

Examples

>>> iapws92_Psat(400.0)
245765.2635418

	
chemicals.iapws.iapws92_dPsat_dT(T)

	Compute the temperature derivative of saturation pressure of the
IAPWS-92 equation.

\[P_{sat} = P_c \exp\left(\frac{T_c}{T}[a_1\tau + a_2\tau^{1.5} + a_3\tau^3 + a_4\tau^{3.5}
a_5\tau^4 + a_6\tau^{7.5}]\right)

\]

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition and
its temperature derivative, [K]

	Returns

	
	dPsat_dTfloat
	First temperature derivative of saturation vapor pressure, [Pa/K]

	Psatfloat
	Saturation vapor pressure, [Pa]

Notes

The coefficients are [-7.85951783, 1.84408259, -11.7866497, 22.6807411,
-15.9618719, 1.80122502]

Examples

>>> iapws92_dPsat_dT(400.0)
(7483.47094105, 245765.263541)

	
chemicals.iapws.iapws95_Tsat(P)

	Compute the saturation temperature of the IAPWS-95 equation.
The range of the fit is 235 K to 647.096 K, the critical point.

	Parameters

	
	Psatfloat
	Saturation vapor pressure specified, [Pa]

	Returns

	
	Tfloat
	Temperature at which the saturation pressure occurs, [K]

See also

	iapws95_Psat
	

	Tsat_IAPWS
	

Notes

This method is quite fast and precise because it starts with great initial
guesses and the equation is well-bounded. The precision of this calculation
should be the same as iapws95_Psat.

Examples

>>> iapws95_Tsat(iapws95_Psat(400.0))
400.0

	
chemicals.iapws.iapws95_saturation(T, xtol=1e-05, rhol_guess=None, rhog_guess=None)

	Solve the vapor-liquid saturation equations of IAPWS-95 given a
specified temperature. With floating point numbers, the achievable
tolerance is somewhat low so xtol is exposed as a setting - it can be
adjusted somewhat. Density guesses may be provided, otherwise they will
be estimated.

\[G_{liq}(T, \rho_l) = G_{vap}(T, \rho_g)

\]

\[P_{liq}(T, \rho_l) = P_{vap}(T, \rho_g)

\]

	Parameters

	
	Tfloat
	Temperature at which to solve for saturation condition, [K]

	xtolfloat
	Tolerance for solver, [-]

	rhol_guessfloat, optional
	Liquid density of water at saturation (guess), [kg/m^3]

	rhog_guessfloat, optional
	Vapor density of water at saturation (guess), [kg/m^3]

	Returns

	
	Psatfloat
	Saturation vapor pressure, 3[Pa]

	rholfloat
	Saturation liquid water density, [kg/m^3]

	rhogfloat
	Saturation vapor water density, [kg/m^3]

Notes

This is not a perfect function.

With mpmath multiple precision, the equation can be solved down to 233.6 K
and up to 647.095999995 K - within 10 parts in a billion of the critical
point exactly.

Reasons for non-convergence include floating point issues as delta
becomes 1, and zero division errors in the matrix inverse.

Examples

>>> iapws95_saturation(400.0, xtol=1e-6)
(245769.345, 937.4860, 1.3694075)
>>> iapws95_saturation(647.0955, xtol=1e-7)
(22063866.35, 325.70, 318.277)

	
chemicals.iapws.iapws11_Psub(T)

	Compute the sublimation pressure of the frozen water using the IAPWS-11
equation from the Revised Release on the Pressure along the Melting and
Sublimation Curves of Ordinary Water Substance.

\[P_{sub} = P_t\exp\left(
 \theta^{-1} \sum_{i=1}^3 a_i \theta^{b_i}
 \right)

\]

\[\theta = \frac{T}{T_t}

\]

	Parameters

	
	Tfloat
	Temperature at which to calculate the sublimation condition [K]

	Returns

	
	Psubfloat
	Sublimation vapor pressure, [Pa]

Notes

The triple temperature is 273.16 K, and triple pressure 611.657 Pa.

The coefficients are as follows:

ais = [-0.212144006E2, 0.273203819E2, -0.610598130E1]

bis = [0.333333333E-2, 0.120666667E1, 0.170333333E1]

The equation is valid from 50 K to the triple temperature.

Examples

>>> iapws11_Psub(230.0)
8.947352740189151

IAPWS Saturation Density

	
chemicals.iapws.iapws95_rhol_sat(T)

	Compute the saturation liquid density of the IAPWS-95 equation using high-
fidelity polynomial fits. These have a relative accuracy of under 1e-13,
except near the critical point where it rises to 1e-10,
and are generated by solving the saturation equations under the
high-precision environment of mpmath. The range of the fit is 235 K to
647.096 K, the critical point.

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition, [K]

	Returns

	
	rholfloat
	Saturation liquid density, [kg/m^3]

See also

	iapws92_rhol_sat
	

Notes

This method should be used in preference to iapws92_rhol_sat.

Examples

>>> iapws95_rhol_sat(400.0)
937.48603939

	
chemicals.iapws.iapws95_rhog_sat(T)

	Compute the saturation vapor density of the IAPWS-95 equation using high-
fidelity polynomial fits. These have a relative accuracy of under 1e-13,
except near the critical point where it rises to 1e-10,
and are generated by solving the saturation equations under the
high-precision environment of mpmath. The range of the fit is 235 K to
647.096 K, the critical point.

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition, [K]

	Returns

	
	rholfloat
	Saturation vapor density, [kg/m^3]

See also

	iapws92_rhog_sat
	

Notes

This method should be used in preference to iapws92_rhog_sat.

Examples

>>> iapws95_rhog_sat(400.0)
1.3694075410

	
chemicals.iapws.iapws95_drhol_sat_dT(T)

	Compute the first temperature derivative of saturation liquid density
of the IAPWS-95 equation using high-fidelity polynomial fits. The actual
saturated liquid density is returned as well.

The range of the fit is 235 K to 647.096 K, the critical point.

	Parameters

	
	Tfloat
	Temperature at which to calculate the saturation condition
and its derivative, [K]

	Returns

	
	drhol_dTfloat
	First temperature derivative of saturation liquid density, [kg/(m^3*K)]

	rholfloat
	Saturation liquid density, [kg/m^3]

Examples

>>> iapws95_drhol_sat_dT(400.0)
(-0.835194603380, 937.486039392)

	
chemicals.iapws.iapws92_rhol_sat(T)

	Calculates saturation liquid mass density of water using the IAPWS
SR1-86(1992) [1] [2] explicit equation.

\[\frac{\rho^{sat}_l}{\rho_c} = 1 + b_1\tau^{1/3} + b_2\tau^{2/3}
+ b_3 \tau^{5/3} + b_4\tau^{16/3} + b_5\tau^{43/3} + b_6\tau^{110/3}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of water, [K]

	Returns

	
	rhol_satfloat
	Saturation liquid mass density of water [kg/m^3]

See also

	iapws95_rhol_sat
	

Notes

This equation is fit to experimental data to within its accuracy. It does
not satisfy the equilibrium conditions for the IAPWS-95 or IAPWS-97
formulations.

The values of the constants are as follows:

b1 = 1.99274064;
b2 = 1.09965342;
b3 = -0.510839303;
b4 = -1.75493479;
b5 = -45.5170352;
b6 = -6.74694450e5

References

	1

	IAPWS, Secretariat, B Dooley, and EPRI. “Revised Supplementary
Release on Saturation Properties of Ordinary Water Substance”, 1992.

	2

	Wagner, Wolfgang, and A. Pruss. “International Equations for the
Saturation Properties of Ordinary Water Substance. Revised According to
the International Temperature Scale of 1990. Addendum to J. Phys. Chem.
Ref. Data 16, 893 (1987).” Journal of Physical and Chemical Reference
Data 22, no. 3 (May 1, 1993): 783-87. https://doi.org/10.1063/1.555926.

Examples

>>> iapws92_rhol_sat(300.)
996.5089712803

	
chemicals.iapws.iapws92_rhog_sat(T)

	Calculates saturation vapor mass density of water using the IAPWS
SR1-86(1992) [1] [2] explicit equation.

\[\ln \left(\frac{\rho^{sat}_g}{\rho_c}\right) = 1 + c_1\tau^{2/6} + c_2\tau^{4/6}
+ c_3 \tau^{8/6} + c_4\tau^{18/6} + c_5\tau^{37/6} + c_6\tau^{71/6}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of water, [K]

	Returns

	
	rhog_satfloat
	Saturation vapor mass density of water [kg/m^3]

See also

	iapws95_rhog_sat
	

Notes

This equation is fit to experimental data to within its accuracy. It does
not satisfy the equilibrium conditions for the IAPWS-95 or IAPWS-97
formulations.

The values of the constants are as follows:

c1 = -2.03150240;
c2 = -2.68302940;
c3 = -5.38626492;
c4 = -17.2991605;
c5 = -44.7586581;
c6 = -63.9201063

References

	1

	IAPWS, Secretariat, B Dooley, and EPRI. “Revised Supplementary
Release on Saturation Properties of Ordinary Water Substance”, 1992.

	2

	Wagner, Wolfgang, and A. Pruss. “International Equations for the
Saturation Properties of Ordinary Water Substance. Revised According to
the International Temperature Scale of 1990. Addendum to J. Phys. Chem.
Ref. Data 16, 893 (1987).” Journal of Physical and Chemical Reference
Data 22, no. 3 (May 1, 1993): 783-87. https://doi.org/10.1063/1.555926.

Examples

>>> iapws92_rhog_sat(300.)
0.0255887212886

IAPWS Constants

	
chemicals.iapws.iapws95_Tc = 647.096

	Critical temperature of water in K according to IAPWS-95, also used in IAPWS-97

	
chemicals.iapws.iapws95_Pc = 22064000.0

	Critical pressure of water in Pa according to IAPWS-95, also used in IAPWS-97

	
chemicals.iapws.iapws95_rhoc = 322.0

	Critical density of water in kg/m^3 according to IAPWS-95, also used in IAPWS-97

	
chemicals.iapws.iapws95_MW = 18.015268

	Molecular weight of water in g/mol according to IAPWS-95, also used in IAPWS-97

	
chemicals.iapws.iapws95_R = 461.51805

	Specific gas constant in J/(kg*K) according to IAPWS-95

	
chemicals.iapws.iapws97_R = 461.526

	Specific gas constant in J/(kg*K) according to IAPWS-97

	
chemicals.iapws.iapws95_Tt = 273.16

	Triple temperature of water in K according to IAPWS

IAPWS-97 Region 1

	
chemicals.iapws.iapws97_G_region1(tau, pi)

	Calculates the dimensionless Gibbs free energy for water according to
the IAPWS-97 standard (for region 1).

\[\gamma = \sum_{i=1}^{34} I_i(7.1-\pi)^{I_i}(\tau - 1.222)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1386 K)/T [-]

	pifloat
	Dimensionless pressure, P/(16.53 MPa), [-]

	Returns

	
	Gfloat
	Dimensionless Gibbs energy G/(RT), [-]

Examples

>>> iapws97_G_region1(1386/277.15, 101325/16.53E6)
-0.00016341033954414

	
chemicals.iapws.iapws97_dG_dpi_region1(tau, pi)

	Calculates the derivative of dimensionless Gibbs free energy
with respect to pi for water according to the IAPWS-97 standard
(for region 1).

\[\frac{\partial \gamma}{\partial \pi} = \sum_{i=1}^{34}
-n_i I_i(7.1-\pi)^{I_i-1}(\tau - 1.222)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1386 K)/T [-]

	pifloat
	Dimensionless pressure, P/(16.53 MPa), [-]

	Returns

	
	dG_dpifloat
	Derivative of dimensionless Gibbs energy G/(RT) with respect to pi,
[-]

Notes

Used in density solution.
This contains a hand-optimized implementation with a single division,
no power operations, 65 multiplications, 16 local variables, and a
minimum number of additions.

Examples

>>> iapws97_dG_dpi_region1(1386/277.15, 101325/16.53E6)
0.1292327182544

	
chemicals.iapws.iapws97_d2G_dpi2_region1(tau, pi)

	Calculates the second derivative of dimensionless Gibbs free energy
with respect to pi for water according to the IAPWS-97 standard
(for region 1).

\[\frac{\partial^2 \gamma}{\partial \pi^2} = \sum_{i=1}^{34}
n_i I_i(I_i-1)(7.1-\pi)^{I_i-2}(\tau - 1.222)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1386 K)/T [-]

	pifloat
	Dimensionless pressure, P/(16.53 MPa), [-]

	Returns

	
	d2G_dpi2float
	Second Derivative of dimensionless Gibbs energy G/(RT) with respect to
pi, [-]

Examples

>>> iapws97_d2G_dpi2_region1(1386/277.15, 101325/16.53E6)
 -0.0010570100274769

	
chemicals.iapws.iapws97_dG_dtau_region1(tau, pi)

	Calculates the derivative of dimensionless Gibbs free energy
with respect to tau for water according to the IAPWS-97 standard
(for region 1).

\[\frac{\partial \gamma}{\partial \tau} = \sum_{i=1}^{34}
n_i(7.1-\pi)^{I_i}J_i(\tau - 1.222)^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1386 K)/T [-]

	pifloat
	Dimensionless pressure, P/(16.53 MPa), [-]

	Returns

	
	dG_dtaufloat
	Derivative of dimensionless Gibbs energy G/(RT) with respect to tau,
[-]

Examples

>>> iapws97_dG_dtau_region1(1386/277.15, 101325/16.53E6)
0.026440334282967

	
chemicals.iapws.iapws97_d2G_dtau2_region1(tau, pi)

	Calculates the second derivative of dimensionless Gibbs free energy
with respect to tau for water according to the IAPWS-97 standard
(for region 1).

\[\frac{\partial^2 \gamma}{\partial \tau^2} = \sum_{i=1}^{34}
n_i(7.1-\pi)^{I_i}J_i(J_i-1)(\tau - 1.222)^{J_i-2}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1386 K)/T [-]

	pifloat
	Dimensionless pressure, P/(16.53 MPa), [-]

	Returns

	
	d2G_dtau2float
	Second Derivative of dimensionless Gibbs energy G/(RT) with respect to
tau, [-]

Examples

>>> iapws97_d2G_dtau2_region1(1386/277.15, 101325/16.53E6)
-0.3645169808573

	
chemicals.iapws.iapws97_d2G_dpidtau_region1(tau, pi)

	Calculates the second derivative of dimensionless Gibbs free energy
with respect to tau and pi for water according to the IAPWS-97 standard
(for region 1).

\[\frac{\partial^2 \gamma}{\partial \tau \partial \pi} = \sum_{i=1}^{34}
-n_iI_i(7.1-\pi)^{I_i}J_i(\tau - 1.222)^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1386 K)/T [-]

	pifloat
	Dimensionless pressure, P/(16.53 MPa), [-]

	Returns

	
	d2G_dpidtaufloat
	Second Derivative of dimensionless Gibbs energy G/(RT) with respect to
tau and pi, [-]

Examples

>>> iapws97_d2G_dpidtau_region1(1386/277.15, 101325/16.53E6)
0.025837659858819

IAPWS-97 Region 2

	
chemicals.iapws.iapws97_G0_region2(tau, pi)

	Calculates the dimensionless ideal gas Gibbs free energy for water
according to the IAPWS-97 standard (for region 2).

\[\gamma^\circ = \ln \pi + \sum_{i=1}^9 n_i^\circ \tau^{J_i^\circ}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	G0float
	Dimensionless ideal gas Gibbs energy G0/(RT), [-]

Examples

>>> iapws97_G0_region2(540/300.0, 101325/1e6)
3.3180953922351

	
chemicals.iapws.iapws97_dG0_dtau_region2(tau, pi)

	Calculates the first derivative of dimensionless ideal gas Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial \gamma^\circ}{\partial \tau} =\sum_{i=1}^9 n_i^\circ
J_i^\circ\tau^{J_i^\circ-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	dG0_dtaufloat
	First derivative of dimensionless ideal gas Gibbs energy G0/(RT)
with respect to tau, [-]

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_dG0_dtau_region2(540/300.0, 101325/1e6)
10.2374188173906

	
chemicals.iapws.iapws97_d2G0_dtau2_region2(tau, pi)

	Calculates the second derivative of dimensionless ideal gas Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial^2 \gamma^\circ}{\partial \tau^2} =\sum_{i=1}^9 n_i^\circ
J_i^\circ(J_i^\circ-1)\tau^{J_i^\circ-2}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2G0_dtau2float
	Second derivative of dimensionless ideal gas Gibbs energy G0/(RT)
with respect to tau, [-]

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_d2G0_dtau2_region2(540/300.0, 101325/1e6)
-1.2472096479372

	
chemicals.iapws.iapws97_Gr_region2(tau, pi)

	Calculates the dimensionless residual Gibbs free energy for water
according to the IAPWS-97 standard (for region 2).

\[\gamma^r = \sum_{i=1}^{43} n_i \pi^{I_i} (\tau - 0.5)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	Grfloat
	Dimensionless residual Gibbs energy Gr/(RT), [-]

Examples

>>> iapws97_Gr_region2(540/300.0, 101325/1e6)
-0.71851548053980

	
chemicals.iapws.iapws97_dGr_dpi_region2(tau, pi)

	Calculates the first derivative of dimensionless residual Gibbs free
energy with respect to pi for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial \gamma^r}{\partial \pi} = \sum_{i=1}^{43} n_i I_i
\pi^{I_i-1} (\tau - 0.5)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	dGr_dpifloat
	Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect
to pi, [-]

Notes

Used in density solution.

Examples

>>> iapws97_dGr_dpi_region2(540/300.0, 101325/1e6)
-27.7714056629532

	
chemicals.iapws.iapws97_d2Gr_dpi2_region2(tau, pi)

	Calculates the second derivative of dimensionless residual Gibbs free
energy with respect to pi for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial^2 \gamma^r}{\partial \pi^2} = \sum_{i=1}^{43} n_i I_i
(I_i-1)\pi^{I_i-2} (\tau - 0.5)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2Gr_dpi2float
	Second Derivative of dimensionless residual Gibbs energy Gr/(RT) with
respect to pi, [-]

Examples

>>> iapws97_d2Gr_dpi2_region2(540/300.0, 101325/1e6)
-983.15187604898

	
chemicals.iapws.iapws97_dGr_dtau_region2(tau, pi)

	Calculates the first derivative of dimensionless residual Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial \gamma^r}{\partial \tau} = \sum_{i=1}^{43} n_i
\pi^{I_i} J_i (\tau - 0.5)^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	dGr_dtaufloat
	Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect
to tau, [-]

Examples

>>> iapws97_dGr_dtau_region2(540/300.0, 101325/1e6)
-18.1535856049444

	
chemicals.iapws.iapws97_d2Gr_dtau2_region2(tau, pi)

	Calculates the second derivative of dimensionless residual Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial^2 \gamma^r}{\partial \tau^2} = \sum_{i=1}^{43} n_i
\pi^{I_i} J_i (J_i-1) (\tau - 0.5)^{J_i-2}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2Gr_dtau2float
	Second derivative of dimensionless residual Gibbs energy Gr/(RT) with
respect to tau, [-]

Examples

>>> iapws97_d2Gr_dtau2_region2(540/300.0, 101325/1e6)
-470.9302933324787

	
chemicals.iapws.iapws97_d2Gr_dpidtau_region2(tau, pi)

	Calculates the second derivative of dimensionless residual Gibbs free
energy with respect to tau and pi for water
according to the IAPWS-97 standard (for region 2).

\[\frac{\partial^2 \gamma^r}{\partial \tau \partial \pi} = \sum_{i=1}^{43} n_i
I_i \pi^{I_i-1} J_i (\tau - 0.5)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2Gr_dpidtau_float
	Second derivative of dimensionless residual Gibbs energy Gr/(RT) with
respect to tau and pi, [-]

Examples

>>> iapws97_d2Gr_dpidtau_region2(540/300.0, 101325/1e6)
-735.391845360247

IAPWS-97 Region 3

	
chemicals.iapws.iapws97_A_region3(tau, delta)

	Calculates the dimensionless Helmholtz free energy for water
according to the IAPWS-97 standard (for region 3).

\[\frac{f(\rho, T)}{RT} = \phi(\delta, \tau) = n_1\ln\delta
+ \sum_{i=2}^{40} n_i \delta^{I_i}\tau^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	Afloat
	Helmholtz free energy A/(RT), [-]

Examples

>>> iapws97_A_region3(647.096/500.0, 400.0/322.0)
-3.0336402168865

	
chemicals.iapws.iapws97_dA_ddelta_region3(tau, delta)

	Calculates the derivative of dimensionless Helmholtz free energy
with respect to delta for water
according to the IAPWS-97 standard (for region 3).

\[\frac{\partial \phi(\delta, \tau)}{\partial \delta} = \frac{n_1}{\delta}
+ \sum_{i=2}^{40} n_i I_i \delta^{I_i-1}\tau^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	dA_ddeltafloat
	Derivative of dimensionless Helmholtz free energy with respect to
delta, [-]

Examples

>>> iapws97_dA_ddelta_region3(647.096/500.0, 400.0/322.0)
7.35562435092

	
chemicals.iapws.iapws97_d2A_ddelta2_region3(tau, delta)

	Calculates the second derivative of dimensionless Helmholtz free energy
with respect to delta for water
according to the IAPWS-97 standard (for region 3).

\[\frac{\partial^2 \phi(\delta, \tau)}{\partial \delta^2} = \frac{-n_1}{\delta^2}
+ \sum_{i=2}^{40} n_i I_i (I_i-1)\delta^{I_i-2}\tau^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	d2A_ddelta2float
	Second derivative of dimensionless Helmholtz free energy with respect to
delta, [-]

Examples

>>> iapws97_d2A_ddelta2_region3(647.096/500.0, 400.0/322.0)
-2.2858869882497

	
chemicals.iapws.iapws97_dA_dtau_region3(tau, delta)

	Calculates the derivative of dimensionless Helmholtz free energy
with respect to tau for water
according to the IAPWS-97 standard (for region 3).

\[\frac{\partial \phi(\delta, \tau)}{\partial \tau} =
+ \sum_{i=2}^{40} n_i J_i \delta^{I_i}\tau^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	dA_dtaufloat
	Derivative of dimensionless Helmholtz free energy with respect to
tau, [-]

Examples

>>> iapws97_dA_dtau_region3(647.096/500.0, 400.0/322.0)
-24.9687028688

	
chemicals.iapws.iapws97_d2A_dtau2_region3(tau, delta)

	Calculates the second derivative of dimensionless Helmholtz free energy
with respect to tau for water
according to the IAPWS-97 standard (for region 3).

\[\frac{\partial^2 \phi(\delta, \tau)}{\partial \tau^2} =
+ \sum_{i=2}^{40} n_i J_i (J_i-1)\delta^{I_i}\tau^{J_i-2}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	d2A_dtau2float
	Second derivative of dimensionless Helmholtz free energy with respect
to tau, [-]

Examples

>>> iapws97_d2A_dtau2_region3(647.096/500.0, 400.0/322.0)
-373.6565823701

	
chemicals.iapws.iapws97_d2A_ddeltadtau_region3(tau, delta)

	Calculates the second derivative of dimensionless Helmholtz free energy
with respect to tau and delta for water
according to the IAPWS-97 standard (for region 3).

\[\frac{\partial^2 \phi(\delta, \tau)}{\partial \tau \partial \delta} =
+ \sum_{i=2}^{40} n_i J_i \delta^{I_i-1}\tau^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	d2A_ddeltadtaufloat
	Second derivative of dimensionless Helmholtz free energy with respect
to tau and delta, [-]

Examples

>>> iapws97_d2A_ddeltadtau_region3(647.096/500.0, 400.0/322.0)
145.85190014717

IAPWS-97 Region 3 PT Backwards Equation Boundaries

	
chemicals.iapws.iapws97_boundary_3uv(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3uv(22.3E6)
647.7996121480069

	
chemicals.iapws.iapws97_boundary_3ef(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3ef(40E6)
713.959399239744

	
chemicals.iapws.iapws97_boundary_3cd(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3cd(25E6)
649.3659208321279

	
chemicals.iapws.iapws97_boundary_3gh(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3gh(25E6)
656.69805722612

	
chemicals.iapws.iapws97_boundary_3ij(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3ij(25E6)
660.7865756716819

	
chemicals.iapws.iapws97_boundary_3jk(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3jk(25E6)
668.1915358826951

	
chemicals.iapws.iapws97_boundary_3mn(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3mn(22.8E6)
649.6054132953997

	
chemicals.iapws.iapws97_boundary_3qu(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3qu(22E6)
645.6355027340121

	
chemicals.iapws.iapws97_boundary_3rx(P)

	Calculates the transition temperature for a region 3 PT backwards equation
transition.

	Parameters

	
	Pfloat
	Pressure [Pa]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3rx(22E6)
648.26227536701

	
chemicals.iapws.iapws97_boundary_3wx(logP_MPa, logP_MPa_inv)

	Calculates the transition temperature for a region 3 PT backwards equation
transition (for one of “wx”, “ab”, or “op”; the others do not use a log fit).
The parameters are provided in the specific units for speed savings only.

	Parameters

	
	logP_MPafloat
	Natural logarithm of pressure in units of MPa [log(MPa)]

	logP_MPa_invfloat
	Inverse of Natural logarithm of pressure in units of MPa [1/log(MPa)]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3wx(log(22.3), 1/log(22.3))
648.204947950734

	
chemicals.iapws.iapws97_boundary_3ab(logP_MPa, logP_MPa_inv)

	Calculates the transition temperature for a region 3 PT backwards equation
transition (for one of “wx”, “ab”, or “op”; the others do not use a log fit).
The parameters are provided in the specific units for speed savings only.

	Parameters

	
	logP_MPafloat
	Natural logarithm of pressure in units of MPa [log(MPa)]

	logP_MPa_invfloat
	Inverse of Natural logarithm of pressure in units of MPa [1/log(MPa)]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3ab(log(40), 1/log(40))
693.0341408296053

	
chemicals.iapws.iapws97_boundary_3op(logP_MPa, logP_MPa_inv)

	Calculates the transition temperature for a region 3 PT backwards equation
transition (for one of “wx”, “ab”, or “op”; the others do not use a log fit).
The parameters are provided in the specific units for speed savings only.

	Parameters

	
	logP_MPafloat
	Natural logarithm of pressure in units of MPa [log(MPa)]

	logP_MPa_invfloat
	Inverse of Natural logarithm of pressure in units of MPa [1/log(MPa)]

	Returns

	
	T_transfloat
	Transition temperature [K]

Examples

>>> iapws97_boundary_3op(log(22.8), 1/log(22.8))
650.010694314133

IAPWS-97 Region 3 PT Backwards Equations

	
chemicals.iapws.iapws97_region3_a(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_b(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_c(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_d(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_e(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_f(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_g(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_h(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_i(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_j(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_k(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_l(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_m(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_n(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_o(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_p(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_q(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_r(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_s(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_t(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_u(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_v(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_w(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_x(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_y(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

	
chemicals.iapws.iapws97_region3_z(T, P)

	Calculate the mass density water in one of the 26 region 3
backwards regions of the IAPWS-97 standard.

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	Returns

	
	rhofloat
	Mass density of water in region 3, [kg/m^3]

Notes

Significant discontinuities exist between each region.
These functions are automatically generated and are not to be edited directly.

IAPWS-97 Region 5

	
chemicals.iapws.iapws97_G0_region5(tau, pi)

	Calculates the dimensionless ideal gas Gibbs free energy for water
according to the IAPWS-97 standard (for region 5).

\[\gamma^\circ = \ln \pi + \sum_{i=1}^6 n_i^\circ \tau^{J_i^\circ}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	G0float
	Dimensionless ideal gas Gibbs energy G/(RT), [-]

Examples

>>> iapws97_G0_region5(1000.0/1500, 101325/1e6)
-14.9741430290056

	
chemicals.iapws.iapws97_dG0_dtau_region5(tau, pi)

	Calculates the first derivative of dimensionless ideal gas Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial \gamma^\circ}{\partial \tau} =\sum_{i=1}^6 n_i^\circ
J_i^\circ\tau^{J_i^\circ-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	dG0_dtaufloat
	First derivative of dimensionless ideal gas Gibbs energy G/(RT)
with respect to tau, [-]

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_dG0_dtau_region5(1000.0/1500, 101325/1e6)
11.311766995978

	
chemicals.iapws.iapws97_d2G0_dtau2_region5(tau, pi)

	Calculates the second derivative of dimensionless ideal gas Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial^2 \gamma^\circ}{\partial \tau^2} =\sum_{i=1}^6 n_i^\circ
J_i^\circ(J_i^\circ-1)\tau^{J_i^\circ-2}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2G0_dtau2float
	Second derivative of dimensionless ideal gas Gibbs energy G/(RT)
with respect to tau, [-]

Notes

This function does not depend on pi but it is accepted for consistency.

Examples

>>> iapws97_d2G0_dtau2_region5(1000.0/1500, 101325/1e6)
-12.744650271463655

	
chemicals.iapws.iapws97_Gr_region5(tau, pi)

	Calculates the dimensionless residual Gibbs free energy for water
according to the IAPWS-97 standard (for region 5).

\[\gamma^r = \sum_{i=1}^{6} n_i \pi^{I_i} (\tau)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	Grfloat
	Dimensionless residual Gibbs energy Gr/(RT), [-]

Examples

>>> iapws97_Gr_region5(1000/300.0, 101325/1e6)
-0.0194648291645718

	
chemicals.iapws.iapws97_dGr_dpi_region5(tau, pi)

	Calculates the first derivative of dimensionless residual Gibbs free
energy with respect to pi for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial \gamma^r}{\partial \pi} = \sum_{i=1}^{6} n_i I_i
\pi^{I_i-1} (\tau)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	dGr_dpifloat
	Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect
to pi, [-]

Notes

Used in density solution.

Examples

>>> iapws97_dGr_dpi_region5(1000/300.0, 101325/1e6)
-0.213281155629998

	
chemicals.iapws.iapws97_d2Gr_dpi2_region5(tau, pi)

	Calculates the second derivative of dimensionless residual Gibbs free
energy with respect to pi for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial^2 \gamma^r}{\partial \pi^2} = \sum_{i=1}^{6} n_i I_i (I_i-1)
\pi^{I_i-2} (\tau)^{J_i}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (540 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2Gr_dpi2float
	Second derivative of dimensionless residual Gibbs energy Gr/(RT) with respect
to pi, [-]

Examples

>>> iapws97_d2Gr_dpi2_region5(1000/300.0, 101325/1e6)
-0.4179905782304291

	
chemicals.iapws.iapws97_dGr_dtau_region5(tau, pi)

	Calculates the first derivative of dimensionless residual Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial \gamma^r}{\partial \tau} = \sum_{i=1}^{6} n_i
\pi^{I_i} J_i(\tau)^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	dGr_dtaufloat
	Derivative of dimensionless residual Gibbs energy Gr/(RT) with respect
to tau, [-]

Examples

>>> iapws97_dGr_dtau_region5(1000/300.0, 101325/1e6)
-0.02200629869194

	
chemicals.iapws.iapws97_d2Gr_dtau2_region5(tau, pi)

	Calculates the second derivative of dimensionless residual Gibbs free
energy with respect to tau for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial^2 \gamma^r}{\partial \tau^2} = \sum_{i=1}^{6} n_i
\pi^{I_i} J_i(J_i-1)(\tau)^{J_i-2}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2Gr_dtau2float
	Second derivative of dimensionless residual Gibbs energy Gr/(RT) with
respect to tau, [-]

Examples

>>> iapws97_d2Gr_dtau2_region5(1000/300.0, 101325/1e6)
-0.0239165867999155

	
chemicals.iapws.iapws97_d2Gr_dpidtau_region5(tau, pi)

	Calculates the second derivative of dimensionless residual Gibbs free
energy with respect to tau and pi for water
according to the IAPWS-97 standard (for region 5).

\[\frac{\partial^2 \gamma^r}{\partial \tau \partial \pi} = \sum_{i=1}^{6}
n_i I_i \pi^{I_i-1} J_i(\tau)^{J_i-1}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (1000 K)/T [-]

	pifloat
	Dimensionless pressure, P/(1 MPa), [-]

	Returns

	
	d2Gr_dpidtaufloat
	Second derivative of dimensionless residual Gibbs energy Gr/(RT) with
respect to tau and pi, [-]

Examples

>>> iapws97_d2Gr_dpidtau_region5(1000/300.0, 101325/1e6)
-0.27438379131103097

IAPWS-95 Ideal Gas Terms

	
chemicals.iapws.iapws95_A0(tau, delta)

	Calculates the ideal gas Helmholtz energy of water according to the
IAPWS-95 standard.

\[\phi^\circ = \ln \delta + n_1 + n_2\tau + n_3\ln \tau
+ \sum_{i=4}^8 n_i \ln \left[1 - \exp(-\gamma_i \tau) \right]

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	A0float
	Ideal gas dimensionless Helmholtz energy A/(RT) [-]

Notes

This implementation is checked to have a relative error always under 1e-15.

Examples

>>> iapws95_A0(647.096/300.0, 999.0/322)
9.537075529761053

	
chemicals.iapws.iapws95_dA0_dtau(tau, delta)

	Calculates the first derivative of ideal gas Helmholtz energy of water
with respect to tau according to the IAPWS-95 standard.

\[\frac{\partial \phi^\circ}{\partial \tau} = n_2 + \frac{n_3}{\tau}
+ \sum_{i=4}^8 n_i\gamma_i \left[\left(1-\exp(-\gamma_i \tau)
\right)^{-1} - 1 \right]

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	dA0_dtaufloat
	First derivative of ideal gas dimensionless Helmholtz energy A/(RT)
with respect to tau [-]

Notes

This implementation is checked to have a relative error always under 1e-15.

Examples

>>> iapws95_dA0_dtau(647.096/300.0, 999.0/322)
8.079705548882

	
chemicals.iapws.iapws95_d2A0_dtau2(tau, delta)

	Calculates the second derivative of ideal gas Helmholtz energy of water
with respect to tau according to the IAPWS-95 standard.

\[\frac{\partial^2 \phi^\circ}{\partial \tau^2} = \frac{n_3}{\tau^2}
+ \sum_{i=4}^8 n_i\gamma_i ^2 \exp(-\gamma_i \tau)
\left[\left(1-\exp(-\gamma_i \tau)
\right)^{-2}\right]

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	d2A0_dtau2float
	Second derivative of ideal gas dimensionless Helmholtz energy A/(RT)
with respect to tau [-]

Notes

This implementation is checked to have a relative error always under 1e-15.

Examples

>>> iapws95_d2A0_dtau2(647.096/300.0, 999.0/322)
-0.653543047751809

	
chemicals.iapws.iapws95_d3A0_dtau3(tau, delta)

	Calculates the third derivative of ideal gas Helmholtz energy of water
with respect to tau according to the IAPWS-95 standard.

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	d3A0_dtau3float
	Third derivative of ideal gas dimensionless Helmholtz energy A/(RT)
with respect to tau [-]

Notes

This implementation is checked to have a relative error always under 1e-15.
This equation is not explicitly in IAPWS-95, but is needed to compute some
second derivatives.

Examples

>>> iapws95_d3A0_dtau3(647.096/300.0, 999.0/322)
0.6222542507278

	
chemicals.iapws.iapws95_A0_tau_derivatives(tau, delta)

	Calculates the ideal gas Helmholtz energy of water
and its first three derivatives with respect to tau according to the
IAPWS-95 standard. As each of those calls spends most of their time
computing exponentials which are the same for each function, function
offers a time saving.

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	A0float
	Ideal gas dimensionless Helmholtz energy A/(RT) [-]

	dA0_dtaufloat
	First derivative of ideal gas dimensionless Helmholtz energy A/(RT)
with respect to tau [-]

	d2A0_dtau2float
	Second derivative of ideal gas dimensionless Helmholtz energy A/(RT)
with respect to tau [-]

	d3A0_dtau3float
	Third derivative of ideal gas dimensionless Helmholtz energy A/(RT)
with respect to tau [-]

Notes

The extra cost of calling this function vs iapws95_A0 alone is
~15% with numba, ~40% with PyPy, and 120% with CPython.

Examples

>>> iapws95_A0_tau_derivatives(647.096/300.0, 999.0/322)
(9.53707552976, 8.0797055488, -0.65354304775, 0.62225425072)

IAPWS-95 Residual Terms

	
chemicals.iapws.iapws95_Ar(tau, delta)

	Calculates the residual Helmholtz energy of water according to the
IAPWS-95 standard.

\[\phi^{\mathrm{r}}=\sum_{i=1}^{7} n_{i} \delta^{d_{i}}
\tau^{t_{i}}+\sum_{i=8}^{51} n_{i} \delta^{d_{i}} \tau^{t_{i}}
\mathrm{e}^{-\delta^{c_{i}}}+\sum_{i=52}^{54} n_{i} \delta^{d_{i}}
\tau^{t_{i}} \mathrm{e}^{-\alpha_{i}\left(\delta-\varepsilon_{i}
\right)^{2}-\beta_{i}\left(\tau-\gamma_{i}\right)^{2}}+\sum_{i=55}^{56}
n_{i} \Delta^{b_{i}} \delta \psi

\]

\[\Delta=\theta^{2}+B_{i}\left[(\delta-1)^{2}\right]^{a_{i}}

\]

\[\theta=(1-\tau)+A_{i}\left[(\delta-1)^{2}\right]^{\frac{1}{2 \beta_{i}}}

\]

\[\psi=e^{-C_{i}(\delta-1)^{2}-D_{i}(\tau-1)^{2}}

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	Arfloat
	Residual Helmholtz energy A/(RT) [-]

Notes

This is an optimized implementatation taking 9 exp calls, 4 sqrts,
and 3 powers. It was generated using SymPy’s CSE functionality, with
select polynomial optimizations by hand as well. It is over
10x faster than a naive implementation.

This implementation has been tested against a straightforward
implementation with the equations given in IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic
density range of 1E-10
kg/m^3 to 5000 kg/m^3, 4E6 points were evaluated. The mean relative
error was 5.0416E-15, with a maximum relative error of 1.118E-9 and a
standard deviation of 5.773e-13.

Over the same range, the model was evaluated to a precision of 50
decimal places with mpmath, and on 90000 points, the mean relative
error was 3.14E-15, with a maximum relative error of 3.54e-12 and a
standard deviation of 3.017E-14.

This comparison indicates that this implementation is more accurate than
the straightforward implementation.

Examples

>>> iapws95_Ar(647.096/300.0, 999.0/322)
-9.57577716026768

	
chemicals.iapws.iapws95_dAr_ddelta(tau, delta)

	Calculates the first derivative of residual Helmholtz energy of water
with respect to delta according to the IAPWS-95 standard.

\[\phi_{\delta}^{\mathrm{r}}=\sum_{i=1}^{7} n_{i} d_{i} \delta^{d_{i}-1}
\tau^{t_{i}}+\sum_{i=8}^{51} n_{i} \mathrm{e}^{-\delta^{c_{i}}}\left[
\delta^{d_{i}-1} \tau^{t_{i}}\left(d_{i}-c_{i} \delta^{c_{i}}\right)
\right]+\sum_{i=52}^{54} n_{i} \delta^{d_{i}} \tau^{t_{i}}
\mathrm{e}^{-\alpha_{i}\left(\delta-\varepsilon_{i}\right)^{2}-\beta_{i}
\left(\tau-\gamma_{i}\right)^{2}}\left[\frac{d_{i}}{\delta}-2 \alpha_{i}
\left(\delta-\varepsilon_{i}\right)\right]+\sum_{i=55}^{56} n_{i}
\left[\Delta^{b_{i}}\left(\psi+\delta \frac{\partial \psi}{\partial
\delta}\right)+\frac{\partial \Delta^{b_{i}}}{\partial \delta} \delta
\psi\right]

\]

	Parameters

	
	taufloat
	Dimensionless temperature, (647.096 K)/T [-]

	deltafloat
	Dimensionless density, rho/(322 kg/m^3), [-]

	Returns

	
	dAr_ddeltafloat
	First derivative of residual Helmholtz energy A/(RT) with respect to
delta, [-]

Notes

This is an optimized implementatation taking 8 exp calls, 4 sqrts,
and 2 powers. It was generated using SymPy’s CSE functionality, with
select polynomial optimizations by hand as well. It is over
10x faster than a naive implementation.

This implementation has been tested against a straightforward
implementation with the equations given in IAPWS-95.

Over a linear temperature range of 200 K to 5000 K and a logarithmic
density range of 1E-10
kg/m^3 to 5000 kg/m^3, 4E6 points were evaluated. The mean relative
error was 4.033E-15, with a maximum relative error of 3.8765e-10 and a
standard deviation of 3.189e-13.

Over the same range, the model was evaluated to a precision of 50
decimal places with mpmath, and on 90000 points, the mean relative
error was 6.046E-15, with a maximum relative error of 3.39E-10 and a
standard deviation of 7.056E-13.

There was a singularity at tau = delta = 1, but the limit is correctly
returned.

Examples

>>> iapws95_dAr_ddelta(647.096/300.0, 999.0/322)
-0.3093321202374

	
chemicals.iapws.iapws95_d2Ar_ddelta2(tau, delta)

	Calculates the second derivative of residual Helmholtz energy of water
with respect to delta according to the IAPWS-95 standard.

\[\begin{aligned} \phi_{\delta \delta}^{\mathrm{r}}=

 Chemical Metadata (chemicals.identifiers)

Chemical Metadata (chemicals.identifiers)

This module contains a database of metadata on ~70000 chemicals from the PubChem
datase. It contains comprehensive feature for searching the metadata.
It also includes a small database of common mixture compositions.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Search Functions

	CAS Number Utilities

	Database Objects

	Chemical Groups

Search Functions

	
chemicals.identifiers.CAS_from_any(ID, autoload=False, cache=True)

	Wrapper around search_chemical which returns the CAS number of the
found chemical directly.

	Parameters

	
	IDstr
	One of the name formats described by search_chemical, [-]

	autoloadbool, optional
	Whether to load new chemical databanks during the search if a hit is
not immediately found, [-]

	cachebool, optional
	Whether or not to cache the search for faster lookup in subsequent
queries, [-]

	Returns

	
	CASRNstr
	A three-piece, dash-separated set of numbers

Notes

An exception is raised if the name cannot be identified. The PubChem
database includes a wide variety of other synonyms, but these may not be
present for all chemcials. See search_chemical for more details.

Examples

>>> CAS_from_any('water')
'7732-18-5'
>>> CAS_from_any('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
'64-17-5'
>>> CAS_from_any('CCCCCCCCCC')
'124-18-5'
>>> CAS_from_any('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
'64-17-5'
>>> CAS_from_any('pubchem=702')
'64-17-5'
>>> CAS_from_any('O') # only elements can be specified by symbol
'17778-80-2'

	
chemicals.identifiers.MW(ID, autoload=False, cache=True)

	Wrapper around search_chemical which returns the molecular weight of the
found chemical directly.

	Parameters

	
	IDstr
	One of the name formats described by search_chemical

	Returns

	
	MWfloat
	Molecular weight of chemical, [g/mol]

Notes

An exception is raised if the name cannot be identified. The PubChem
database includes a wide variety of other synonyms, but these may not be
present for all chemcials. See search_chemical for more details.

Examples

>>> MW('water')
18.01528
>>> MW('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
46.06844
>>> MW('CCCCCCCCCC')
142.286
>>> MW('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
46.06844
>>> MW('pubchem=702')
46.06844
>>> MW('O') # only elements can be specified by symbol
15.9994

	
chemicals.identifiers.search_chemical(ID, autoload=False, cache=True)

	Looks up metadata about a chemical by searching and testing for the input
string being any of the following types of chemical identifiers:

	Name, in IUPAC form or common form or a synonym registered in PubChem

	InChI name, prefixed by ‘InChI=1S/’ or ‘InChI=1/’

	InChI key, prefixed by ‘InChIKey=’

	PubChem CID, prefixed by ‘PubChem=’

	SMILES (prefix with ‘SMILES=’ to ensure smiles parsing; ex.
‘C’ will return Carbon as it is an element whereas the SMILES
interpretation for ‘C’ is methane)

	CAS number (obsolete numbers may point to the current number)

If the input is an ID representing an element, the following additional
inputs may be specified as

	Atomic symbol (ex ‘Na’)

	Atomic number (as a string)

	Parameters

	
	IDstr
	One of the name formats described above

	autoloadbool, optional
	Whether to load new chemical databanks during the search if a hit is
not immediately found, [-]

	cachebool, optional
	Whether or not to cache the search for faster lookup in subsequent
queries, [-]

	Returns

	
	chemical_metadataChemicalMetadata
	A class containing attributes which describe the chemical’s metadata,
[-]

Notes

An exception is raised if the name cannot be identified. The PubChem
database includes a wide variety of other synonyms, but these may not be
present for all chemcials.

Examples

>>> search_chemical('water')
<ChemicalMetadata, name=water, formula=H2O, smiles=O, MW=18.0153>
>>> search_chemical('InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('CCCCCCCCCC')
<ChemicalMetadata, name=DECANE, formula=C10H22, smiles=CCCCCCCCCC, MW=142.286>
>>> search_chemical('InChIKey=LFQSCWFLJHTTHZ-UHFFFAOYSA-N')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('pubchem=702')
<ChemicalMetadata, name=ethanol, formula=C2H6O, smiles=CCO, MW=46.0684>
>>> search_chemical('O') # only elements can be specified by symbol
<ChemicalMetadata, name=oxygen, formula=O, smiles=[O], MW=15.9994>

	
chemicals.identifiers.IDs_to_CASs(IDs)

	Find the CAS numbers for multiple chemicals names at once. Also supports
having a string input which is a common mixture name in the database.
An error will be raised if any of the chemicals cannot be found.

	Parameters

	
	IDslist[str] or str
	A string or 1-element list containing the name which may represent a
mixture.

	Returns

	
	CASslist[str]
	CAS numbers of found chemicals, [-]

Notes

White space, ‘-’, and upper case letters are removed in the search.

Examples

>>> IDs_to_CASs('R512A')
['811-97-2', '75-37-6']
>>> IDs_to_CASs(['norflurane', '1,1-difluoroethane'])
['811-97-2', '75-37-6']

CAS Number Utilities

	
chemicals.identifiers.check_CAS(CASRN)

	Checks if a CAS number is valid. Returns False if the parser cannot parse
the given string.

	Parameters

	
	CASRNstr
	A three-piece, dash-separated set of numbers

	Returns

	
	resultbool
	Boolean value if CASRN was valid. If parsing fails, return False also.

Notes

Check method is according to Chemical Abstract Society. However, no lookup
to their service is performed; therefore, this function cannot detect
false positives.

Function also does not support additional separators, apart from ‘-‘.

CAS numbers up to the series 1 XXX XXX-XX-X are now being issued.

A long can hold CAS numbers up to 2 147 483-64-7

Examples

>>> check_CAS('7732-18-5')
True
>>> check_CAS('77332-18-5')
False

	
chemicals.identifiers.CAS_to_int(i)

	Converts CAS number of a compounds from a string to an int. This is
helpful when storing large amounts of CAS numbers, as their strings take up
more memory than their numerical representational. All CAS numbers fit into
64 bit ints.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	CASRNint
	CASRN [-]

Notes

Accomplishes conversion by removing dashes only, and then converting to an
int. An incorrect CAS number will change without exception.

Examples

>>> CAS_to_int('7704-34-9')
7704349

	
chemicals.identifiers.int_to_CAS(i)

	Converts CAS number of a compounds from an int to an string. This is
helpful when dealing with int CAS numbers.

	Parameters

	
	CASRNint
	CASRN [-]

	Returns

	
	CASRNstr
	CASRN [-]

Notes

Handles CAS numbers with an unspecified number of digits. Does not work on
floats.

Examples

>>> int_to_CAS(7704349)
'7704-34-9'

	
chemicals.identifiers.sorted_CAS_key(CASs)

	Takes a list of CAS numbers as strings, and returns a tuple of the same
CAS numbers, sorted from smallest to largest. This is very convenient for
obtaining a unique hash of a set of compounds, so as to see if two
groups of compounds are the same.

	Parameters

	
	CASslist[str]
	CAS numbers as strings [-]

	Returns

	
	CASs_sortedtuple[str]
	Sorted CAS numbers from lowest (first) to highest (last) [-]

Notes

Does not check CAS numbers for validity.

Examples

>>> sorted_CAS_key(['7732-18-5', '64-17-5', '108-88-3', '98-00-0'])
('64-17-5', '98-00-0', '108-88-3', '7732-18-5')

Database Objects

There is an object used to represent a chemical’s metadata, an object used to
represent a common mixture’s composition, and an object used to hold the
mixture metadata.

	
class chemicals.identifiers.ChemicalMetadata(pubchemid, CAS, formula, MW, smiles, InChI, InChI_key, iupac_name, common_name, synonyms)

	Class for storing metadata on chemicals.

	Attributes

	
	pubchemidint
	Identification number on pubchem database; access their information
online at https://pubchem.ncbi.nlm.nih.gov/compound/<pubchemid>
[-]

	formulastr
	Formula of the compound; in the same format as
chemicals.elements.serialize_formula generates, [-]

	MWfloat
	Molecular weight of the compound as calculated with the standard
atomic abundances; consistent with the element weights in
chemicals.elements.periodic_table, [g/mol]

	smilesstr
	SMILES identification string, [-]

	InChIstr
	InChI identification string as given in pubchem (there can be multiple
valid InChI strings for a compound), [-]

	InChI_keystr
	InChI key identification string (meant to be unique to a compound), [-]

	iupac_namestr
	IUPAC name as given in pubchem, [-]

	common_namestr
	Common name as given in pubchem, [-]

	synonymslist[str]
	List of synonyms of the compound, [-]

	CASint
	CAS number of the compound; stored as an int for memory efficiency, [-]

	
class chemicals.identifiers.CommonMixtureMetadata(name, CASs, N, source, names, ws, zs, synonyms)

	Class for storing metadata on predefined chemical mixtures.

	Attributes

	
	namestr
	Name of the mixture, [-]

	sourcestr
	Source of the mixture composition, [-]

	Nint
	Number of chemicals in the mixture, [-]

	CASslist[str]
	CAS numbers of the mixture, [-]

	wslist[float]
	Mass fractions of chemicals in the mixture, [-]

	zslist[float]
	Mole fractions of chemicals in the mixture, [-]

	nameslist[str]
	List of names of the chemicals in the mixture, [-]

	synonymslist[str]
	List of synonyms of the mixture which can also be used to look it up,
[-]

	
class chemicals.identifiers.ChemicalMetadataDB(elements=True, main_db='/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-packages/chemicals-1.1.4-py3.7.egg/chemicals/Identifiers/chemical identifiers pubchem large.tsv', user_dbs=['/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-packages/chemicals-1.1.4-py3.7.egg/chemicals/Identifiers/chemical identifiers pubchem small.tsv', '/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-packages/chemicals-1.1.4-py3.7.egg/chemicals/Identifiers/chemical identifiers example user db.tsv', '/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-packages/chemicals-1.1.4-py3.7.egg/chemicals/Identifiers/Cation db.tsv', '/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-packages/chemicals-1.1.4-py3.7.egg/chemicals/Identifiers/Anion db.tsv', '/home/docs/checkouts/readthedocs.org/user_builds/chemicals/envs/stable/lib/python3.7/site-packages/chemicals-1.1.4-py3.7.egg/chemicals/Identifiers/Inorganic db.tsv'])

	Object which holds the main database of chemical metadata.

Warning

To allow the chemicals to grow and improve, the details of
this class may change in the future without notice!

	Attributes

	
	finished_loading
	Whether or not the database has loaded the main database.

Methods

	autoload_main_db()

	Load the main database when needed.

	finish_loading()

	Complete loading the main database, if it has not been fully loaded.

	load(file_name)

	Load a particular file into the indexes.

	load_elements()

	Load elements into the indexes.

	search_CAS(CAS[, autoload])

	Search for a chemical by its CAS number.

	search_InChI(InChI[, autoload])

	Search for a chemical by its InChI string.

	search_InChI_key(InChI_key[, autoload])

	Search for a chemical by its InChI key.

	search_formula(formula[, autoload])

	Search for a chemical by its serialized formula.

	search_name(name[, autoload])

	Search for a chemical by its name.

	search_pubchem(pubchem[, autoload])

	Search for a chemical by its pubchem number.

	search_smiles(smiles[, autoload])

	Search for a chemical by its smiles string.

	
chemicals.identifiers.get_pubchem_db()

	Helper function to delay the creation of the pubchem_db object.

This avoids loading the database when it is not needed.

Chemical Groups

It is convenient to tag some chemicals with labels like “refrigerant”, or in
a certain database or not. The following chemical groups are available.

	
chemicals.identifiers.cryogenics = {'132259-10-0': 'Air', '1333-74-0': 'hydrogen', '630-08-0': 'carbon monoxide', '74-82-8': 'methane', '7439-90-9': 'krypton', '7440-01-9': 'neon', '7440-37-1': 'Argon', '7440-59-7': 'helium', '7440-63-3': 'xenon', '7727-37-9': 'nitrogen', '7782-39-0': 'deuterium', '7782-41-4': 'fluorine', '7782-44-7': 'oxygen'}

	

	
chemicals.identifiers.inerts = {'10043-92-2': 'radon', '10102-43-9': 'Nitric Oxide', '10102-44-0': 'Nitrogen Dioxide', '124-38-9': 'Carbon Dioxide', '132259-10-0': 'Air', '7439-90-9': 'krypton', '7440-01-9': 'Neon', '7440-37-1': 'Argon', '7440-59-7': 'Helium', '7440-63-3': 'Xenon', '7727-37-9': 'Nitrogen', '7732-18-5': 'water', '7782-41-4': 'fluorine', '7782-44-7': 'Oxygen', '7782-50-5': 'chlorine'}

	

	
chemicals.identifiers.dippr_compounds()

	Loads and returns a set of compounds known in the DIPPR database. This
can be useful for knowing if a chemical is of industrial relevance.

	Returns

	
	dippr_compoundsset([str])
	A set of CAS numbers from the 2014 edition of the DIPPR database.

 Surface Tension (chemicals.interface)

Surface Tension (chemicals.interface)

This module contains various surface tension estimation routines, dataframes
of fit coefficients, fitting model equations, mixing rules, and
water-hydrocarbon interfacial tension estimation routines.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Pure Component Correlations

	Mixing Rules

	Correlations for Specific Substances

	Petroleum Correlations

	Oil-Water Interfacial Tension Correlations

	Fit Correlations

	Fit Coefficients

Pure Component Correlations

	
chemicals.interface.Brock_Bird(T, Tb, Tc, Pc)

	Calculates air-liquid surface tension using the [1]
emperical method. Old and tested.

\[\sigma = P_c^{2/3}T_c^{1/3}Q(1-T_r)^{11/9}

\]

\[Q = 0.1196 \left[1 + \frac{T_{br}\ln (P_c/1.01325)}{1-T_{br}}\right]-0.279

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

Numerous arrangements of this equation are available.
This is DIPPR Procedure 7A: Method for the Surface Tension of Pure,
Nonpolar, Nonhydrocarbon Liquids
The exact equation is not in the original paper.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Brock, James R., and R. Byron Bird. “Surface Tension and the
Principle of Corresponding States.” AIChE Journal 1, no. 2
(June 1, 1955): 174-77. doi:10.1002/aic.690010208

Examples

p-dichloribenzene at 412.15 K, from DIPPR; value differs due to a slight
difference in method.

>>> Brock_Bird(412.15, 447.3, 685, 3.952E6)
0.02208448325192495

Chlorobenzene from Poling, as compared with a % error value at 293 K.

>>> Brock_Bird(293.15, 404.75, 633.0, 4530000.0)
0.032985686413713036

	
chemicals.interface.Pitzer_sigma(T, Tc, Pc, omega)

	Calculates air-liquid surface tension using the correlation derived
by [1] from the works of [2] and [3]. Based on critical property CSP
methods.

\[\sigma = P_c^{2/3}T_c^{1/3}\frac{1.86 + 1.18\omega}{19.05}
\left[\frac{3.75 + 0.91 \omega}{0.291 - 0.08 \omega}\right]^{2/3} (1-T_r)^{11/9}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

The source of this equation has not been reviewed.
Internal units of presure are bar, surface tension of mN/m.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	2

	Curl, R. F., and Kenneth Pitzer. “Volumetric and Thermodynamic
Properties of Fluids-Enthalpy, Free Energy, and Entropy.” Industrial &
Engineering Chemistry 50, no. 2 (February 1, 1958): 265-74.
doi:10.1021/ie50578a047

	3

	Pitzer, K. S.: Thermodynamics, 3d ed., New York, McGraw-Hill,
1995, p. 521.

Examples

Chlorobenzene from Poling, as compared with a % error value at 293 K.

>>> Pitzer_sigma(293., 633.0, 4530000.0, 0.249)
0.03458453513446388

	
chemicals.interface.Sastri_Rao(T, Tb, Tc, Pc, chemicaltype=None)

	Calculates air-liquid surface tension using the correlation derived by
[1] based on critical property CSP methods and chemical classes.

\[\sigma = K P_c^xT_b^y T_c^z\left[\frac{1-T_r}{1-T_{br}}\right]^m

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

The source of this equation has not been reviewed.
Internal units of presure are bar, surface tension of mN/m.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Sastri, S. R. S., and K. K. Rao. “A Simple Method to Predict
Surface Tension of Organic Liquids.” The Chemical Engineering Journal
and the Biochemical Engineering Journal 59, no. 2 (October 1995): 181-86.
doi:10.1016/0923-0467(94)02946-6.

Examples

Chlorobenzene from Poling, as compared with a % error value at 293 K.

>>> Sastri_Rao(293.15, 404.75, 633.0, 4530000.0)
0.03234567739694441

	
chemicals.interface.Zuo_Stenby(T, Tc, Pc, omega)

	Calculates air-liquid surface tension using the reference fluids
methods of [1].

\[\sigma^{(1)} = 40.520(1-T_r)^{1.287}

\]

\[\sigma^{(2)} = 52.095(1-T_r)^{1.21548}

\]

\[\sigma_r = \sigma_r^{(1)}+ \frac{\omega - \omega^{(1)}}
{\omega^{(2)}-\omega^{(1)}} (\sigma_r^{(2)}-\sigma_r^{(1)})

\]

\[\sigma = T_c^{1/3}P_c^{2/3}[\exp{(\sigma_r)} -1]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

Presently untested. Have not personally checked the sources.
The reference values for methane and n-octane are from the DIPPR database.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Zuo, You-Xiang, and Erling H. Stenby. “Corresponding-States and
Parachor Models for the Calculation of Interfacial Tensions.” The
Canadian Journal of Chemical Engineering 75, no. 6 (December 1, 1997):
1130-37. doi:10.1002/cjce.5450750617

Examples

Chlorobenzene

>>> Zuo_Stenby(293., 633.0, 4530000.0, 0.249)
0.03345569011871088

	
chemicals.interface.Hakim_Steinberg_Stiel(T, Tc, Pc, omega, StielPolar=0.0)

	Calculates air-liquid surface tension using the reference fluids methods
of [1].

\[\sigma = 4.60104\times 10^{-7} P_c^{2/3}T_c^{1/3}Q_p \left(\frac{1-T_r}{0.4}\right)^m

\]

\[Q_p = 0.1574+0.359\omega-1.769\chi-13.69\chi^2-0.51\omega^2+1.298\omega\chi

\]

\[m = 1.21+0.5385\omega-14.61\chi-32.07\chi^2-1.65\omega^2+22.03\omega\chi

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	StielPolarfloat, optional
	Stiel Polar Factor, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

Original equation for m and Q are used. Internal units are atm and mN/m.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Hakim, D. I., David Steinberg, and L. I. Stiel. “Generalized
Relationship for the Surface Tension of Polar Fluids.” Industrial &
Engineering Chemistry Fundamentals 10, no. 1 (February 1, 1971): 174-75.
doi:10.1021/i160037a032.

Examples

1-butanol, as compared to value in CRC Handbook of 0.02493.

>>> Hakim_Steinberg_Stiel(298.15, 563.0, 4414000.0, 0.59, StielPolar=-0.07872)
0.02190790257519

	
chemicals.interface.Miqueu(T, Tc, Vc, omega)

	Calculates air-liquid surface tension using the methods of [1].

\[\sigma = k T_c \left(\frac{N_a}{V_c}\right)^{2/3}
(4.35 + 4.14 \omega)t^{1.26}(1+0.19t^{0.5} - 0.487t)

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Vcfloat
	Critical volume of fluid [m^3/mol]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

Uses Avogadro’s constant and the Boltsman constant.
Internal units of volume are mL/mol and mN/m. However, either a typo
is in the article or author’s work, or my value of k is off by 10; this is
corrected nonetheless.
Created with 31 normal fluids, none polar or hydrogen bonded. Has an
AARD of 3.5%.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Miqueu, C, D Broseta, J Satherley, B Mendiboure, J Lachaise, and
A Graciaa. “An Extended Scaled Equation for the Temperature Dependence
of the Surface Tension of Pure Compounds Inferred from an Analysis of
Experimental Data.” Fluid Phase Equilibria 172, no. 2 (July 5, 2000):
169-82. doi:10.1016/S0378-3812(00)00384-8.

Examples

Bromotrifluoromethane, 2.45 mN/m

>>> Miqueu(300., 340.1, 0.000199, 0.1687)
0.003474100774091376

	
chemicals.interface.Aleem(T, MW, Tb, rhol, Hvap_Tb, Cpl)

	Calculates vapor-liquid surface tension using the correlation derived by
[1] based on critical property CSP methods.

\[\sigma = \phi \frac{MW^{1/3}} {6N_A^{1/3}}\rho_l^{2/3}\left[H_{vap}
+ C_{p,l}(T_b-T)\right]

\]

\[\phi = 1 - 0.0047MW + 6.8\times 10^{-6} MW^2

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	MWfloat
	Molecular weight [g/mol]

	Tbfloat
	Boiling temperature of the fluid [K]

	rholfloat
	Liquid density at T and P [kg/m^3]

	Hvap_Tbfloat
	Mass enthalpy of vaporization at the normal boiling point [kg/m^3]

	Cplfloat
	Liquid heat capacity of the chemical at T [J/kg/K]

	Returns

	
	sigmafloat
	Liquid-vapor surface tension [N/m]

Notes

Internal units of molecuar weight are kg/mol. This model is dimensionally
consistent.

This model does not use the critical temperature. After it predicts a
surface tension of 0 at a sufficiently high temperature, it returns
negative results. The temperature at which this occurs (the “predicted”
critical temperature) can be calculated as follows:

\[\sigma = 0 \to T_{c,predicted} \text{ at } T_b + \frac{H_{vap}}{Cp_l}

\]

To handle this case, if Tc is larger than T, 0 is returned as the model would return complex
numbers.

Because of its dependence on density, it has the potential to model the
effect of pressure on surface tension.

Claims AAD of 4.3%. Developed for normal alkanes. Total of 472 data points.
Behaves worse for higher alkanes. Behaves very poorly overall.

References

	1

	Aleem, W., N. Mellon, S. Sufian, M. I. A. Mutalib, and D. Subbarao.
“A Model for the Estimation of Surface Tension of Pure Hydrocarbon
Liquids.” Petroleum Science and Technology 33, no. 23-24 (December 17,
2015): 1908-15. doi:10.1080/10916466.2015.1110593.

Examples

Methane at 90 K

>>> Aleem(T=90, MW=16.04246, Tb=111.6, rhol=458.7, Hvap_Tb=510870.,
... Cpl=2465.)
0.01669970230131523

	
chemicals.interface.Mersmann_Kind_sigma(T, Tm, Tb, Tc, Pc, n_associated=1)

	Estimates the surface tension of organic liquid substances
according to the method of [1].

\[\sigma^* = \frac{\sigma n_{ass}^{1/3}} {(kT_c)^{1/3} T_{rm}P_c^{2/3}}

\]

\[\sigma^* = \left(\frac{T_b - T_m}{T_m}\right)^{1/3}
\left[6.25(1-T_r) + 31.3(1-T_r)^{4/3}\right]

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	Tmfloat
	Melting temperature [K]

	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	n_associatedfloat
	Number of associated molecules in a cluster (2 for alcohols, 1
otherwise), [-]

	Returns

	
	sigmafloat
	Liquid-vapor surface tension [N/m]

Notes

In the equation, all quantities must be in SI units. k is the boltzman
constant.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1

	Mersmann, Alfons, and Matthias Kind. “Prediction of Mechanical and
Thermal Properties of Pure Liquids, of Critical Data, and of Vapor
Pressure.” Industrial & Engineering Chemistry Research, January 31,
2017. https://doi.org/10.1021/acs.iecr.6b04323.

Examples

MTBE at STP (the actual value is 0.0181):

>>> Mersmann_Kind_sigma(298.15, 164.15, 328.25, 497.1, 3430000.0)
0.016744311449290426

	
chemicals.interface.sigma_Gharagheizi_1(T, Tc, MW, omega)

	Calculates air-liquid surface tension using the
equation 4 derived in [1] by gene expression programming.

\[\sigma = 8.948226\times 10^{-4}\left[\frac{A^2}{MW}\sqrt{\frac{A\omega}{MW}}
\right]^{0.5}

\]

\[A = (T_{c} - T - \omega)

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	MWfloat
	Molecular weight [g/mol]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

This equation may fail before the critical point. In this case it returns 0.0
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1(1,2)

	Gharagheizi, Farhad, Ali Eslamimanesh, Mehdi Sattari, Amir H. Mohammadi,
and Dominique Richon. “Development of Corresponding States Model for
Estimation of the Surface Tension of Chemical Compounds.” AIChE Journal 59,
no. 2 (2013): 613-21. https://doi.org/10.1002/aic.13824.

Examples

Methane at 93 K, point from [1]’s supporting material:

>>> sigma_Gharagheizi_1(T=95, Tc=190.564, MW=16.04, omega=0.012)
0.0110389739

	
chemicals.interface.sigma_Gharagheizi_2(T, Tb, Tc, Pc, Vc)

	Calculates air-liquid surface tension using the
equation 6 derived in [1] by gene expression programming.

\[\frac{\sigma}{\text{N}/\text{m}} = 10^{-4}\left(\frac{P_c}{\text{bar}}\right)^{2/3}
\left(\frac{T_c}{\text{K}}\right)^{1/3}(1-T_r)^{11/9}
\left[7.728729T_{br} + 2.476318\left(T_{br}^3 + \frac{V_{c}}{\text{m}^3 /\text{kmol}}\right)
\right]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	MWfloat
	Molecular weight [g/mol]

	Vcfloat
	Critical volume of fluid [m^3/mol]

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

This expression gives does converge to 0 at the critical point.
If Tc is larger than T, 0 is returned as the model would return complex
numbers.

References

	1(1,2)

	Gharagheizi, Farhad, Ali Eslamimanesh, Mehdi Sattari, Amir H. Mohammadi,
and Dominique Richon. “Development of Corresponding States Model for
Estimation of the Surface Tension of Chemical Compounds.” AIChE Journal 59,
no. 2 (2013): 613-21. https://doi.org/10.1002/aic.13824.

Examples

Methane at 93 K, point from [1]’s supporting material:

>>> sigma_Gharagheizi_2(T=95, Tb=111.66, Tc=190.564, Pc=45.99e5, Vc=0.0986e-3)
0.01674894057

Mixing Rules

	
chemicals.interface.Winterfeld_Scriven_Davis(xs, sigmas, rhoms)

	Calculates surface tension of a liquid mixture according to
mixing rules in [1] and also in [2].

\[\sigma_M = \sum_i \sum_j \frac{1}{V_L^{L2}}\left(x_i V_i \right)
\left(x_jV_j\right)\sqrt{\sigma_i\cdot \sigma_j}

\]

	Parameters

	
	xsarray-like
	Mole fractions of all components, [-]

	sigmasarray-like
	Surface tensions of all components, [N/m]

	rhomsarray-like
	Molar densities of all components, [mol/m^3]

	Returns

	
	sigmafloat
	Air-liquid surface tension of mixture, [N/m]

Notes

DIPPR Procedure 7C: Method for the Surface Tension of Nonaqueous Liquid
Mixtures

Becomes less accurate as liquid-liquid critical solution temperature is
approached. DIPPR Evaluation: 3-4% AARD, from 107 nonaqueous binary
systems, 1284 points. Internally, densities are converted to kmol/m^3. The
Amgat function is used to obtain liquid mixture density in this equation.

Raises a ZeroDivisionError if either molar volume are zero, and a
ValueError if a surface tensions of a pure component is negative.

References

	1

	Winterfeld, P. H., L. E. Scriven, and H. T. Davis. “An Approximate
Theory of Interfacial Tensions of Multicomponent Systems: Applications
to Binary Liquid-Vapor Tensions.” AIChE Journal 24, no. 6
(November 1, 1978): 1010-14. doi:10.1002/aic.690240610.

	2

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

Examples

>>> Winterfeld_Scriven_Davis([0.1606, 0.8394], [0.01547, 0.02877],
... [8610., 15530.])
0.02496738845043982

	
chemicals.interface.Weinaug_Katz(parachors, Vml, Vmg, xs, ys)

	Calculates surface tension of a liquid mixture according to
mixing rules in [1] and also in [2]. This is based on the
Parachor concept. This is called the Macleod-Sugden model in some places.

\[\sigma_M = \left[\sum_i P_i\left(\frac{x_i}{V_{m,l}}
 - \frac{y_i}{V_{m,g}}\right) \right]^4

\]

	Parameters

	
	parachorslist[float]
	Parachors of each component, [N^0.25*m^2.75/mol]

	Vmlfloat
	Liquid mixture molar volume, [m^3/mol]

	Vmgfloat
	Gas mixture molar volume; this can be set to zero at
low pressures, [m^3/mol]

	xslist[float]
	Mole fractions of all components in liquid phase, [-]

	xslist[float]
	Mole fractions of all components in gas phase, [-]

	Returns

	
	sigmafloat
	Air-liquid surface tension of mixture, [N/m]

Notes

This expression is efficient and does not require pure component
surface tensions. Its accuracy is dubious.

References

	1

	Weinaug, Charles F., and Donald L. Katz. “Surface Tensions of
Methane-Propane Mixtures.” Industrial & Engineering Chemistry 35,
no. 2 (February 1, 1943): 239-246. https://doi.org/10.1021/ie50398a028.

	2

	Pedersen, Karen Schou, Aage Fredenslund, and Per Thomassen.
Properties of Oils and Natural Gases. Vol. 5. Gulf Pub Co, 1989.

Examples

>>> Weinaug_Katz([5.1e-5, 7.2e-5], Vml=0.000125, Vmg=0.02011, xs=[.4, .6], ys=[.6, .4])
0.06547479150776776

Neglect the vapor phase density by setting Vmg to a high value:

>>> Weinaug_Katz([5.1e-5, 7.2e-5], Vml=0.000125, Vmg=1e100, xs=[.4, .6], ys=[.6, .4])
0.06701752894095361

	
chemicals.interface.Diguilio_Teja(T, xs, sigmas_Tb, Tbs, Tcs)

	Calculates surface tension of a liquid mixture according to
mixing rules in [1].

\[\sigma = 1.002855(T^*)^{1.118091} \frac{T}{T_b} \sigma_r

\]

\[T^* = \frac{(T_c/T)-1}{(T_c/T_b)-1}

\]

\[\sigma_r = \sum x_i \sigma_i

\]

\[T_b = \sum x_i T_{b,i}

\]

\[T_c = \sum x_i T_{c,i}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	xsarray-like
	Mole fractions of all components

	sigmas_Tbarray-like
	Surface tensions of all components at the boiling point, [N/m]

	Tbsarray-like
	Boiling temperatures of all components, [K]

	Tcsarray-like
	Critical temperatures of all components, [K]

	Returns

	
	sigmafloat
	Air-liquid surface tension of mixture, [N/m]

Notes

Simple model, however it has 0 citations. Gives similar results to the
Winterfeld_Scriven_Davis model.

Raises a ValueError if temperature is greater than the mixture’s critical
temperature or if the given temperature is negative, or if the mixture’s
boiling temperature is higher than its critical temperature.

[1] claims a 4.63 percent average absolute error on 21 binary and 4
ternary non-aqueous systems. [1] also considered Van der Waals mixing
rules for Tc, but found it provided a higher error of 5.58%

References

	1(1,2,3)

	Diguilio, Ralph, and Amyn S. Teja. “Correlation and Prediction of
the Surface Tensions of Mixtures.” The Chemical Engineering Journal 38,
no. 3 (July 1988): 205-8. doi:10.1016/0300-9467(88)80079-0.

Examples

>>> Diguilio_Teja(T=298.15, xs=[0.1606, 0.8394],
... sigmas_Tb=[0.01424, 0.02530], Tbs=[309.21, 312.95], Tcs=[469.7, 508.0])
0.025716823875045505

Correlations for Specific Substances

	
chemicals.interface.sigma_IAPWS(T)

	Calculate the surface tension of pure water as a function of .
temperature. Assumes the 2011 IAPWS [1] formulation.

\[\sigma = B\tau^\mu(1+b\tau)\\

\]

\[\tau = 1-T/T_c\\

\]

\[B = 0.2358 \text{N/m}\\

\]

\[b = -0.625\\

\]

\[\mu = 1.256

\]

	Parameters

	
	Tfloat
	Temperature of liquid [K]

	Returns

	
	sigmafloat
	Air-liquid surface tension, [N/m]

Notes

This function is valid from the triple temperature to the critical
temperature. No effects for pressure are included in the formulation.
Test values are from IAPWS 2010 book.

The equation is valid from the triple point to the critical point,
647.096 K; but [1] also recommends its use down to -25°C.

If a value larger than the critical temperature is input, 0.0 is returned.

References

	1(1,2)

	IAPWS. 2014. Revised Release on Surface Tension of Ordinary Water
Substance

Examples

>>> sigma_IAPWS(300.)
0.0716859625271
>>> sigma_IAPWS(450.)
0.0428914991565
>>> sigma_IAPWS(600.)
0.0083756108728

Petroleum Correlations

	
chemicals.interface.API10A32(T, Tc, K_W)

	Calculates the interfacial tension between
a liquid petroleum fraction and air, using the oil’s pseudocritical
temperature and Watson K Characterization factor.

\[\sigma = \frac{673.7\left[\frac{\left(T_c - T\right)}{T_c}\right]^{1.232}}{K_W}

\]

	Parameters

	
	Tfloat
	Liquid temperature, [K]

	Tcfloat
	Pseudocritical temperature (or critical temperature if using
the equation with a pure component), [K]

	K_Wfloat
	Watson characterization factor

	Returns

	
	sigmafloat
	Air-liquid surface tension, [N/m]

Notes

[1] cautions that this should not be applied to coal liquids,
and that it will give higher errors at pressures above 500 psi.
[1] claims this has an average error of 10.7%.

This function converges to zero at Tc. If Tc is larger than T,
0 is returned as the model would return complex numbers.

References

	1(1,2,3)

	API Technical Data Book: General Properties & Characterization.
American Petroleum Institute, 7E, 2005.

Examples

Sample problem in Comments on Procedure 10A3.2.1 of [1];

>>> from fluids.core import F2K, R2K
>>> API10A32(T=F2K(60), Tc=R2K(1334), K_W=12.4)
29.577333312096968

Oil-Water Interfacial Tension Correlations

	
chemicals.interface.Meybodi_Daryasafar_Karimi(rho_water, rho_oil, T, Tc)

	Calculates the interfacial tension between water and a hydrocabon
liquid according to the correlation of [1].

\[\gamma_{hw} = \left(\frac{A_1 + A_2 \Delta \rho + A_3\Delta\rho^2
+ A_4\Delta\rho^3} {A_5 + A_6\frac{T^{A_7}}{T_{c,h}} + A_8T^{A_9}}
\right)^{A_{10}}

\]

	Parameters

	
	rho_waterfloat
	The density of the aqueous phase, [kg/m^3]

	rho_oilfloat
	The density of the hydrocarbon phase, [kg/m^3]

	Tfloat
	Temperature of the fluid, [K]

	Tcfloat
	Critical temperature of the hydrocarbon mixture, [K]

	Returns

	
	sigmafloat
	Hydrocarbon-water surface tension [N/m]

Notes

Internal units of the equation are g/mL and mN/m.

References

	1

	Kalantari Meybodi, Mahdi, Amin Daryasafar, and Masoud Karimi.
“Determination of Hydrocarbon-Water Interfacial Tension Using a New
Empirical Correlation.” Fluid Phase Equilibria 415 (May 15, 2016):
42-50. doi:10.1016/j.fluid.2016.01.037.

Examples

>>> Meybodi_Daryasafar_Karimi(980, 760, 580, 914)
0.02893598143089256

Fit Correlations

	
chemicals.interface.REFPROP_sigma(T, Tc, sigma0, n0, sigma1=0.0, n1=0.0, sigma2=0.0, n2=0.0)

	Calculates air-liquid surface tension using the REFPROP_sigma [1]
regression-based method. Relatively recent, and most accurate.

\[\sigma(T)=\sigma_0\left(1-\frac{T}{T_c}\right)^{n_0}+
\sigma_1\left(1-\frac{T}{T_c}\right)^{n_1}+
\sigma_2\left(1-\frac{T}{T_c}\right)^{n_2}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	sigma0float
	First emperical coefficient of a fluid

	n0float
	First emperical exponent of a fluid

	sigma1float, optional
	Second emperical coefficient of a fluid.

	n1float, optional
	Second emperical exponent of a fluid.

	sigma1float, optional
	Third emperical coefficient of a fluid.

	n2float, optional
	Third emperical exponent of a fluid.

	Returns

	
	sigmafloat
	Liquid surface tension, [N/m]

Notes

Function as implemented in [1]. No example necessary; results match
literature values perfectly.
Form of function returns imaginary results when T > Tc; 0 is returned
if this is the case.

When fitting parameters to this function, it is easy to end up with a
fit that returns negative surface tension near but not quite at the
critical point.

References

	1(1,2)

	Diky, Vladimir, Robert D. Chirico, Chris D. Muzny, Andrei F.
Kazakov, Kenneth Kroenlein, Joseph W. Magee, Ilmutdin Abdulagatov, and
Michael Frenkel. “ThermoData Engine (TDE): Software Implementation of
the Dynamic Data Evaluation Concept.” Journal of Chemical Information
and Modeling 53, no. 12 (2013): 3418-30. doi:10.1021/ci4005699.

Examples

Parameters for water at 298.15 K

>>> REFPROP_sigma(298.15, 647.096, -0.1306, 2.471, 0.2151, 1.233)
0.07205503890847453

	
chemicals.interface.Somayajulu(T, Tc, A, B, C)

	Calculates air-liquid surface tension using the [1]
emperical (parameter-regressed) method. Well regressed, no recent data.

\[\sigma=aX^{5/4}+bX^{9/4}+cX^{13/4}

\]

\[X=(T_c-T)/T_c

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Afloat
	Regression parameter

	Bfloat
	Regression parameter

	Cfloat
	Regression parameter

	Returns

	
	sigmafloat
	Liquid surface tension, N/m

Notes

Presently untested, but matches expected values. Internal units are mN/m.
Form of function returns imaginary results when T > Tc; 0.0 is returned
if this is the case. Function is claimed valid from the triple to the
critical point. Results can be evaluated beneath the triple point.

This function can be accidentally fit to return negative
values of surface tension.

References

	1

	Somayajulu, G. R. “A Generalized Equation for Surface Tension from
the Triple Point to the Critical Point.” International Journal of
Thermophysics 9, no. 4 (July 1988): 559-66. doi:10.1007/BF00503154.

Examples

Water at 300 K

>>> Somayajulu(300, 647.126, 232.713514, -140.18645, -4.890098)
0.07166386387996758

	
chemicals.interface.Jasper(T, a, b)

	Calculates surface tension of a fluid given two parameters, a linear
fit in Celcius from [1] with data reprinted in [2].

\[\sigma = a - bT

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	afloat
	Parameter for equation. Chemical specific.

	bfloat
	Parameter for equation. Chemical specific.

	Returns

	
	sigmafloat
	Surface tension [N/m]

Notes

Internal units are mN/m, and degrees Celcius.
This function has been checked against several references.

As this is a linear model, negative values of surface tension will
eventually arise. 0 is returned in these cases.

References

	1

	Jasper, Joseph J. “The Surface Tension of Pure Liquid Compounds.”
Journal of Physical and Chemical Reference Data 1, no. 4
(October 1, 1972): 841-1010. doi:10.1063/1.3253106.

	2

	Speight, James. Lange’s Handbook of Chemistry. 16 edition.
McGraw-Hill Professional, 2005.

Examples

>>> Jasper(298.15, 24, 0.0773)
0.0220675

	
chemicals.interface.PPDS14(T, Tc, a0, a1, a2)

	Calculates air-liquid surface tension using the [1]
emperical (parameter-regressed) method, called the PPDS 14 equation for
surface tension.

\[\sigma = a_0 \tau^{a_1}(1 + a_2 \tau)

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a0float
	Regression parameter, [N/m]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, [N/m]

Notes

If Tc is larger than T, 0 is returned as the model would return complex
numbers.

If this model is fit with a0 and a2 as positive values, it is
guaranteed to predict only positive values of sigma right up to the
critical point. However, a2 is often fit to be a negative value.

References

	1(1,2)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/PPDS14.htm.

	2

	Frenkel, Michael, Robert D. Chirico, Vladimir Diky, Xinjian Yan,
Qian Dong, and Chris Muzny. “ThermoData Engine (TDE): Software
Implementation of the Dynamic Data Evaluation Concept.” Journal of
Chemical Information and Modeling 45, no. 4 (July 1, 2005): 816-38.
https://doi.org/10.1021/ci050067b.

Examples

Benzene at 280 K from [1]

>>> PPDS14(T=280, Tc=562.05, a0=0.0786269, a1=1.28646, a2=-0.112304)
0.030559764256249854

	
chemicals.interface.Watson_sigma(T, Tc, a1, a2, a3=0.0, a4=0.0, a5=0.0)

	Calculates air-liquid surface tension using the Watson [1]
emperical (parameter-regressed) method developed by NIST.

\[\sigma = \exp\left[a_{1} + \ln(1 - T_r)\left(
a_2 + a_3T_r + a_4T_r^2 + a_5T_r^3 \right)\right]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	a5float
	Regression parameter, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, [N/m]

Notes

This expression is also used for enthalpy of vaporization in [1].
The coefficients from NIST TDE for enthalpy of vaporization are kJ/mol.

This model is coded to return 0 values at Tr >= 1. It is otherwise not
possible to evaluate this expression at Tr = 1, as log(0) is undefined
(although the limit shows the expression converges to 0).

This equation does not have any term forcing it to become near-zero
at the critical point, but it cannot be fit so as to produce negative
values.

References

	1(1,2,3)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/HVPExpansion-SurfaceTension.htm

Examples

Isooctane at 350 K from [1]:

>>> Watson_sigma(T=350.0, Tc=543.836, a1=-3.02417, a2=1.21792, a3=-5.26877e-9, a4=5.62659e-9, a5=-2.27553e-9)
0.0138340926605649

	
chemicals.interface.ISTExpansion(T, Tc, a1, a2, a3=0.0, a4=0.0, a5=0.0)

	Calculates air-liquid surface tension using the IST expansion [1]
emperical (parameter-regressed) method developed by NIST.

\[\sigma = \sum_i a_i\left(1 - \frac{T}{T_c} \right)^i

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	a5float
	Regression parameter, [-]

	Returns

	
	sigmafloat
	Liquid surface tension, [N/m]

Notes

This equation hsa a term term forcing it to become zero
at the critical point, but it can easily be fit so as to produce negative
values at any reduced temperature.

References

	1(1,2)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-SurfaceTension/ISTExpansion-SurfaceTension.htm

Examples

Diethyl phthalate at 400 K from [1]:

>>> ISTExpansion(T=400.0, Tc=776.0, a1=0.037545, a2=0.0363288)
0.02672100905515996

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.interface.sigma_data_Mulero_Cachadina

	Data from [5] with REFPROP_sigma coefficients.

	
chemicals.interface.sigma_data_Jasper_Lange

	Data as shown in [4] but originally in [3] with Jasper coefficients.

	
chemicals.interface.sigma_data_Somayajulu

	Data from [1] with Somayajulu coefficients.

	
chemicals.interface.sigma_data_Somayajulu2

	Data from [2] with Somayajulu coefficients. These should be
preferred over the original coefficients.

	
chemicals.interface.sigma_data_VDI_PPDS_11

	Data from [6] with chemicals.dippr.EQ106 coefficients.

	1

	Somayajulu, G. R. “A Generalized Equation for Surface Tension from
the Triple Point to the Critical Point.” International Journal of
Thermophysics 9, no. 4 (July 1988): 559-66. doi:10.1007/BF00503154.

	2

	Mulero, A., M. I. Parra, and I. Cachadina. “The Somayajulu
Correlation for the Surface Tension Revisited.” Fluid Phase
Equilibria 339 (February 15, 2013): 81-88.
doi:10.1016/j.fluid.2012.11.038.

	3

	Jasper, Joseph J. “The Surface Tension of Pure Liquid Compounds.”
Journal of Physical and Chemical Reference Data 1, no. 4
(October 1, 1972): 841-1010. doi:10.1063/1.3253106.

	4

	Speight, James. Lange’s Handbook of Chemistry. 16 edition.
McGraw-Hill Professional, 2005.

	5

	Mulero, A., I. Cachadiña, and M. I. Parra. “Recommended
Correlations for the Surface Tension of Common Fluids.” Journal of
Physical and Chemical Reference Data 41, no. 4 (December 1, 2012):
043105. doi:10.1063/1.4768782.

	6

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.interface.sigma_data_Mulero_Cachadina
Out[2]:
 Fluid ... Tmax
CAS ...
60-29-7 Diethyl ether ... 453.15
64-17-5 Ethanol ... 513.15
67-56-1 Methanol ... 508.15
67-64-1 Acetone ... 353.15
71-43-2 Benzene ... 553.15
...
7783-54-2 Nitrogen trifluoride ... 206.36
7789-20-0 D2O ... 642.02
10024-97-2 Nitrous oxide ... 293.15
22410-44-2 RE245cb2 (Methyl-pentafluoroethyl ether) ... 353.41
29118-24-9 R1234ze(E) (trans-1,3,3,3-tetrafluoropropene) ... 373.14

[115 rows x 10 columns]

In [3]: chemicals.interface.sigma_data_Jasper_Lange
Out[3]:
 Name a b Tmin Tmax
CAS
55-21-0 Benzamide 47.26 0.0705 402.15 563.15
55-63-0 Glycerol tris(nitrate) 55.74 0.2504 286.15 433.15
56-23-5 Carbon tetrachloride 29.49 0.1224 250.15 349.85
57-06-7 Allyl isothiocyanate 36.76 0.1074 193.15 425.15
60-29-7 Diethyl ether 18.92 0.0908 157.15 307.75
...
13952-84-6 sec-Butylamine 23.75 0.1057 169.15 336.15
14901-07-6 ␤-Ionone 35.36 0.0950 401.15 401.15
18854-56-3 1,2-Dipropoxyethane 25.03 0.0972 NaN NaN
19550-30-2 2,3-Dimethyl-1-butanol 26.22 0.0992 259.15 391.15
40626-78-6 2-Methylhexane 21.22 0.0966 155.15 363.15

[522 rows x 5 columns]

In [4]: chemicals.interface.sigma_data_Somayajulu
Out[4]:
 Chemical Tt Tc A B C
CAS
60-29-7 Ethyl ether 157.00 466.74 61.0417 -6.7908 0.14046
64-17-5 Ethanol 159.00 513.92 111.4452 -146.0229 89.57030
64-19-7 Acetic acid 290.00 592.70 91.9020 -91.7035 77.50720
67-56-1 Methanol 175.59 512.64 122.6257 -199.4044 153.37440
71-23-8 Propanaol 147.00 536.78 107.1238 -133.8128 84.43570
...
10035-10-6 Hydrogen bromide 187.15 363.20 74.0521 20.1043 -30.25710
10102-43-9 Nitric oxide 112.15 180.00 58.6304 97.8722 -33.67390
13465-07-1 Hydrogen disulfide 185.15 572.00 130.1176 -40.6216 4.77160
17778-80-2 Oxygen 54.35 154.58 38.2261 5.6316 -7.74050
19287-45-7 Diborane 104.15 289.80 38.0417 29.7743 -24.26050

[64 rows x 6 columns]

In [5]: chemicals.interface.sigma_data_Somayajulu2
Out[5]:
 Chemical Tt Tc A B C
CAS
60-29-7 Ethyl ether 157.00 466.74 61.0417 -6.7908 0.14046
64-17-5 Ethanol 159.00 513.92 111.4452 -146.0229 89.57030
64-19-7 Acetic acid 290.00 592.70 91.9020 -91.7035 77.50720
67-56-1 Methanol 175.59 512.64 122.6257 -199.4044 153.37440
71-23-8 Propanaol 147.00 536.78 107.1238 -133.8128 84.43570
...
10035-10-6 Hydrogen bromide 187.15 363.20 74.0521 20.1043 -30.25710
10102-43-9 Nitric oxide 112.15 180.00 58.6304 97.8722 -33.67390
13465-07-1 Hydrogen disulfide 185.15 572.00 150.6970 -102.9100 56.72580
17778-80-2 Oxygen 54.35 154.58 38.2261 5.6316 -7.74050
19287-45-7 Diborane 104.15 289.80 38.0417 29.7743 -24.26050

[64 rows x 6 columns]

In [6]: chemicals.interface.sigma_data_VDI_PPDS_11
Out[6]:
 Chemical Tm Tc ... C D E
CAS ...
50-00-0 Formaldehyde 181.15 408.05 ... 0.00000 0.00000 0.00000
56-23-5 Carbon tetrachloride 250.25 556.35 ... 0.00000 0.00000 0.00000
56-81-5 Glycerol 291.45 850.05 ... 0.00000 0.00000 0.00000
60-29-7 Diethyl ether 156.75 466.63 ... 0.00000 0.00000 0.00000
62-53-3 Aniline 267.15 699.05 ... 0.00000 0.00000 0.00000
...
10097-32-2 Bromine 265.85 584.15 ... 0.00000 0.00000 0.00000
10102-43-9 Nitric oxide 112.15 180.15 ... 0.00000 0.00000 0.00000
10102-44-0 Nitrogen dioxide 261.85 431.15 ... 0.00000 0.00000 0.00000
10544-72-6 Dinitrogentetroxide 261.85 431.10 ... 0.00000 0.00000 0.00000
132259-10-0 Air 63.05 132.53 ... 0.06889 0.17918 -0.14564

[272 rows x 8 columns]

 Lennard-Jones Models (chemicals.lennard_jones)

Lennard-Jones Models (chemicals.lennard_jones)

This module contains lookup functions and estimation methods for the
parameters molecular diameter sigma and the Stockmayer parameter epsilon.
These are used for diffusivity calculations. It also contains several
methods for computing the collision integral, another parameter used in the
Lennard-Jones model.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Stockmayer Parameter

	Stockmayer Parameter Correlations

	Molecular Diameter

	Molecular Diameter Correlations

	Utility Functions

Stockmayer Parameter

	
chemicals.lennard_jones.Stockmayer(CASRN='', Tm=None, Tb=None, Tc=None, Zc=None, omega=None, method=None)

	This function handles the retrieval or calculation a chemical’s
Stockmayer parameter. Values are available from one source with lookup
based on CASRNs, or can be estimated from 7 CSP methods.
Will automatically select a data source to use if no method is provided;
returns None if the data is not available.

Preferred sources are ‘Magalhães, Lito, Da Silva, and Silva (2013)’ for
common chemicals which had valies listed in that source, and the CSP method
Tee, Gotoh, and Stewart CSP with Tc, omega (1966) for chemicals which
don’t.

	Parameters

	
	CASRNstr, optional
	CASRN [-]

	Tmfloat, optional
	Melting temperature of compound [K]

	Tbfloat, optional
	Boiling temperature of compound [K]

	Tcfloat, optional
	Critical temperature of compound, [K]

	Zcfloat, optional
	Critical compressibility of compound, [-]

	omegafloat, optional
	Acentric factor of compound, [-]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
Stockmayer_all_methods

Notes

These values are somewhat rough, as they attempt to pigeonhole a chemical
into L-J behavior.

The tabulated data is from [2], for 322 chemicals.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

	2

	Magalhães, Ana L., Patrícia F. Lito, Francisco A. Da Silva, and
Carlos M. Silva. “Simple and Accurate Correlations for Diffusion
Coefficients of Solutes in Liquids and Supercritical Fluids over Wide
Ranges of Temperature and Density.” The Journal of Supercritical Fluids
76 (April 2013): 94-114. doi:10.1016/j.supflu.2013.02.002.

Examples

>>> Stockmayer(CASRN='64-17-5')
1291.41
>>> Stockmayer('7727-37-9')
71.4

	
chemicals.lennard_jones.Stockmayer_methods(CASRN=None, Tm=None, Tb=None, Tc=None, Zc=None, omega=None)

	Return all methods available to obtain the Stockmayer parameter for the
desired chemical.

	Parameters

	
	CASRNstr, optional
	CASRN [-]

	Tmfloat, optional
	Melting temperature of compound [K]

	Tbfloat, optional
	Boiling temperature of compound [K]

	Tcfloat, optional
	Critical temperature of compound, [K]

	Zcfloat, optional
	Critical compressibility of compound, [-]

	omegafloat, optional
	Acentric factor of compound, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Stockmayer with the given inputs.

See also

	Stockmayer
	

	
chemicals.lennard_jones.Stockmayer_all_methods = ('Magalhães, Lito, Da Silva, and Silva (2013)', 'Poling et al. (2001)', 'Tee, Gotoh, and Stewart CSP with Tc, omega (1966)', 'Stiel and Thodos Tc, Zc (1962)', 'Flynn (1960)', 'Bird, Stewart, and Light (2002) critical relation', 'Tee, Gotoh, and Stewart CSP with Tc (1966)', 'Bird, Stewart, and Light (2002) boiling relation', 'Bird, Stewart, and Light (2002) melting relation')

	Tuple of method name keys. See the Stockmayer for the actual references

Stockmayer Parameter Correlations

	
chemicals.lennard_jones.epsilon_Flynn(Tc)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses critical temperature. CSP method by [1] as reported in [2].

\[\epsilon/k = 1.77 T_c^{5/6}

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

References

	1

	Flynn, L.W., M.S. thesis, Northwestern Univ., Evanston, Ill. (1960).

	2

	Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants
Predicted from Critical Properties.” Journal of Chemical & Engineering
Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

Examples

>>> epsilon_Flynn(560.1)
345.2984087011443

	
chemicals.lennard_jones.epsilon_Bird_Stewart_Lightfoot_critical(Tc)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses critical temperature. CSP method by [1].

\[\epsilon/k = 0.77T_c

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> epsilon_Bird_Stewart_Lightfoot_critical(560.1)
431.27700000000004

	
chemicals.lennard_jones.epsilon_Bird_Stewart_Lightfoot_boiling(Tb)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses boiling temperature. CSP method by [1].

\[\epsilon/k = 1.15 T_b

\]

	Parameters

	
	Tbfloat
	Boiling temperature [K]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> epsilon_Bird_Stewart_Lightfoot_boiling(357.85)
411.5275

	
chemicals.lennard_jones.epsilon_Bird_Stewart_Lightfoot_melting(Tm)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses melting temperature. CSP method by [1].

\[\epsilon/k = 1.92T_m

\]

	Parameters

	
	Tmfloat
	Melting temperature [K]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> epsilon_Bird_Stewart_Lightfoot_melting(231.15)
443.808

	
chemicals.lennard_jones.epsilon_Stiel_Thodos(Tc, Zc)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses Critical temperature and critical compressibility. CSP method by [1].

\[\epsilon/k = 65.3 T_c Z_c^{3.6}

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Zcfloat
	Critical compressibility of fluid, [-]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

References

	1

	Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants
Predicted from Critical Properties.” Journal of Chemical & Engineering
Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

Examples

Fluorobenzene

>>> epsilon_Stiel_Thodos(358.5, 0.265)
196.3755830305783

	
chemicals.lennard_jones.epsilon_Tee_Gotoh_Steward_1(Tc)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses Critical temperature. CSP method by [1].

\[\epsilon/k = 0.7740T_c

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

Notes

Further regressions with other parameters were performed in [1] but are
not included here, except for epsilon_Tee_Gotoh_Steward_2.

References

	1(1,2)

	Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters
for Normal Fluids. Lennard-Jones 12-6 Potential.” Industrial &
Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

Examples

>>> epsilon_Tee_Gotoh_Steward_1(560.1)
433.5174

	
chemicals.lennard_jones.epsilon_Tee_Gotoh_Steward_2(Tc, omega)

	Calculates Lennard-Jones depth of potential-energy minimum.
Uses critical temperature and acentric factor. CSP method by [1].

\[\epsilon/k = (0.7915 + 0.1693 \omega)T_c

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	epsilon_kfloat
	Lennard-Jones depth of potential-energy minimum over k, [K]

Notes

Further regressions with other parameters were performed in [1] but are
not included here, except for epsilon_Tee_Gotoh_Steward_1.

References

	1(1,2)

	Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters
for Normal Fluids. Lennard-Jones 12-6 Potential.” Industrial &
Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

Examples

>>> epsilon_Tee_Gotoh_Steward_2(560.1, 0.245)
466.55125785

Molecular Diameter

	
chemicals.lennard_jones.molecular_diameter(CASRN=None, Tc=None, Pc=None, Vc=None, Zc=None, omega=None, Vm=None, Vb=None, method=None)

	This function handles the retrieval or calculation a chemical’s
L-J molecular diameter. Values are available from one source with lookup
based on CASRNs, or can be estimated from 9 CSP methods.
Will automatically select a data source to use if no method is provided;
returns None if the data is not available.

Preferred sources are ‘Magalhães, Lito, Da Silva, and Silva (2013)’ for
common chemicals which had valies listed in that source, and the CSP method
Tee, Gotoh, and Stewart CSP with Tc, Pc, omega (1966) for chemicals which
don’t.

	Parameters

	
	CASRNstr, optional
	CASRN [-]

	Tcfloat, optional
	Critical temperature, [K]

	Pcfloat, optional
	Critical pressure, [Pa]

	Vcfloat, optional
	Critical volume, [m^3/mol]

	Zcfloat, optional
	Critical compressibility, [-]

	omegafloat, optional
	Acentric factor of compound, [-]

	Vmfloat, optional
	Molar volume of liquid at the melting point of the fluid [K]

	Vbfloat, optional
	Molar volume of liquid at the boiling point of the fluid [K]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
molecular_diameter_all_methods

Notes

These values are somewhat rough, as they attempt to pigeonhole a chemical
into L-J behavior.

The tabulated data is from [2], for 322 chemicals.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

	2

	Magalhães, Ana L., Patrícia F. Lito, Francisco A. Da Silva, and
Carlos M. Silva. “Simple and Accurate Correlations for Diffusion
Coefficients of Solutes in Liquids and Supercritical Fluids over Wide
Ranges of Temperature and Density.” The Journal of Supercritical Fluids
76 (April 2013): 94-114. doi:10.1016/j.supflu.2013.02.002.

Examples

>>> molecular_diameter(CASRN='64-17-5')
4.23738
>>> molecular_diameter('7727-37-9')
3.798

	
chemicals.lennard_jones.molecular_diameter_methods(CASRN=None, Tc=None, Pc=None, Vc=None, Zc=None, omega=None, Vm=None, Vb=None)

	Return all methods available to obtain the molecular diameter for the
desired chemical.

	Parameters

	
	CASRNstr, optional
	CASRN [-]

	Tcfloat, optional
	Critical temperature, [K]

	Pcfloat, optional
	Critical pressure, [Pa]

	Vcfloat, optional
	Critical volume, [m^3/mol]

	Zcfloat, optional
	Critical compressibility, [-]

	omegafloat, optional
	Acentric factor of compound, [-]

	Vmfloat, optional
	Molar volume of liquid at the melting point of the fluid [K]

	Vbfloat, optional
	Molar volume of liquid at the boiling point of the fluid [K]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain molecular_diameter with the given inputs.

See also

	molecular_diameter
	

	
chemicals.lennard_jones.molecular_diameter_all_methods = ('Magalhães, Lito, Da Silva, and Silva (2013)', 'Poling et al. (2001)', 'Tee, Gotoh, and Stewart CSP with Tc, Pc, omega (1966)', 'Silva, Liu, and Macedo (1998) critical relation with Tc, Pc', 'Bird, Stewart, and Light (2002) critical relation with Tc, Pc', 'Tee, Gotoh, and Stewart CSP with Tc, Pc (1966)', 'Stiel and Thodos Vc, Zc (1962)', 'Flynn (1960)', 'Bird, Stewart, and Light (2002) critical relation with Vc', 'Bird, Stewart, and Light (2002) boiling relation', 'Bird, Stewart, and Light (2002) melting relation')

	Tuple of method name keys. See the molecular_diameter for the actual references

Molecular Diameter Correlations

	
chemicals.lennard_jones.sigma_Flynn(Vc)

	Calculates Lennard-Jones molecular diameter.
Uses critical volume. CSP method by [1] as reported in [2].

\[\sigma = 0.561(V_c^{1/3})^{5/4}

\]

	Parameters

	
	Vcfloat
	Critical volume of fluid [m^3/mol]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Vc is originally in units of mL/mol.

References

	1

	Flynn, L.W., M.S. thesis, Northwestern Univ., Evanston, Ill. (1960).

	2

	Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants
Predicted from Critical Properties.” Journal of Chemical & Engineering
Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

Examples

>>> sigma_Flynn(0.000268)
5.2506948422196285

	
chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_critical_2(Tc, Pc)

	Calculates Lennard-Jones molecular diameter.
Uses critical temperature and pressure. CSP method by [1].

\[\sigma = 2.44(T_c/P_c)^{1/3}

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of critical pressure are atmospheres.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> sigma_Bird_Stewart_Lightfoot_critical_2(560.1, 4550000)
5.658657684653222

	
chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_critical_1(Vc)

	Calculates Lennard-Jones molecular diameter.
Uses critical volume. CSP method by [1].

\[\sigma = 0.841 V_c^{1/3}

\]

	Parameters

	
	Vcfloat
	Critical volume of fluid [m^3/mol]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Vc are mL/mol.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> sigma_Bird_Stewart_Lightfoot_critical_1(0.000268)
5.422184116631474

	
chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_boiling(Vb)

	Calculates Lennard-Jones molecular diameter.
Uses molar volume of liquid at boiling. CSP method by [1].

\[\sigma = 1.166V_{b,liq}^{1/3}

\]

	Parameters

	
	Vbfloat
	Boiling molar volume of liquid [m^3/mol]

	Returns

	
	sigmafloat
	Lennard-Jones collision integral, [Angstrom]

Notes

Original units of Vb are mL/mol.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> sigma_Bird_Stewart_Lightfoot_boiling(0.0001015)
5.439018856944655

	
chemicals.lennard_jones.sigma_Bird_Stewart_Lightfoot_melting(Vm)

	Calculates Lennard-Jones molecular diameter.
Uses molar volume of a liquid at its melting point. CSP method by [1].

\[\sigma = 1.222 V_{m,sol}^{1/3}

\]

	Parameters

	
	Vmfloat
	Melting molar volume of a liquid at its melting point [m^3/mol]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Vm are mL/mol.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> sigma_Bird_Stewart_Lightfoot_melting(8.8e-05)
5.435407341351406

	
chemicals.lennard_jones.sigma_Stiel_Thodos(Vc, Zc)

	Calculates Lennard-Jones molecular diameter.
Uses critical volume and compressibility. CSP method by [1].

\[\sigma = 0.1866 V_c^{1/3} Z_c^{-6/5}

\]

	Parameters

	
	Vcfloat
	Critical volume of fluid [m^3/mol]

	Zcfloat
	Critical compressibility of fluid, [-]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Vc is originally in units of mL/mol.

References

	1

	Stiel, L. I., and George Thodos. “Lennard-Jones Force Constants
Predicted from Critical Properties.” Journal of Chemical & Engineering
Data 7, no. 2 (April 1, 1962): 234-36. doi:10.1021/je60013a023

Examples

Monofluorobenzene

>>> sigma_Stiel_Thodos(0.000271, 0.265)
5.94300853971033

	
chemicals.lennard_jones.sigma_Tee_Gotoh_Steward_1(Tc, Pc)

	Calculates Lennard-Jones molecular diameter.
Uses critical temperature and pressure. CSP method by [1].

\[\sigma = 2.3647 \left(\frac{T_c}{P_c}\right)^{1/3}

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Pc are atm. Further regressions with other parameters
were performed in [1] but are not included here, except for
sigma_Tee_Gotoh_Steward_2.

References

	1(1,2)

	Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular
Parameters for Normal Fluids. Lennard-Jones 12-6 Potential.” Industrial
& Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

Examples

>>> sigma_Tee_Gotoh_Steward_1(560.1, 4550000)
5.48402779790962

	
chemicals.lennard_jones.sigma_Tee_Gotoh_Steward_2(Tc, Pc, omega)

	Calculates Lennard-Jones molecular diameter.
Uses critical temperature, pressure, and acentric factor. CSP method by
[1].

\[\sigma = (2.3551 - 0.0874\omega)\left(\frac{T_c}{P_c}\right)^{1/3}

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Original units of Pc are atm. Further regressions with other parameters
were performed in [1] but are not included here, except for
sigma_Tee_Gotoh_Steward_1.

References

	1(1,2)

	Tee, L. S., Sukehiro Gotoh, and W. E. Stewart. “Molecular Parameters
for Normal Fluids. Lennard-Jones 12-6 Potential.” Industrial
& Engineering Chemistry Fundamentals 5, no. 3 (August 1, 1966): 356-63.
doi:10.1021/i160019a011

Examples

>>> sigma_Tee_Gotoh_Steward_2(560.1, 4550000, 0.245)
5.412104867264477

	
chemicals.lennard_jones.sigma_Silva_Liu_Macedo(Tc, Pc)

	Calculates Lennard-Jones molecular diameter.
Uses critical temperature and pressure. CSP method by [1].

\[\sigma_{LJ}^3 = 0.17791 + 11.779 \left(\frac{T_c}{P_c}\right)
- 0.049029\left(\frac{T_c}{P_c}\right)^2

\]

	Parameters

	
	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	sigmafloat
	Lennard-Jones molecular diameter, [Angstrom]

Notes

Pc is originally in bar. An excellent paper. None is
returned if the polynomial returns a negative number, as in the case of
1029.13 K and 3.83 bar.

References

	1

	Silva, Carlos M., Hongqin Liu, and Eugenia A. Macedo. “Models for
Self-Diffusion Coefficients of Dense Fluids, Including Hydrogen-Bonding
Substances.” Chemical Engineering Science 53, no. 13 (July 1, 1998):
2423-29. doi:10.1016/S0009-2509(98)00037-2

Examples

>>> sigma_Silva_Liu_Macedo(560.1, 4550000)
5.164483998730177

Utility Functions

	
chemicals.lennard_jones.T_star(T, epsilon_k=None, epsilon=None)

	This function calculates the parameter T_star as needed in performing
collision integral calculations.

\[T^* = \frac{kT}{\epsilon}

\]

	Parameters

	
	epsilon_kfloat, optional
	Lennard-Jones depth of potential-energy minimum over k, [K]

	epsilonfloat, optional
	Lennard-Jones depth of potential-energy minimum [J]

	Returns

	
	T_starfloat
	Dimentionless temperature for calculating collision integral, [-]

Notes

Tabulated values are normally listed as epsilon/k. k is the Boltzman
constant, with units of J/K.

References

	1

	Bird, R. Byron, Warren E. Stewart, and Edwin N. Lightfoot.
Transport Phenomena, Revised 2nd Edition. New York:
John Wiley & Sons, Inc., 2006

Examples

>>> T_star(T=318.2, epsilon_k=308.43)
1.0316765554582887

 Miscellaneous Data (chemicals.miscdata)

Miscellaneous Data (chemicals.miscdata)

This module contains several tables which are common to different lookup
functions.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Temperature Dependent data

Temperature Dependent data

	
chemicals.miscdata.lookup_VDI_tabular_data(CASRN, prop)

	This function retrieves the tabular data available for a given chemical
and a given property. Lookup is based on CASRNs. Length of data returned
varies between chemicals. All data is at saturation condition from [1].

Function has data for 58 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	propstring
	Property [-]

	Returns

	
	Tslist
	Temperatures where property data is available, [K]

	propslist
	Properties at each temperature, [various]

Notes

The available properties are ‘P’, ‘Density (l)’, ‘Density (g)’, ‘Hvap’,
‘Cp (l)’, ‘Cp (g)’, ‘Mu (l)’, ‘Mu (g)’, ‘K (l)’, ‘K (g)’, ‘Pr (l)’,
‘Pr (g)’, ‘sigma’, ‘Beta’, ‘Volume (l)’, and ‘Volume (g)’.

Data is available for all properties and all chemicals; surface tension
data was missing for mercury, but added as estimated from the a/b
coefficients listed in Jasper (1972) to simplify the function.

References

	1

	Gesellschaft, VDI, ed. VDI Heat Atlas. 2E. Berlin : Springer, 2010.

Examples

>>> lookup_VDI_tabular_data('67-56-1', 'Mu (g)')
([337.63, 360.0, 385.0, 410.0, 435.0, 460.0, 500.0], [1.11e-05, 1.18e-05, 1.27e-05, 1.36e-05, 1.46e-05, 1.59e-05, 2.04e-05])
>>> lookup_VDI_tabular_data('7782-41-4', 'sigma')
([53.49, 64.0, 74.0, 85.04, 92.0, 102.0, 112.0, 122.0, 132.0, 144.41], [0.0227, 0.02, 0.0166, 0.0136, 0.0117, 0.0092, 0.0068, 0.0045, 0.0024, 0.0])

 Chemical Geometry (chemicals.molecular_geometry)

Chemical Geometry (chemicals.molecular_geometry)

This module contains various radius of gyration functions.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Lookup Functions

Lookup Functions

	
chemicals.molecular_geometry.RG(CASRN, method=None)

	This function handles the retrieval of a chemical’s radius of gyration.
Lookup is based on CASRNs. Will automatically select a data source
to use if no method is provided; returns None if the data is not available.

Function has data for approximately 670 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	RGfloat
	Radius of gyration, [m]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
RG_methods

Notes

The available sources are as follows:

	‘PSI4_2022A’, values computed using the Psi4 version 1.3.2 quantum
chemistry software, with initialized positions from rdkit’s EmbedMolecule
method, the basis set 6-31G** and the method mp2 [1].

	‘CHEMSEP’, from the databank included and distributed with the licence
notice ChemSep v8.1 pure component data - Copyright (c) Harry Kooijman
and Ross Taylor (2018) - http://www.perlfoundation.org/artistic_license_2_0.
A small portion of the data is used.

References

	1

	Turney, Justin M., Andrew C. Simmonett, Robert M. Parrish, Edward G.
Hohenstein, Francesco A. Evangelista, Justin T. Fermann, Benjamin J.
Mintz, et al. “Psi4: An Open-Source Ab Initio Electronic Structure
Program.” WIREs Computational Molecular Science 2, no. 4 (2012): 556-65.
https://doi.org/10.1002/wcms.93.

	2

	Kooijman, Harry A., and Ross Taylor. The ChemSep Book. Books on
Demand Norderstedt, Germany, 2000.

Examples

>>> RG(CASRN='64-17-5')
2.225e-10

	
chemicals.molecular_geometry.RG_methods(CASRN)

	Return all methods available to obtain the radius of gyration for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the RG with the given
inputs.

See also

	RG
	

	
chemicals.molecular_geometry.RG_all_methods = ('PSI4_2022A', 'CHEMSEP')

	Tuple of method name keys. See the RG for the actual references

	
chemicals.molecular_geometry.linear(CASRN, method=None)

	This function handles the retrieval whether or not a chemical is linear.
Lookup is based on CASRNs. Will automatically select a data source
to use if no method is provided; returns None if the data is not available.

Function has data for approximately 300 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	linearbool
	Whether or not the chemical is linear, [-]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
linear_methods

Notes

The available sources are as follows:

	‘PSI4_2022A’, values computed using the Psi4 version 1.3.2 quantum
chemistry software, with initialized positions from rdkit’s EmbedMolecule
method, the basis set 6-31G** and the method mp2 [1].

Warning

This function does not yet have a reliable data source.

References

	1

	Turney, Justin M., Andrew C. Simmonett, Robert M. Parrish, Edward G.
Hohenstein, Francesco A. Evangelista, Justin T. Fermann, Benjamin J.
Mintz, et al. “Psi4: An Open-Source Ab Initio Electronic Structure
Program.” WIREs Computational Molecular Science 2, no. 4 (2012): 556-65.
https://doi.org/10.1002/wcms.93.

Examples

>>> linear(CASRN='64-17-5')
False

	
chemicals.molecular_geometry.linear_methods(CASRN)

	Return all methods available to obtain whether or not the
desired chemical is linear.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the linear with the given
inputs.

See also

	linear
	

	
chemicals.molecular_geometry.linear_all_methods = ('PSI4_2022A',)

	Tuple of method name keys. See the linear for the actual references

 Support for Numba (chemicals.numba)

Support for Numba (chemicals.numba)

Basic module which wraps most of chemicals functions and classes to be compatible with the
Numba [https://github.com/numba/numba] dynamic Python compiler.
Numba is only supported on Python 3, and may require the latest version of Numba.
Numba is rapidly evolving, and hopefully in the future it will support more of
the functionality of fluids.

Using the numba-accelerated version of chemicals is easy; simply call functions
and classes from the chemicals.numba namespace. The chemicals.numba module must be
imported separately on Python < 3.7; it is not loaded automatically as part of chemicals.

>>> import chemicals
>>> import chemicals.numba
>>> chemicals.numba.Antoine(180, A=8.95894, B=510.595, C=-15.95)
702271.05185795

There is a delay while the code is compiled when using Numba;
the speed is not quite free.

Some parts of chemicals are not supported in the Numba interface.
Any data lookup function like Tc() and omega_methods() are not numba compatible.
These functions could not be speed up anyway though as they are memory-bound
and numba helps with things that are compute-bound.

Today, the list of things known not to work is as follows:

	Everything in chemicals.identifiers

	Everything in chemicals.combustion (uses dictionaries)

	Everything in chemicals.elements (uses dictionaries, periodic_table class, string parsing)

	Everything in chemicals.critical except the mixture critical point routines

	In chemicals.flash_basic, flash_Tb_Tc_Pc() and flash_ideal() have not been ported but can be made compatible.

	In chemicals.dippr, only EQ102() is unsupported as it uses a complex hyp2f1 call.

	In chemicals.reaction, stoichiometric_matrix() (dictionaries), balance_stoichiometry() (scipy functions, fractional numbers).

	In chemicals.safety, LFL_ISO_10156_2017() (dictionaries)

	The assorted functions collision_integral_Kim_Monroe(), Henry_pressure_mixture(), T_converter(), Wilke(), Wilke_prefactors(), Brokaw() viscosity_converter(), CAS_to_int(), int_to_CAS(), sorted_CAS_key() may or may not be able to be ported but have not yet been.

All of the regular Numba-compiled functions are built with the nogil flag,
which means you can use Python’s threading mechanism effectively to get
the speed of parallel processing.

 Relative Permittivity/Dielectric Constant (chemicals.permittivity)

Relative Permittivity/Dielectric Constant (chemicals.permittivity)

This module contains various permittivity calculation routines and dataframes
of coefficients for correlations.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Correlations for Specific Substances

	Fit Coefficients

Correlations for Specific Substances

	
chemicals.permittivity.permittivity_IAPWS(T, rho)

	Calculate the relative permittivity of pure water as a function of.
temperature and density. Assumes the 1997 IAPWS [1] formulation.

\[\epsilon(\rho, T) =\frac{1 + A + 5B + (9 + 2A + 18B + A^2 + 10AB +
9B^2)^{0.5}}{4(1-B)}

\]

\[A(\rho, T) = \frac{N_A\mu^2\rho g}{M\epsilon_0 kT}

\]

\[B(\rho) = \frac{N_A\alpha\rho}{3M\epsilon_0}

\]

\[g(\delta,\tau) = 1 + \sum_{i=1}^{11}n_i\delta^{I_i}\tau^{J_i}
+ n_{12}\delta\left(\frac{647.096}{228}\tau^{-1} - 1\right)^{-1.2}

\]

\[\delta = \rho/(322 \text{ kg/m}^3)

\]

\[\tau = T/647.096\text{K}

\]

	Parameters

	
	Tfloat
	Temperature of water [K]

	rhofloat
	Mass density of water at T and P [kg/m^3]

	Returns

	
	epsilonfloat
	Relative permittivity of water at T and rho, [-]

Notes

Validity:

273.15 < T < 323.15 K for 0 < P < iceVI melting pressure at T or 1000 MPa,
whichever is smaller.

323.15 < T < 873.15 K 0 < p < 600 MPa.

Coefficients and constants (they are optimized away in the function itself):

ih = [1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 10]

jh = [0.25, 1, 2.5, 1.5, 1.5, 2.5, 2, 2, 5, 0.5, 10]

	Nh = [0.978224486826, -0.957771379375, 0.237511794148, 0.714692244396,
	-0.298217036956, -0.108863472196, 0.949327488264E-1,
-.980469816509E-2, 0.165167634970E-4, 0.937359795772E-4,
-0.12317921872E-9]

polarizability = 1.636E-40

dipole = 6.138E-30

References

	1

	IAPWS. 1997. Release on the Static Dielectric Constant of Ordinary
Water Substance for Temperatures from 238 K to 873 K and Pressures up
to 1000 MPa.

Examples

>>> permittivity_IAPWS(373., 958.46)
55.565841872697234

>>> permittivity_IAPWS(650., 40.31090)
1.2659205723606064

	
chemicals.permittivity.permittivity_CRC(T, a, b, c, d)

	Return the relative permittivity (epsilon) of a chemical using
a polynomical equation as in [1].

	Parameters

	
	a,b,c,dfloat
	Regressed coefficients.

Notes

The permittivity is given by \(\epsilon_r = A + BT + CT^2 + DT^3\)

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

Examples

Calculate the permittivity of 4-Nitroaniline:

>>> permittivity_CRC(450., 487, -1.5, 0.00129, 0.)
73.225

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.permittivity.permittivity_data_CRC

	Data from [1] with coefficients fit to a polynomial in terms of temperature
in K. \(\epsilon_r = A + BT + CT^2 + DT^3\) is the equation, although
some chemcials only have a constant value.

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

In [1]: import chemicals

In [2]: chemicals.permittivity.permittivity_data_CRC
Out[2]:
 Chemical ... Tmax
CAS ...
50-70-4 D-Glucitol ... NaN
50-78-2 2-(Acetyloxy)benzoic acid ... 416.0
51-79-6 Ethyl carbamate ... 368.0
54-11-5 L-Nicotine ... 363.0
55-63-0 Trinitroglycerol ... NaN
...
100295-85-0 6-Methyl-3-heptanol, ()- ... 383.0
100296-26-2 2-Methyl-3-heptanol, ()- ... 403.0
111675-77-5 2-Methyl-1-heptanol, ()- ... 328.0
111767-95-4 5-Methyl-1-heptanol, ()- ... 328.0
123434-07-1 2,4,6-Trimethyl-3-heptene (unspecified isomer) ... NaN

[1303 rows x 9 columns]

 Phase Change Properties (chemicals.phase_change)

Phase Change Properties (chemicals.phase_change)

This module contains lookup functions for melting and boiling point, heat of
fusion, various enthalpy of vaporization estimation routines, and dataframes
of fit coefficients.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Boiling Point

	Melting Point

	Heat of Fusion

	Heat of Vaporization at Tb Correlations

	Heat of Vaporization at T Correlations

	Heat of Vaporization at T Model Equations

	Heat of Sublimation

	Fit Coefficients

Boiling Point

	
chemicals.phase_change.Tb(CASRN, method=None)

	This function handles the retrieval of a chemical’s normal boiling
point. Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available. Function has data for approximately 34000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Tbfloat
	Boiling temperature, [K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
Tb_all_methods.

See also

	Tb_methods
	

Notes

The available sources are as follows:

	‘CRC_ORG’, a compillation of data on organics
as published in [1].

	‘CRC_INORG’, a compillation of data on
inorganic as published in [1].

	‘WEBBOOK’, a NIST resource [6] containing mostly experimental
and averaged values

	‘WIKIDATA’, data from the Wikidata project [3]

	‘COMMON_CHEMISTRY’, a project from the CAS [4]

	‘JOBACK’, an estimation method for organic substances in [5]

	‘YAWS’, a large compillation of data from a
variety of sources both experimental and predicted;
no data points are sourced in the work of [2].

	‘HEOS’, a series of values from the NIST REFPROP Database for
Highly Accurate Properties of Industrially Important Fluids
(and other high-precision fundamental equations of state)

References

	1(1,2)

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	2

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	3

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

	4

	“CAS Common Chemistry”. https://commonchemistry.cas.org/.

	5

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	6

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	7

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

>>> Tb('7732-18-5')
373.124

	
chemicals.phase_change.Tb_methods(CASRN)

	Return all methods available to obtain the normal boiling point
for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Tb with the given inputs.

See also

	Tb
	

	
chemicals.phase_change.Tb_all_methods = ('HEOS', 'CRC_INORG', 'CRC_ORG', 'COMMON_CHEMISTRY', 'WEBBOOK', 'YAWS', 'WIKIDATA', 'JOBACK')

	Tuple of method name keys. See the Tbg for the actual references

Melting Point

	
chemicals.phase_change.Tm(CASRN, method=None)

	This function handles the retrieval of a chemical’s melting
point. Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available. Function has data for approximately 83000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Tmfloat
	Melting temperature, [K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by the vairable
Tm_all_methods.

See also

	Tm_methods
	

Notes

The available sources are as follows:

	‘OPEN_NTBKM, a compillation of data on organics
as published in [1] as Open Notebook Melting Points; Averaged
(median) values were used when
multiple points were available. For more information on this
invaluable and excellent collection, see
http://onswebservices.wikispaces.com/meltingpoint.

	‘CRC_ORG’, a compillation of data on organics
as published in [2].

	‘CRC_INORG’, a compillation of data on
inorganic as published in [2].

	‘WEBBOOK’, a NIST resource [6] containing mostly experimental
and averaged values

	‘WIKIDATA’, data from the Wikidata project [3]

	‘COMMON_CHEMISTRY’, a project from the CAS [4]

	‘JOBACK’, an estimation method for organic substances in [5]

References

	1

	Bradley, Jean-Claude, Antony Williams, and Andrew Lang.
“Jean-Claude Bradley Open Melting Point Dataset”, May 20, 2014.
https://figshare.com/articles/Jean_Claude_Bradley_Open_Melting_Point_Datset/1031637.

	2(1,2)

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	3

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

	4

	“CAS Common Chemistry”. https://commonchemistry.cas.org/.

	5

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	6

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> Tm(CASRN='7732-18-5')
273.15

	
chemicals.phase_change.Tm_methods(CASRN)

	Return all methods available to obtain the melting point for the desired
chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Tm with the given inputs.

See also

	Tm
	

	
chemicals.phase_change.Tm_all_methods = ('OPEN_NTBKM', 'CRC_INORG', 'CRC_ORG', 'COMMON_CHEMISTRY', 'WEBBOOK', 'WIKIDATA', 'JOBACK')

	Tuple of method name keys. See the Tm for the actual references

Heat of Fusion

Heat of fusion does not strongly depend on temperature or pressure. This is the
standard value, at 1 atm and the normal melting point.

	
chemicals.phase_change.Hfus(CASRN, method=None)

	This function handles the retrieval of a chemical’s heat of fusion.
Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

Function has data for approximately 22000 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Hfusfloat
	Molar enthalpy of fusion at normal melting point, [J/mol]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by the variable,
Hfus_all_methods.

See also

	Hfus_methods
	

Notes

The available sources are as follows:

	‘CRC’, a compillation of data on organics and inorganics as published
in [1].

	‘WEBBOOK’, a NIST resource [4] containing mostly experimental
and averaged values

	‘WIKIDATA’, data from the Wikidata project [2]

	‘JOBACK’, an estimation method for organic substances in [3]

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	2

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

	3

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	4

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> Hfus('7732-18-5')
6010.0

	
chemicals.phase_change.Hfus_methods(CASRN)

	Return all methods available to obtain the heat of fusion for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Hfus with the given inputs.

See also

	Hfus
	

	
chemicals.phase_change.Hfus_all_methods = ('CRC', 'WEBBOOK', 'WIKIDATA', 'JOBACK')

	Tuple of method name keys. See the Hfus for the actual references

Heat of Vaporization at Tb Correlations

	
chemicals.phase_change.Riedel(Tb, Tc, Pc)

	Calculates enthalpy of vaporization at the boiling point, using the
Ridel [1] CSP method. Required information are critical temperature
and pressure, and boiling point. Equation taken from [2] and [3].

The enthalpy of vaporization is given by:

\[\Delta_{vap} H=1.093 T_b R\frac{\ln P_c-1.013}{0.930-T_{br}}

\]

	Parameters

	
	Tbfloat
	Boiling temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization at the normal boiling point, [J/mol]

Notes

This equation has no example calculation in any source. The source has not
been verified. It is equation 4-144 in Perry’s. Perry’s also claims that
errors seldom surpass 5%.

[2] is the source of example work here, showing a calculation at 0.0%
error.

Internal units of pressure are bar.

References

	1

	Riedel, L. “Eine Neue Universelle Dampfdruckformel Untersuchungen
Uber Eine Erweiterung Des Theorems Der Ubereinstimmenden Zustande. Teil
I.” Chemie Ingenieur Technik 26, no. 2 (February 1, 1954): 83-89.
doi:10.1002/cite.330260206.

	2(1,2,3)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	3

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

Examples

Pyridine, 0.0% err vs. exp: 35090 J/mol; from Poling [2].

>>> Riedel(388.4, 620.0, 56.3E5)
35089.80179000598

	
chemicals.phase_change.Chen(Tb, Tc, Pc)

	Calculates enthalpy of vaporization using the Chen [1] correlation
and a chemical’s critical temperature, pressure and boiling point.

The enthalpy of vaporization is given by:

\[\Delta H_{vb} = RT_b \frac{3.978 T_r - 3.958 + 1.555 \ln P_c}{1.07 - T_r}

\]

	Parameters

	
	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

The formulation presented in the original article is similar, but uses
units of atm and calorie instead. The form in [2] has adjusted for this.
A method for estimating enthalpy of vaporization at other conditions
has also been developed, but the article is unclear on its implementation.
Based on the Pitzer correlation.

Internal units: bar and K

References

	1

	Chen, N. H. “Generalized Correlation for Latent Heat of Vaporization.”
Journal of Chemical & Engineering Data 10, no. 2 (April 1, 1965): 207-10.
doi:10.1021/je60025a047

	2

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Same problem as in Perry’s examples.

>>> Chen(294.0, 466.0, 5.55E6)
26705.902558030946

	
chemicals.phase_change.Liu(Tb, Tc, Pc)

	Calculates enthalpy of vaporization at the normal boiling point using
the Liu [1] correlation, and a chemical’s critical temperature, pressure
and boiling point.

The enthalpy of vaporization is given by:

\[\Delta H_{vap} = RT_b \left[\frac{T_b}{220}\right]^{0.0627} \frac{
(1-T_{br})^{0.38} \ln(P_c/P_A)}{1-T_{br} + 0.38 T_{br} \ln T_{br}}

\]

	Parameters

	
	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

This formulation can be adjusted for lower boiling points, due to the use
of a rationalized pressure relationship. The formulation is taken from
the original article.

A correction for alcohols and organic acids based on carbon number,
which only modifies the boiling point, is available but not implemented.

No sample calculations are available in the article.

Internal units: Pa and K

References

	1

	LIU, ZHI-YONG. “Estimation of Heat of Vaporization of Pure Liquid at
Its Normal Boiling Temperature.” Chemical Engineering Communications
184, no. 1 (February 1, 2001): 221-28. doi:10.1080/00986440108912849.

Examples

Same problem as in Perry’s examples

>>> Liu(294.0, 466.0, 5.55E6)
26378.575260517395

	
chemicals.phase_change.Vetere(Tb, Tc, Pc, F=1.0)

	Calculates enthalpy of vaporization at the boiling point, using the
Vetere [1] CSP method. Required information are critical temperature
and pressure, and boiling point. Equation taken from [2].

The enthalpy of vaporization is given by:

\[\frac {\Delta H_{vap}}{RT_b} = \frac{\tau_b^{0.38}
\left[\ln P_c - 0.513 + \frac{0.5066}{P_cT_{br}^2}\right]}
{\tau_b + F(1-\tau_b^{0.38})\ln T_{br}}

\]

	Parameters

	
	Tbfloat
	Boiling temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Ffloat, optional
	Constant for a fluid, [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization at the boiling point, [J/mol]

Notes

The equation cannot be found in the original source. It is believed that a
second article is its source, or that DIPPR staff have altered the formulation.

Internal units of pressure are bar.

References

	1

	Vetere, Alessandro. “Methods to Predict the Vaporization Enthalpies
at the Normal Boiling Temperature of Pure Compounds Revisited.”
Fluid Phase Equilibria 106, no. 1-2 (May 1, 1995): 1-10.
doi:10.1016/0378-3812(94)02627-D.

	2(1,2)

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

Examples

Example as in [2], p2-487; exp: 25.73

>>> Vetere(294.0, 466.0, 5.55E6)
26363.43895706672

Heat of Vaporization at T Correlations

	
chemicals.phase_change.Pitzer(T, Tc, omega)

	Calculates enthalpy of vaporization at arbitrary temperatures using a
fit by [2] to the work of Pitzer [1]; requires a chemical’s critical
temperature and acentric factor.

The enthalpy of vaporization is given by:

\[\frac{\Delta_{vap} H}{RT_c}=7.08(1-T_r)^{0.354}+10.95\omega(1-T_r)^{0.456}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

This equation is listed in [3], page 2-487 as method #2 for estimating
Hvap. This cites [2].

The recommended range is 0.6 to 1 Tr. Users should expect up to 5% error.
This function converges to zero at Tc. If Tc is larger than T,
0 is returned as the model would return complex numbers.

The original article has been reviewed and found to have a set of tabulated
values which could be used instead of the fit function to provide additional
accuracy.

References

	1

	Pitzer, Kenneth S. “The Volumetric and Thermodynamic Properties of
Fluids. I. Theoretical Basis and Virial Coefficients.”
Journal of the American Chemical Society 77, no. 13 (July 1, 1955):
3427-33. doi:10.1021/ja01618a001

	2(1,2)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	3(1,2)

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

Examples

Example as in [3], p2-487; exp: 37.51 kJ/mol

>>> Pitzer(452, 645.6, 0.35017)
36696.749078320056

	
chemicals.phase_change.SMK(T, Tc, omega)

	Calculates enthalpy of vaporization at arbitrary temperatures using a
the work of [1]; requires a chemical’s critical temperature and
acentric factor.

The enthalpy of vaporization is given by:

\[\frac{\Delta H_{vap}} {RT_c} =
\left(\frac{\Delta H_{vap}} {RT_c} \right)^{(R1)} + \left(
\frac{\omega - \omega^{(R1)}} {\omega^{(R2)} - \omega^{(R1)}} \right)
\left[\left(\frac{\Delta H_{vap}} {RT_c} \right)^{(R2)} - \left(
\frac{\Delta H_{vap}} {RT_c} \right)^{(R1)} \right]

\]

\[\left(\frac{\Delta H_{vap}} {RT_c} \right)^{(R1)}
= 6.537 \tau^{1/3} - 2.467 \tau^{5/6} - 77.251 \tau^{1.208} +
59.634 \tau + 36.009 \tau^2 - 14.606 \tau^3

\]

\[\left(\frac{\Delta H_{vap}} {RT_c} \right)^{(R2)} - \left(
\frac{\Delta H_{vap}} {RT_c} \right)^{(R1)}=-0.133 \tau^{1/3} - 28.215
\tau^{5/6} - 82.958 \tau^{1.208} + 99.00 \tau + 19.105 \tau^2 -2.796 \tau^3

\]

\[\tau = 1-T/T_c

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

The original article has been reviewed and found to have coefficients with
slightly more precision. Additionally, the form of the equation is slightly
different, but numerically equivalent.

The refence fluids are:

\(\omega_0\) = benzene = 0.212

\(\omega_1\) = carbazole = 0.461

A sample problem in the article has been verified. The numerical result
presented by the author requires high numerical accuracy to obtain.

This function converges to zero at Tc. If Tc is larger than T,
0 is returned as the model would return complex numbers.

References

	1(1,2)

	Sivaraman, Alwarappa, Joe W. Magee, and Riki Kobayashi. “Generalized
Correlation of Latent Heats of Vaporization of Coal-Liquid Model Compounds
between Their Freezing Points and Critical Points.” Industrial &
Engineering Chemistry Fundamentals 23, no. 1 (February 1, 1984): 97-100.
doi:10.1021/i100013a017.

Examples

Problem in [1]:

>>> SMK(553.15, 751.35, 0.302)
39866.18999046229

	
chemicals.phase_change.MK(T, Tc, omega)

	Calculates enthalpy of vaporization at arbitrary temperatures using a
the work of [1]; requires a chemical’s critical temperature and
acentric factor.

The enthalpy of vaporization is given by:

\[\Delta H_{vap} = \Delta H_{vap}^{(0)} + \omega \Delta H_{vap}^{(1)} + \omega^2 \Delta H_{vap}^{(2)}

\]

\[\frac{\Delta H_{vap}^{(i)}}{RT_c} = b^{(j)} \tau^{1/3} + b_2^{(j)} \tau^{5/6}
+ b_3^{(j)} \tau^{1.2083} + b_4^{(j)}\tau + b_5^{(j)} \tau^2 + b_6^{(j)} \tau^3

\]

\[\tau = 1-T/T_c

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

The original article has been reviewed. A total of 18 coefficients are used:

WARNING: The correlation has been implemented as described in the article,
but its results seem different and with some error.
Its results match with other functions however.

Has poor behavior for low-temperature use.
This function converges to zero at Tc. If Tc is larger than T,
0 is returned as the model would return complex numbers.

References

	1

	Morgan, David L., and Riki Kobayashi. “Extension of Pitzer CSP
Models for Vapor Pressures and Heats of Vaporization to Long-Chain
Hydrocarbons.” Fluid Phase Equilibria 94 (March 15, 1994): 51-87.
doi:10.1016/0378-3812(94)87051-9.

Examples

Problem in article for SMK function.

>>> MK(553.15, 751.35, 0.302)
38728.00667307733

	
chemicals.phase_change.Velasco(T, Tc, omega)

	Calculates enthalpy of vaporization at arbitrary temperatures using a
the work of [1]; requires a chemical’s critical temperature and
acentric factor.

The enthalpy of vaporization is given by:

\[\Delta_{vap} H = RT_c(7.2729 + 10.4962\omega + 0.6061\omega^2)(1-T_r)^{0.38}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	omegafloat
	Acentric factor [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

The original article has been reviewed. It is regressed from enthalpy of
vaporization values at 0.7Tr, from 121 fluids in REFPROP 9.1.
A value in the article was read to be similar, but slightly too low from
that calculated here.
This function converges to zero at Tc. If Tc is larger than T,
0 is returned as the model would return complex numbers.

References

	1(1,2)

	Velasco, S., M. J. Santos, and J. A. White. “Extended Corresponding
States Expressions for the Changes in Enthalpy, Compressibility Factor
and Constant-Volume Heat Capacity at Vaporization.” The Journal of
Chemical Thermodynamics 85 (June 2015): 68-76.
doi:10.1016/j.jct.2015.01.011.

Examples

From graph, in [1] for perfluoro-n-heptane.

>>> Velasco(333.2, 476.0, 0.5559)
33299.428636069264

	
chemicals.phase_change.Clapeyron(T, Tc, Pc, dZ=1, Psat=101325)

	Calculates enthalpy of vaporization at arbitrary temperatures using the
Clapeyron equation.

The enthalpy of vaporization is given by:

\[\Delta H_{vap} = RT \Delta Z \frac{\ln (P_c/Psat)}{(1-T_{r})}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	dZfloat
	Change in compressibility factor between liquid and gas, []

	Psatfloat
	Saturation pressure of fluid [Pa], optional

	Returns

	
	Hvapfloat
	Enthalpy of vaporization, [J/mol]

Notes

No original source is available for this equation.
[1] claims this equation overpredicts enthalpy by several percent.
Under Tr = 0.8, dZ = 1 is a reasonable assumption.
This equation is most accurate at the normal boiling point.

Internal units are bar.

WARNING: I believe it possible that the adjustment for pressure may be incorrect

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Problem from Perry’s examples.

>>> Clapeyron(T=294.0, Tc=466.0, Pc=5.55E6)
26512.36357131963

	
chemicals.phase_change.Watson(T, Hvap_ref, T_ref, Tc, exponent=0.38)

	Calculates enthalpy of vaporization of a chemical at a temperature
using the known heat of vaporization at another temperature according to
the Watson [1] [2] correlation. This is an application of the
corresponding-states principle, with an emperical temperature dependence.

\[\frac{\Delta H_{vap}^{T1}}{\Delta H_{vap}^{T2}} = \left(
\frac{1-T_{r,1}}{1-T_{r,2}} \right)^{0.38}

\]

	Parameters

	
	Tfloat
	Temperature for which to calculate heat of vaporization, [K]

	Hvap_reffloat
	Enthalpy of vaporization at the known temperature point, [J/mol]

	T_reffloat
	Reference temperature; ideally as close to T as posible, [K]

	Tcfloat
	Critical temperature of fluid [K]

	exponentfloat, optional
	A fit exponent can optionally be used instead of the Watson 0.38
exponent, [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization at T, [J/mol]

References

	1

	Watson, KM. “Thermodynamics of the Liquid State.” Industrial &
Engineering Chemistry 35, no. 4 (1943): 398-406.

	2

	Martin, Joseph J., and John B. Edwards. “Correlation of Latent Heats
of Vaporization.” AIChE Journal 11, no. 2 (1965): 331-33.
https://doi.org/10.1002/aic.690110226.

Examples

Predict the enthalpy of vaporization of water at 320 K from a point at
300 K:

>>> Watson(T=320, Hvap_ref=43908, T_ref=300.0, Tc=647.14)
42928.990094915454

The error is 0.38% compared to the correct value of 43048 J/mol.

If the provided temperature is above the critical point, zero is returned.

	
chemicals.phase_change.Watson_n(T1, T2, Hvap1, Hvap2, Tc)

	Calculates the Watson heat of vaporizaton extrapolation exponent
given two known heats of vaporization.

\[n = \left[\frac{\ln{\left(\frac{Hvap_{1}}{Hvap_{2}} \right)}}
{\ln{\left(\frac{T_{1} - T_{c}}{T_{2} - T_{c}} \right)}}\right]

\]

	Parameters

	
	T1float
	Temperature of first heat of vaporization point, [K]

	T2float
	Temperature of second heat of vaporization point, [K]

	Hvap1float
	Enthalpy of vaporization at the first known temperature point, [J/mol]

	Hvap2float
	Enthalpy of vaporization at the second known temperature point, [J/mol]

	Tcfloat
	Critical temperature of fluid [K]

	Returns

	
	exponentfloat
	A fit exponent that can be used instead of the Watson 0.38 exponent,
[-]

Notes

This can be useful for extrapolating when a correlation does not reach
the critical point.

Examples

>>> Watson_n(T1=320, T2=300, Hvap1=42928.990094915454, Hvap2=43908, Tc=647.14)
0.380000000000

Heat of Vaporization at T Model Equations

	
chemicals.phase_change.Alibakhshi(T, Tc, C)

	Calculates enthalpy of vaporization of a chemical at a temperature
using a theoretically-derived single-coefficient fit equation developed in
[1]. This model falls apart at ~0.8 Tc.

\[\Delta H_{vap} = \left(4.5\pi N_A\right)^{1/3.}4.2\times 10^{-7}
(T_c - 6) - 0.5RT\ln(T) + CT

\]

	Parameters

	
	Tfloat
	Temperature for which to calculate heat of vaporization, [K]

	Tcfloat
	Critical temperature of fluid [K]

	Cfloat
	Alibakhshi fit coefficient, [J/mol/K]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization at T, [J/mol]

Notes

The authors of [1] evaluated their model on 1890 compounds for a
temperature range of 50 K under Tb to 100 K below Tc, and obtained an
average absolute relative error of 4.5%.

References

	1(1,2)

	Alibakhshi, Amin. “Enthalpy of Vaporization, Its Temperature
Dependence and Correlation with Surface Tension: A Theoretical Approach.”
Fluid Phase Equilibria 432 (January 25, 2017): 62-69.
https://doi.org/10.1016/j.fluid.2016.10.013.

Examples

Predict the enthalpy of vaporization of water at 320 K:

>>> Alibakhshi(T=320.0, Tc=647.14, C=-16.7171)
41961.30490225752

The error is 2.5% compared to the correct value of 43048 J/mol.

	
chemicals.phase_change.PPDS12(T, Tc, A, B, C, D, E)

	Calculate the enthalpy of vaporization of a fluid using the 5-term
power fit developed by the PPDS and named PPDS equation 12.

\[H_{vap} = RT_c \left(A\tau^{1/3} + B\tau^{2/3} + C\tau + D\tau^2
+ E\tau^6\right)

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Afloat
	Coefficient, [-]

	Bfloat
	Coefficient, [-]

	Cfloat
	Coefficient, [-]

	Dfloat
	Coefficient, [-]

	Efloat
	Coefficient, [-]

	Returns

	
	Hvapfloat
	Enthalpy of vaporization at T, [J/mol]

Notes

Coefficients can be found in [1], but no other source for these
coefficients has been found.

References

	1(1,2)

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

	2(1,2)

	“Enthalpy of Vaporization: PPDS12.”
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-Hvap/PPDS12.htm.

Examples

Example from [1]:

>>> PPDS12(300.0, 591.75, 4.60584, 13.97224, -10.592315, 2.120205, 4.277128)
37948.76862035925

Example from [2] for benzene; note the coefficients from [2] predict
enthalpy of vaporization in kJ/mol, so the output must be adjusted. The same
effect can be obtained by multiplying each of the coefficients by 1000.

>>> 1000.0*PPDS12(300.0, 562.05, 0.00171484, 0.0258604, -0.0243564, 0.00740881, 0.00680068)
33662.4258030

Heat of Sublimation

No specific correlation is provided. This value is fairly strongly temperature
dependent; the dependency comes almost entirely from the vaporization
enthalpy’s dependence. To calculate heat of sublimation at any temperature, use
the equation \(H_{sub} = H_{fus} + H_{vap}\).

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.phase_change.phase_change_data_Perrys2_150

	A collection of 344 coefficient sets from the DIPPR database published
openly in [1]. Provides temperature limits for all its fluids.
See chemicals.dippr.EQ106 for the model equation.

	
chemicals.phase_change.phase_change_data_VDI_PPDS_4

	Coefficients for a equation form developed by the PPDS, published
openly in [2]. Extrapolates poorly at low temperatures. See PPDS12
for the model equation.

	
chemicals.phase_change.phase_change_data_Alibakhshi_Cs

	One-constant limited temperature range regression coefficients presented
in [3], with constants for ~2000 chemicals from the DIPPR database.
Valid up to 100 K below the critical point, and 50 K under the boiling
point. See Alibakhshi for the model equation.

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
8E. McGraw-Hill Professional, 2007.

	2

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

	3

	Alibakhshi, Amin. “Enthalpy of Vaporization, Its Temperature
Dependence and Correlation with Surface Tension: A Theoretical Approach.”
Fluid Phase Equilibria 432 (January 25, 2017): 62-69.
https://doi.org/10.1016/j.fluid.2016.10.013.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.phase_change.phase_change_data_Perrys2_150
Out[2]:
 Chemical Tc C1 ... C4 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 408.00 30760.0 ... 0.00000 181.15 408.00
55-21-0 Benzamide 824.00 87809.0 ... -0.14162 403.00 824.00
56-23-5 Carbon tetrachloride 556.35 43252.0 ... 0.00000 250.33 556.35
57-55-6 1,2-Propylene glycol 626.00 80700.0 ... 0.00000 213.15 626.00
60-29-7 Diethyl ether 466.70 40600.0 ... 0.00000 156.85 466.70
...
10028-15-6 Ozone 261.00 18587.0 ... 0.00000 80.15 261.00
10035-10-6 Hydrogen bromide 363.15 24850.0 ... 0.00000 185.15 363.15
10102-43-9 Nitric oxide 180.15 21310.0 ... 0.00000 109.50 180.15
13511-13-2 Propenylcyclohexene 636.00 58866.0 ... 0.00000 199.00 636.00
132259-10-0 Air 132.45 8474.0 ... 0.00000 59.15 132.45

[344 rows x 8 columns]

In [3]: chemicals.phase_change.phase_change_data_VDI_PPDS_4
Out[3]:
 Chemical MW ... D E
CAS ...
50-00-0 Formaldehyde 30.03 ... -4.856937 11.036836
56-23-5 Carbon tetrachloride 153.82 ... -0.172679 3.053272
56-81-5 Glycerol 92.09 ... 2.052518 -13.771300
60-29-7 Diethyl ether 74.12 ... -0.175016 3.557340
62-53-3 Aniline 93.13 ... -1.656520 3.263408
...
10097-32-2 Bromine 159.82 ... -0.025698 -0.197360
10102-43-9 Nitric oxide 30.01 ... -5.159373 97.203137
10102-44-0 Nitrogen dioxide 46.01 ... 10.653997 68.680656
10544-72-6 Dinitrogentetroxide 92.01 ... -1.535179 102.679020
132259-10-0 Air 28.96 ... -8.064787 14.645081

[272 rows x 8 columns]

In [4]: chemicals.phase_change.phase_change_data_Alibakhshi_Cs
Out[4]:
 Chemical C
CAS
50-00-0 formaldehyde -26.7916
50-21-5 lactic acid 30.5238
50-70-4 sorbitol 89.1371
50-78-2 acetylsalicylic acid 15.9121
50-81-7 ascorbic acid 102.2858
...
7642-10-6 cis-3-heptene -17.8032
7719-09-7 thionyl chloride -31.2745
7719-12-2 phosphorus trichloride -27.0024
7783-06-4 hydrogen sulfide -37.3259
7783-07-5 hydrogen selenide -38.5320

[1890 rows x 2 columns]

 Rachford-Rice Equation Solvers (chemicals.rachford_rice)

Rachford-Rice Equation Solvers (chemicals.rachford_rice)

This module contains functions for solving the Rachford-Rice Equation. This is
used to solve ideal flashes, and is the inner loop of the sequential-substitution
flash algorithm. It is not used by full newton-algorithms. The
sequential-substitution is normally recommended because it does not suffer
from the ~N^3 behavior of solving a matrix.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Two Phase - Interface

	Two Phase - Implementations

	Two Phase - High-Precision Implementations

	Three Phase

	N Phase

	Two Phase Utility Functions

	Numerical Notes

Two Phase - Interface

	
chemicals.rachford_rice.flash_inner_loop(zs, Ks, method=None, guess=None, check=False)

	This function handles the solution of the inner loop of a flash
calculation, solving for liquid and gas mole fractions and vapor fraction
based on specified overall mole fractions and K values. As K values are
weak functions of composition, this should be called repeatedly by an outer
loop. Will automatically select an algorithm to use if no method is
provided. Should always provide a solution.

The automatic algorithm selection will try an analytical solution, and use
the Rachford-Rice method if there are 6 or more components in the mixture.

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	guessfloat, optional
	Optional initial guess for vapor fraction, [-]

	checkbool, optional
	Whether or not to check the K values to ensure a positive-composition
solution exists, [-]

	Returns

	
	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

	Other Parameters

	
	methodstring, optional
	The method name to use. Accepted methods are ‘Analytical’,
‘Rachford-Rice (Secant)’, ‘Rachford-Rice (Newton-Raphson)’,
‘Rachford-Rice (Halley)’, ‘Rachford-Rice (NumPy)’,
‘Leibovici and Nichita 2’, ‘Rachford-Rice (polynomial)’, and
‘Li-Johns-Ahmadi’. All valid values are also held
in the list flash_inner_loop_methods.

Notes

A total of eight methods are available for this function. They are:

	‘Analytical’, an exact solution derived with SymPy, applicable only
only to mixtures of two, three, or four components

	‘Rachford-Rice (Secant)’, ‘Rachford-Rice (Newton-Raphson)’,
‘Rachford-Rice (Halley)’, or ‘Rachford-Rice (NumPy)’,
which numerically solves an objective function
described in Rachford_Rice_solution.

	‘Leibovici and Nichita 2’, a transformation of the RR equation
described in Rachford_Rice_solution_LN2.

	‘Li-Johns-Ahmadi’, which numerically solves an objective function
described in Li_Johns_Ahmadi_solution.

	‘Leibovici and Neoschil’, which numerically solves an objective
function described in Rachford_Rice_solution_Leibovici_Neoschil.

Examples

>>> flash_inner_loop(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738, [0.3394086969663, 0.3650560590371, 0.29553524399648], [0.571903654388, 0.27087159580558, 0.1572247498061])

	
chemicals.rachford_rice.flash_inner_loop_methods(N)

	Return all methods able to solve the Rachford-Rice equation
for the specified number of components.

	Parameters

	
	Nint
	Number of components, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to solve the Rachford-rice equation

See also

	flash_inner_loop
	

	
chemicals.rachford_rice.flash_inner_loop_all_methods = ('Analytical', 'Rachford-Rice (Secant)', 'Rachford-Rice (Newton-Raphson)', 'Rachford-Rice (Halley)', 'Rachford-Rice (NumPy)', 'Li-Johns-Ahmadi', 'Rachford-Rice (polynomial)', 'Leibovici and Nichita 2', 'Leibovici and Neoschil')

	Tuple of method name keys. See the flash_inner_loop for the actual references

Two Phase - Implementations

	
chemicals.rachford_rice.Rachford_Rice_solution(zs, Ks, fprime=False, fprime2=False, guess=None)

	Solves the objective function of the Rachford-Rice flash equation [1].
Uses the method proposed in [2] to obtain an initial guess.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	fprimebool, optional
	Whether or not to use the first derivative of the objective function
in the solver (Newton-Raphson is used) or not (secant is used), [-]

	fprime2bool, optional
	Whether or not to use the second derivative of the objective function
in the solver (parabolic Halley`s method is used if True) or not, [-]

	guessfloat, optional
	Optional initial guess for vapor fraction, [-]

	Returns

	
	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [2].

\[\left(\frac{V}{F}\right)_{min} = \frac{(K_{max}-K_{min})z_{of\;K_{max}}
- (1-K_{min})}{(1-K_{min})(K_{max}-1)}

\]

\[\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}

\]

Another algorithm for determining the range of the correct solution is
given in [3]; [2] provides a narrower range however. For both cases,
each guess should be limited to be between 0 and 1 as they are often
negative or larger than 1.

\[\left(\frac{V}{F}\right)_{min} = \frac{1}{1-K_{max}}

\]

\[\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}

\]

If the newton method does not converge, a bisection method (brenth) is
used instead. However, it is somewhat slower, especially as newton will
attempt 50 iterations before giving up.

In all benchmarks attempted, secant method provides better performance than
Newton-Raphson or parabolic Halley`s method. This may not be generally
true; but it is for Python and SciPy’s implementation. They are implemented
for benchmarking purposes.

The first and second derivatives are:

\[\frac{d \text{ obj}}{d \frac{V}{F}} = \sum_i \frac{-z_i(K_i-1)^2}
{(1 + \frac{V}{F}(K_i-1))^2}

\]

\[\frac{d^2 \text{ obj}}{d (\frac{V}{F})^2} = \sum_i \frac{2z_i(K_i-1)^3}
{(1 + \frac{V}{F}(K_i-1))^3}

\]

References

	1

	Rachford, H. H. Jr, and J. D. Rice. “Procedure for Use of Electronic
Digital Computers in Calculating Flash Vaporization Hydrocarbon
Equilibrium.” Journal of Petroleum Technology 4, no. 10 (October 1,
1952): 19-3. doi:10.2118/952327-G.

	2(1,2,3)

	Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust
Alternative to Rachford-Rice in Flash Calculations.” Fluid Phase
Equilibria 316 (February 25, 2012): 85-97.
doi:10.1016/j.fluid.2011.12.005.

	3

	Whitson, Curtis H., and Michael L. Michelsen. “The Negative Flash.”
Fluid Phase Equilibria, Proceedings of the Fifth International
Conference, 53 (December 1, 1989): 51-71.
doi:10.1016/0378-3812(89)80072-X.

Examples

>>> Rachford_Rice_solution(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738544, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858], [0.5719036543882889, 0.27087159580558057, 0.15722474980613044])

	
chemicals.rachford_rice.Rachford_Rice_solution_LN2(zs, Ks, guess=None)

	Solves the a objective function for the Rachford-Rice flash equation
according to the Leibovici and Nichita (2010) transformation (method 2).
This transformation makes the only zero of the function be the desired one.
Consequently, higher-order methods may be used to solve this equation.
Halley’s (second derivative) method is found to be the best; typically
needing ~50% fewer iterations than the RR formulation with Secant method.

\[H(y) = \sum_i^n \frac{z_i}{\lambda - c_i} = 0

\]

\[\lambda = c_k + \frac{c_{k+1} - c_k}{1 + e^{-y}}

\]

\[c_i = \frac{1}{1-K_i}

\]

\[c_{k} = \left(\frac{V}{F}\right)_{min}

\]

\[c_{k+1} = \left(\frac{V}{F}\right)_{max}

\]

Note the two different uses of c in the above equation, confusingly
given in [1]. lambda is the vapor fraction.

Once the equation has been solved for y, the vapor fraction can be
calculated outside the solver.

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	guessfloat, optional
	Optional initial guess for vapor fraction, [-]

	Returns

	
	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [2].

\[\left(\frac{V}{F}\right)_{min} = \frac{(K_{max}-K_{min})z_{of\;K_{max}}
- (1-K_{min})}{(1-K_{min})(K_{max}-1)}

\]

\[\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}

\]

The first and second derivatives are derived with sympy as follows:

>>> from sympy import *
>>> VF_min, VF_max, ai, ci, y = symbols('VF_min, VF_max, ai, ci, y')
>>> V_over_F = (VF_min + (VF_max - VF_min)/(1 + exp(-y)))
>>> F = ai/(V_over_F - ci)
>>> terms = [F, diff(F, y), diff(F, y, 2)]
>>> cse(terms, optimizations='basic')

Some helpful information about this transformation can also be found in
[3].

References

	1

	Leibovici, Claude F., and Dan Vladimir Nichita. “Iterative Solutions
for ∑iaiλ-ci=1 Equations.” Chemical Engineering Research and Design 88,
no. 5 (May 1, 2010): 602-5. https://doi.org/10.1016/j.cherd.2009.10.012.

	2

	Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust
Alternative to Rachford-Rice in Flash Calculations.” Fluid Phase
Equilibria 316 (February 25, 2012): 85-97.
doi:10.1016/j.fluid.2011.12.005.

	3

	Billingsley, D. S. “Iterative Solution for ∑iaiλ-ci Equations.”
Computers & Chemical Engineering 26, no. 3 (March 15, 2002): 457-60.
https://doi.org/10.1016/S0098-1354(01)00767-0.

Examples

>>> Rachford_Rice_solution_LN2(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738, [0.3394086969663, 0.3650560590371, 0.29553524399648], [0.571903654388, 0.27087159580558, 0.1572247498061])

	
chemicals.rachford_rice.Li_Johns_Ahmadi_solution(zs, Ks, guess=None)

	Solves the objective function of the Li-Johns-Ahmadi flash equation.
Uses the method proposed in [1] to obtain an initial guess.

\[0 = 1 + \left(\frac{K_{max}-K_{min}}{K_{min}-1}\right)x_{max} + \sum_{i=2}^{n-1}
\frac{K_i-K_{min}}{K_{min}-1}
\left[\frac{z_i(K_{max}-1)x_{max}}{(K_i-1)z_{max} + (K_{max}-K_i)x_{max}}\right]

\]

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	Returns

	
	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [1].
Each guess should be limited to be between 0 and 1 as they are often
negative or larger than 1. max refers to the corresponding mole fractions
for the species with the largest K value.

\[\left(\frac{1-K_{min}}{K_{max}-K_{min}}\right)z_{max}\le x_{max} \le
\left(\frac{1-K_{min}}{K_{max}-K_{min}}\right)

\]

If the newton method does not converge, a bisection method (brenth) is
used instead. However, it is somewhat slower, especially as newton will
attempt 50 iterations before giving up.

This method does not work for problems of only two components.
K values are sorted internally. Has not been found to be quicker than the
Rachford-Rice equation.

References

	1(1,2)

	Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust
Alternative to Rachford-Rice in Flash Calculations.” Fluid Phase
Equilibria 316 (February 25, 2012): 85-97.
doi:10.1016/j.fluid.2011.12.005.

Examples

>>> Li_Johns_Ahmadi_solution(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738544, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858], [0.5719036543882889, 0.27087159580558057, 0.15722474980613044])

	
chemicals.rachford_rice.Rachford_Rice_solution_Leibovici_Neoschil(zs, Ks, guess=None)

	Solves the objective function of the Rachford-Rice flash equation as
modified by Leibovici and Neoschil. This modification helps
convergence near the vapor fraction boundaries only; it slows
convergence in other regions.

\[\left(\frac{V}{F} - \alpha_L\right)\left(\alpha_R - \frac{V}{F}\right)
\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

\[\alpha_L = - \frac{1}{K_{max} - 1}

\]

\[\alpha_R = \frac{1}{1 - K_{min}}

\]

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	guessfloat, optional
	Optional initial guess for vapor fraction, [-]

	Returns

	
	L_over_Ffloat
	Liquid fraction solution [-]

	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following.

\[\left(\frac{V}{F}\right)_{min} = \frac{(K_{max}-K_{min})z_{of\;K_{max}}
- (1-K_{min})}{(1-K_{min})(K_{max}-1)}

\]

\[\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}

\]

References

	1

	Leibovici, ClaudeF., and Jean Neoschil. “A New Look at the
Rachford-Rice Equation.” Fluid Phase Equilibria 74 (July 15, 1992):
303-8. https://doi.org/10.1016/0378-3812(92)85069-K.

Examples

>>> Rachford_Rice_solution_Leibovici_Neoschil(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.3092697372261, 0.69073026277385, [0.339408696966343, 0.36505605903717, 0.29553524399648], [0.57190365438828, 0.270871595805580, 0.157224749806130])

	
chemicals.rachford_rice.Rachford_Rice_solution_polynomial(zs, Ks)

	Solves the Rachford-Rice equation by transforming it into a polynomial,
and then either analytically calculating the roots, or, using the known
range the correct root is in, numerically solving for the correct
polynomial root. The analytical solutions are used for N from 2 to 4.

Uses the method proposed in [2] to obtain an initial guess when solving
the polynomial for the root numerically.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

Warning

: Using this function with more than 20 components is likely
to crash Python! This model does not work well with many components!

This method, developed first in [3] and expanded in [1], is clever but
of little use for large numbers of components.

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	Returns

	
	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

This approach has mostly been ignored by academia, despite some of its
advantages.

The initial guess is the average of the following, as described in [2].

\[\left(\frac{V}{F}\right)_{min} = \frac{(K_{max}-K_{min})z_{of\;K_{max}}
- (1-K_{min})}{(1-K_{min})(K_{max}-1)}

\]

\[\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}

\]

If the newton method does not converge, a bisection method (brenth) is
used instead. However, it is somewhat slower, especially as newton will
attempt 50 iterations before giving up.

This method could be speed up somewhat for N <= 4; the checks for the
vapor fraction range are not really needed.

References

	1

	Weigle, Brett D. “A Generalized Polynomial Form of the Objective
Function in Flash Calculations.” Pennsylvania State University, 1992.

	2(1,2)

	Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust
Alternative to Rachford-Rice in Flash Calculations.” Fluid Phase
Equilibria 316 (February 25, 2012): 85-97.
doi:10.1016/j.fluid.2011.12.005.

	3

	Warren, John H. “Explicit Determination of the Vapor Fraction in
Flash Calculations.” Pennsylvania State University, 1991.

Examples

>>> Rachford_Rice_solution_polynomial(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738543, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858], [0.5719036543882889, 0.27087159580558057, 0.15722474980613044])

Two Phase - High-Precision Implementations

	
chemicals.rachford_rice.Rachford_Rice_solution_mpmath(zs, Ks, dps=200, tol=1e-100)

	Solves the the Rachford-Rice flash equation using numerical
root-finding to a high precision using the mpmath library.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	dpsint, optional
	Number of decimal places to use in the intermediate values of the
calculation, [-]

	tolfloat, optional
	The tolerance of the solver used in mpmath, [-]

	Returns

	
	L_over_Ffloat
	Liquid fraction solution [-]

	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

This function is written solely for development purposes with the aim
of returning bit-accurate solutions.

Note that the liquid fraction is also returned; it is insufficient to
compute it as \(\frac{L}{F} = 1 - \frac{V}{F}\).

Examples

>>> Rachford_Rice_solution_mpmath(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.3092697372261456, 0.6907302627738544, [0.33940869696634357, 0.3650560590371706, 0.29553524399648584], [0.5719036543882889, 0.27087159580558057, 0.15722474980613046])
>>> Rachford_Rice_solution_mpmath(zs=[0.999999999999, 1e-12], Ks=[2.0, 1e-12])
(1e-12, 0.999999999999, [0.49999999999975003, 0.50000000000025], [0.9999999999995001, 5.0000000000025e-13])

	
chemicals.rachford_rice.Rachford_Rice_solution_binary_dd(zs, Ks)

	Solves the the Rachford-Rice flash equation for a binary system using
double-double math. This increases the range in which the
calculation can be performed accurately but does not totally eliminate
error.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

The analytical solution for a binary system is:

\[\frac{V}{F} = \frac{- K_{0} z_{0} - K_{1} z_{1} + z_{0} + z_{1}}
{K_{0} K_{1} z_{0} + K_{0} K_{1} z_{1} - K_{0} z_{0} - K_{0} z_{1}
 - K_{1} z_{0} - K_{1} z_{1} + z_{0} + z_{1}}

\]

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	Returns

	
	L_over_Ffloat
	Liquid fraction solution [-]

	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Examples

This system with large volatility difference and a trace of a component
shows a correct calculation. Try it out with other solvers for bad results!

>>> Rachford_Rice_solution_binary_dd(zs=[1E-27, 1.0], Ks=[1000000000000,0.1])
(1.000000000001, -1.0000000000009988e-12, [9.0000000000009e-13, 0.9999999999991], [0.90000000000009, 0.09999999999991001])

Note the limitations of this solver can be explored by comparing against
Rachford_Rice_solution_mpmath. For example, with z0 of 1e-28
in the above example error creeps back in.

	
chemicals.rachford_rice.Rachford_Rice_solution_Leibovici_Neoschil_dd(zs, Ks, guess=None)

	Solves the objective function of the Rachford-Rice flash equation as
modified by Leibovici and Neoschil, using double-double precision math
for maximum accuracy. For most cases, this function will return
bit-for-bit accurate results; but there are pathological inputs where
error still occurs.

\[\left(\frac{V}{F} - \alpha_L\right)\left(\alpha_R - \frac{V}{F}\right)
\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

\[\alpha_L = - \frac{1}{K_{max} - 1}

\]

\[\alpha_R = \frac{1}{1 - K_{min}}

\]

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	guessfloat, optional
	Optional initial guess for vapor fraction, [-]

	Returns

	
	L_over_Ffloat
	Liquid fraction solution [-]

	V_over_Ffloat
	Vapor fraction solution [-]

	xslist[float]
	Mole fractions of each species in the liquid phase, [-]

	yslist[float]
	Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following.

\[\left(\frac{V}{F}\right)_{min} = \frac{(K_{max}-K_{min})z_{of\;K_{max}}
- (1-K_{min})}{(1-K_{min})(K_{max}-1)}

\]

\[\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}

\]

References

	1

	Leibovici, ClaudeF., and Jean Neoschil. “A New Look at the
Rachford-Rice Equation.” Fluid Phase Equilibria 74 (July 15, 1992):
303-8. https://doi.org/10.1016/0378-3812(92)85069-K.

Examples

>>> Rachford_Rice_solution_Leibovici_Neoschil_dd(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.3092697372261, 0.69073026277385, [0.339408696966343, 0.36505605903717, 0.29553524399648], [0.57190365438828, 0.270871595805580, 0.157224749806130])

Three Phase

	
chemicals.rachford_rice.Rachford_Rice_solution2(ns, Ks_y, Ks_z, beta_y=0.5, beta_z=1e-06)

	Solves the two objective functions of the Rachford-Rice flash equation
for a three-phase system. Initial guesses are required for both phase
fractions, beta_y and beta_z. The Newton method is used, with an
analytical Jacobian.

\[F_0 = \sum_i \frac{z_i (K_y -1)}{1 + \beta_y(K_y-1) + \beta_z(K_z-1)} = 0

\]

\[F_1 = \sum_i \frac{z_i (K_z -1)}{1 + \beta_y(K_y-1) + \beta_z(K_z-1)} = 0

\]

	Parameters

	
	nslist[float]
	Overall mole fractions of all species (would be zs except that is
conventially used for one of the three phases), [-]

	Ks_ylist[float]
	Equilibrium K-values of y phase to x phase, [-]

	Ks_zlist[float]
	Equilibrium K-values of z phase to x phase, [-]

	beta_yfloat, optional
	Initial guess for y phase (between 0 and 1), [-]

	beta_zfloat, optional
	Initial guess for z phase (between 0 and 1), [-]

	Returns

	
	beta_yfloat
	Phase fraction of y phase, [-]

	beta_zfloat
	Phase fraction of z phase, [-]

	xslist[float]
	Mole fractions of each species in the x phase, [-]

	yslist[float]
	Mole fractions of each species in the y phase, [-]

	zslist[float]
	Mole fractions of each species in the z phase, [-]

Notes

The elements of the Jacobian are calculated as follows:

\[\frac{\partial F_0}{\partial \beta_y} = \sum_i \frac{-z_i (K_y -1)^2}
{\left(1 + \beta_y(K_y-1) + \beta_z(K_z-1)\right)^2}

\]

\[\frac{\partial F_1}{\partial \beta_z} = \sum_i \frac{-z_i (K_z -1)^2}
{\left(1 + \beta_y(K_y-1) + \beta_z(K_z-1)\right)^2}

\]

\[\frac{\partial F_1}{\partial \beta_y} = \sum_i \frac{\partial F_0}
{\partial \beta_z} = \frac{-z_i (K_z -1)(K_y - 1)}{\left(1
+ \beta_y(K_y-1) + \beta_z(K_z-1)\right)^2}

\]

In general, the solution which Newton’s method converges to may not be the
desired one, so further constraints are required.

Okuno’s method in [1] provides a polygonal region where the correct answer
lies. It has not been implemented.

The Leibovici and Neoschil method [4] provides a method to compute/update
the damping parameter, which is suposed to ensure convergence. It claims to
be able to calculate the maximum damping factor for Newton’s method, if it
tries to go out of bounds.

A custom region which is believed to be the same as that of Okuno is
implemented instead - the region which ensures positive compositions for
all compounds in all phases, but does not restrict the phase fractions to
be between 0 and 1 or even positive.

With the convergence restraint, it is believed if a solution lies within
(0, 1) for both variables, the correct solution will be converged to so long
as the initial guesses are within the correct region.

Some helpful information has also been found in [2] and [3].

References

	1

	Okuno, Ryosuke, Russell Johns, and Kamy Sepehrnoori. “A New
Algorithm for Rachford-Rice for Multiphase Compositional Simulation.”
SPE Journal 15, no. 02 (June 1, 2010): 313-25.
https://doi.org/10.2118/117752-PA.

	2

	Li, Zhidong, and Abbas Firoozabadi. “Initialization of Phase
Fractions in Rachford-Rice Equations for Robust and Efficient
Three-Phase Split Calculation.” Fluid Phase Equilibria 332 (October 25,
2012): 21-27. https://doi.org/10.1016/j.fluid.2012.06.021.

	3

	Gao, Ran, Xiaolong Yin, and Zhiping Li. “Hybrid Newton-Successive
Substitution Method for Multiphase Rachford-Rice Equations.” Entropy 20,
no. 6 (June 2018): 452. https://doi.org/10.3390/e20060452.

	4

	Leibovici, Claude F., and Jean Neoschil. “A Solution of
Rachford-Rice Equations for Multiphase Systems.” Fluid Phase Equilibria
112, no. 2 (December 1, 1995): 217-21.
https://doi.org/10.1016/0378-3812(95)02797-I.

Examples

>>> ns = [0.204322076984, 0.070970999150, 0.267194323384, 0.296291964579, 0.067046080882, 0.062489248292, 0.031685306730]
>>> Ks_y = [1.23466988745, 0.89727701141, 2.29525708098, 1.58954899888, 0.23349348597, 0.02038108640, 1.40715641002]
>>> Ks_z = [1.52713341421, 0.02456487977, 1.46348240453, 1.16090546194, 0.24166289908, 0.14815282572, 14.3128010831]
>>> Rachford_Rice_solution2(ns, Ks_y, Ks_z, beta_y=.1, beta_z=.6)
(0.6868328915094766, 0.06019424397668606, [0.1712804659711611, 0.08150738616425436, 0.1393433949193188, 0.20945175387703213, 0.15668977784027893, 0.22650123851718007, 0.015225982711774586], [0.21147483364299702, 0.07313470386530294, 0.31982891387635903, 0.33293382568889657, 0.036586042443791586, 0.004616341311925655, 0.02142533917172731], [0.26156812278601893, 0.00200221914149187, 0.20392660665189805, 0.2431536850887592, 0.03786610596908295, 0.03355679851539993, 0.21792646184834918])

N Phase

	
chemicals.rachford_rice.Rachford_Rice_solutionN(ns, Ks, betas)

	Solves the (phases -1) objectives functions of the Rachford-Rice flash
equation for an N-phase system. Initial guesses are required for all phase
fractions except the last. The Newton method is used, with an
analytical Jacobian.

	Parameters

	
	nslist[float]
	Overall mole fractions of all species, [-]

	Kslist[list[float]]
	Equilibrium K-values of all phases with respect to the x (reference)
phase, [-]

	betaslist[float]
	Phase fraction initial guesses only for the first N - 1 phases;
each value corresponds to the phase fraction of each set of the K
values; if a phase fraction is specified for the last phase as well,
it is ignored [-]

	Returns

	
	betaslist[float]
	Phase fractions of all of the phases; one each for each K value set
given, plus the reference phase phase fraction [-]

	compositionslist[list[float]]
	Mole fractions of each species in each phase; order each phase
in the same order as the K values were provided, and then the x phase
last, which was the reference phase [-]

Notes

This algorithm has been used without issue for 4 and 5 phase flashes.

Some helpful information was found in [1], although this method does not
follow it exactly.

References

	1

	Gao, Ran, Xiaolong Yin, and Zhiping Li. “Hybrid Newton-Successive
Substitution Method for Multiphase Rachford-Rice Equations.” Entropy 20,
no. 6 (June 2018): 452. https://doi.org/10.3390/e20060452.

Examples

>>> ns = [0.204322076984, 0.070970999150, 0.267194323384, 0.296291964579, 0.067046080882, 0.062489248292, 0.031685306730]
>>> Ks_y = [1.23466988745, 0.89727701141, 2.29525708098, 1.58954899888, 0.23349348597, 0.02038108640, 1.40715641002]
>>> Ks_z = [1.52713341421, 0.02456487977, 1.46348240453, 1.16090546194, 0.24166289908, 0.14815282572, 14.3128010831]
>>> Rachford_Rice_solutionN(ns, [Ks_y, Ks_z], [.1, .6])
([0.6868328915094767, 0.06019424397668605, 0.25297286451383727], [[0.21147483364299702, 0.07313470386530294, 0.3198289138763589, 0.33293382568889657, 0.03658604244379159, 0.004616341311925657, 0.02142533917172731], [0.26156812278601893, 0.00200221914149187, 0.203926606651898, 0.2431536850887592, 0.03786610596908296, 0.033556798515399944, 0.21792646184834918], [0.1712804659711611, 0.08150738616425436, 0.13934339491931877, 0.20945175387703213, 0.15668977784027896, 0.22650123851718015, 0.015225982711774586]])

Two Phase Utility Functions

	
chemicals.rachford_rice.Rachford_Rice_polynomial(zs, Ks)

	Transforms the Rachford-Rice equation into a polynomial and returns
its coefficients.
A spelled-out solution is used for N from 2 to 5, derived with SymPy and
optimized with the common sub expression approach.

Warning

For large numbers of components (>20) this model performs
terribly, though with future optimization it may be possible to have
better performance.

\[\sum_{i=1}^N z_i C_i\left[\Pi_{j\ne i}^N \left(1 + \frac{V}{F}
C_j\right)\right] = 0

\]

\[C_i = K_i - 1.0

\]

Once the above calculation is performed, it must be rearranged into
polynomial form.

	Parameters

	
	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	Returns

	
	coeffsfloat
	Coefficients, with earlier coefficients corresponding to higher powers,
[-]

Notes

Explicit calculations for any degree can be obtained with SymPy, changing
N as desired:

>>> from sympy import *
>>> N = 4
>>> Cs = symbols('C0:' + str(N))
>>> zs = symbols('z0:' + str(N))
>>> alpha = symbols('alpha')
>>> tot = 0
>>> for i in range(N):
... mult_sum = 1
>>> for j in range(N):
... if j != i:
... mult_sum *= (1 + alpha*Cs[j])
... tot += zs[i]*Cs[i]*mult_sum

poly_expr = poly(expand(tot), alpha)
coeff_list = poly_expr.all_coeffs()
cse(coeff_list, optimizations=’basic’)

[1] suggests a matrix-math based approach for solving the model, but that
has not been performed here. [1] also has explicit equations for
up to N = 7 to derive the coefficients.

The general form was derived to be slightly different than that in [1],
but is confirmed to also be correct as it matches other methods for solving
the Rachford-Rice equation. [2] has similar information to [1].

The first coefficient is always 1.

The approach is also discussed in [3], with one example.

References

	1(1,2,3,4)

	Weigle, Brett D. “A Generalized Polynomial Form of the Objective
Function in Flash Calculations.” Pennsylvania State University, 1992.

	2

	Warren, John H. “Explicit Determination of the Vapor Fraction in
Flash Calculations.” Pennsylvania State University, 1991.

	3

	Monroy-Loperena, Rosendo, and Felipe D. Vargas-Villamil. “On the
Determination of the Polynomial Defining of Vapor-Liquid Split of
Multicomponent Mixtures.” Chemical Engineering Science 56, no. 20
(October 1, 2001): 5865-68.
https://doi.org/10.1016/S0009-2509(01)00267-6.

Examples

>>> Rachford_Rice_polynomial(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
[1.0, -3.6926529966760824, 2.073518878815093]

	
chemicals.rachford_rice.Rachford_Rice_flash_error(V_over_F, zs, Ks)

	Calculates the objective function of the Rachford-Rice flash equation.
This function should be called by a solver seeking a solution to a flash
calculation. The unknown variable is V_over_F, for which a solution
must be between 0 and 1.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

	Parameters

	
	V_over_Ffloat
	Vapor fraction guess [-]

	zslist[float]
	Overall mole fractions of all species, [-]

	Kslist[float]
	Equilibrium K-values, [-]

	Returns

	
	errorfloat
	Deviation between the objective function at the correct V_over_F
and the attempted V_over_F, [-]

Notes

The derivation is as follows:

\[F z_i = L x_i + V y_i

\]

\[x_i = \frac{z_i}{1 + \frac{V}{F}(K_i-1)}

\]

\[\sum_i y_i = \sum_i K_i x_i = 1

\]

\[\sum_i(y_i - x_i)=0

\]

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0

\]

This objective function was proposed in [1].

References

	1

	Rachford, H. H. Jr, and J. D. Rice. “Procedure for Use of Electronic
Digital Computers in Calculating Flash Vaporization Hydrocarbon
Equilibrium.” Journal of Petroleum Technology 4, no. 10 (October 1,
1952): 19-3. doi:10.2118/952327-G.

Examples

>>> Rachford_Rice_flash_error(0.5, zs=[0.5, 0.3, 0.2],
... Ks=[1.685, 0.742, 0.532])
0.04406445591174976

Numerical Notes

For the two-phase problem, there are the following ways of computing the vapor
and liquid mole fractions once the vapor fraction and liquid fraction has
been computed:

The most commonly shown expression is:

\[x_i = \frac{z_i}{1 + \frac{V}{F}(K_i-1)}

\]

This can cause numerical issues when \(K_i\) is near 1. It also shows
issues near \(\frac{V}{F}(K_i-1) = -1\).

Another expression which avoids the second issue is

\[x_i = \frac{z_i}{\frac{L}{F} + (1 - \frac{L}{F})K_i}

\]

Much like the other expression above this numerical issues but at different
conditions: \(\frac{L}{F} = 1\) and \(\frac{L}{F} = -(1 - \frac{L}{F})K_i\).

One more expression using both liquid and vapor fraction is:

\[x_i = \frac{z_i}{K_i\frac{V}{F} + \frac{L}{F} }

\]

This expression only has one problematic area: \(K_i\frac{V}{F} = \frac{L}{F}\).
Preferably, this is computed with a fused-multiply-add operation.

Another expression which flips the K value into the liquid form and swaps the
vapor fraction for the liquid fraction in-line is as follows

\[x_i = \frac{\frac{z_i}{K_i}}
{\frac{\frac{L}{F}}{K_i} + \frac{V}{F}}

\]

This also has numerical problems when \(-\frac{\frac{L}{F}}{K_i} = \frac{V}{F}\).

Even when computing a solution with high precision such as with mpmath,
the resulting compositions and phase fractions may fail basic tests. In the
following case, a nasty problem has a low-composition but relatively volatile
last component. Mathematically, \(1 = \frac{\frac{L}{F} x_i + \frac{V}{F} y_i}{z_i}\).
This is true for all components except the last one in this case, where
significant error exists.

>>> zs = [0.004632150100959984, 0.019748784459594933, 0.0037494212674659875, 0.0050492815033649835, 7.049818284201636e-05, 0.019252941309184937, 0.022923068733233923, 0.02751809363371991, 0.044055273670258854, 0.026348159124199914, 0.029384949788372902, 0.022368938441593926, 0.03876345111451487, 0.03440715821883388, 0.04220510198067186, 0.04109191458414686, 0.031180945124537895, 0.024703227642798916, 0.010618543295340965, 0.043262442161003854, 0.006774922650311977, 0.02418090788262392, 0.033168278052077886, 0.03325881573680989, 0.027794535589044905, 0.00302091746847699, 0.013693571363003955, 0.043274465132840854, 0.02431371852108292, 0.004119055065872986, 0.03314056562191489, 0.03926511182895087, 0.0305068048046159, 0.014495317922126952, 0.03603737707409988, 0.04346278949361786, 0.019715052322446934, 0.028565255195219907, 0.023343683279902924, 0.026532427286078915, 2.0833722372767433e-06]
>>> Ks = [0.000312001984979, 0.478348350355814, 0.057460349529956, 0.142866526725442, 0.186076915390803, 1.67832923245552, 0.010784509466239, 0.037204384948088, 0.005359146955631, 2.41896552551221, 0.020514598049597, 0.104545054017411, 2.37825397780443, 0.176463709057649, 0.000474240879865, 0.004738042026669, 0.02556030236928, 0.00300089652604, 0.010614774675069, 1.75142303167203, 1.47213647779132, 0.035773024794854, 4.15016401471676, 0.024475125100923, 0.00206952065986, 2.09173484409107, 0.06290795470216, 0.001537212006245, 1.16935817509767, 0.001830422812888, 0.058398776367331, 0.516860928072656, 1.03039372722559, 0.460775800103578, 0.10980302936483, 0.009883724220094, 0.021938589630783, 0.983011657214417, 0.01978995396409, 0.204144939961852, 14.0521979447538]
>>> LF, VF, xs, ys = Rachford_Rice_solution_mpmath(zs=zs, Ks=Ks)
>>> (LF*xs[-1] + VF*ys[-1])/zs[-1]
1.0000000000028162

 Chemical Reactions (chemicals.reaction)

Chemical Reactions (chemicals.reaction)

This module contains lookup functions enthalpies and standard entropies of
formation. Lookup functions are availa for the liquid, solid, and gas states.
A compound may be in more than one lookup function.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Solid Heat of Formation

	Liquid Heat of Formation

	Gas Heat of Formation

	Solid Absolute Entropy

	Liquid Absolute Entropy

	Gas Absolute Entropy

	Utility Functions

	Chemical Reactions

Solid Heat of Formation

	
chemicals.reaction.Hfs(CASRN, method=None)

	This function handles the retrieval of a chemical’s solid/crystaline
standard phase heat of formation. The lookup is based on CASRNs. Will
automatically select a data source to use if no method is provided; returns
None if the data is not available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Hfsfloat
	Solid standard-state heat of formation, [J/mol]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
Hfs_methods

See also

	Hfs_methods
	

Notes

Sources are:

	‘CRC’, from the CRC handbook (1360 values) [1]

	‘WEBBOOK’ (2000 values) [2]

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	2

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> Hfs('101-81-5') # Diphenylmethane
71500.0

	
chemicals.reaction.Hfs_methods(CASRN)

	Return all methods available to obtain the solid-phase heat of
formation for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Hfs with the given
inputs.

See also

	Hfs
	

	
chemicals.reaction.Hfs_all_methods = ('CRC', 'WEBBOOK')

	Tuple of method name keys. See the Hfs for the actual references

Liquid Heat of Formation

	
chemicals.reaction.Hfl(CASRN, method=None)

	This function handles the retrieval of a chemical’s liquid standard
phase heat of formation. The lookup is based on CASRNs. Will automatically
select a data source to use if no method is provided; returns None if
the data is not available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Hflfloat
	Liquid standard-state heat of formation, [J/mol]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
Hfl_all_methods.

See also

	Hfl_methods
	

Notes

Sources are:

	‘ATCT_L’, the Active Thermochemical Tables version 1.112. [1]

	‘CRC’, from the CRC handbook (1360 values) [2]

	‘WEBBOOK’ (2000 values) [3]

References

	1

	Ruscic, Branko, Reinhardt E. Pinzon, Gregor von Laszewski, Deepti
Kodeboyina, Alexander Burcat, David Leahy, David Montoy, and Albert F.
Wagner. “Active Thermochemical Tables: Thermochemistry for the 21st
Century.” Journal of Physics: Conference Series 16, no. 1
(January 1, 2005): 561. doi:10.1088/1742-6596/16/1/078.

	2

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	3

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> Hfl('67-56-1')
-238400.0

	
chemicals.reaction.Hfl_methods(CASRN)

	Return all methods available to obtain the standard liquid-state heat
of formation for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Hfl with the given
inputs.

See also

	Hfl
	

	
chemicals.reaction.Hfl_all_methods = ('ATCT_L', 'CRC', 'WEBBOOK', 'JANAF')

	Tuple of method name keys. See the Hfl for the actual references

Gas Heat of Formation

	
chemicals.reaction.Hfg(CASRN, method=None)

	This function handles the retrieval of a chemical’s gas heat of
formation. Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Hfgfloat
	Ideal gas phase heat of formation, [J/mol]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
Hfg_methods

See also

	Hfg_methods
	

Notes

Function has data for approximately 8700 chemicals. Sources are:

	‘ATCT_G’, the Active Thermochemical Tables version 1.112 (600 values) [1]

	‘TRC’, from a 1994 compilation (1750 values) [2]

	‘CRC’, from the CRC handbook (1360 values) [3]

	‘WEBBOOK’, a NIST resource [6] containing mostly experimental
and averaged values

	‘JANAF’, the 1998 JANAF values online

	‘JOBACK’, an estimation method for organic substances in [5]

	‘YAWS’, a large compillation of values, mostly estimated (5000 values) [4]

‘TRC’ data may have come from computational procedures, for example petane
is off by 30%.

References

	1

	Ruscic, Branko, Reinhardt E. Pinzon, Gregor von Laszewski, Deepti
Kodeboyina, Alexander Burcat, David Leahy, David Montoy, and Albert F.
Wagner. “Active Thermochemical Tables: Thermochemistry for the 21st
Century.” Journal of Physics: Conference Series 16, no. 1
(January 1, 2005): 561. doi:10.1088/1742-6596/16/1/078.

	2

	Frenkel`, M. L, Texas Engineering Experiment Station, and
Thermodynamics Research Center. Thermodynamics of Organic Compounds in
the Gas State. College Station, Tex.: Thermodynamics Research Center,
1994.

	3

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	4

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	5

	Joback, K.G., and R.C. Reid. “Estimation of Pure-Component
Properties from Group-Contributions.” Chemical Engineering
Communications 57, no. 1-6 (July 1, 1987): 233-43.
doi:10.1080/00986448708960487.

	6

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> Hfg('67-56-1')
-200700.0
>>> Hfg('67-56-1', method='YAWS')
-200900.0
>>> Hfg('67-56-1', method='CRC')
-201000.0
>>> Hfg('67-56-1', method='TRC')
-190100.0

	
chemicals.reaction.Hfg_methods(CASRN)

	Return all methods available to obtain the gas phase heat of formation
for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Hfg with the given
inputs.

See also

	Hfg
	

	
chemicals.reaction.Hfg_all_methods = ('ATCT_G', 'TRC', 'CRC', 'WEBBOOK', 'JANAF', 'YAWS', 'JOBACK')

	Tuple of method name keys. See the Hfg for the actual references

Solid Absolute Entropy

	
chemicals.reaction.S0s(CASRN, method=None)

	This function handles the retrieval of a chemical’s absolute
entropy at a reference temperature of 298.15 K and pressure of 1 bar,
in the solid state. Lookup is based on CASRNs. Will automatically select a
data source to use if no method is provided; returns None if the data is not
available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	S0sfloat
	Ideal gas standard absolute entropy of compound, [J/mol/K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
S0s_all_methods.

See also

	S0s_methods
	

Notes

Sources are:

	‘CRC’ [1] from the CRC handbook (1360 values)

	‘WEBBOOK’, a NIST resource [2] containing mostly experimental
and averaged values

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	2

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> S0s('7439-93-2') # Lithium
29.1

	
chemicals.reaction.S0s_methods(CASRN)

	Return all methods available to obtain the absolute entropy of the
compound in the solid phase for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the S0s with the given
inputs.

See also

	S0s
	

	
chemicals.reaction.S0s_all_methods = ('CRC', 'WEBBOOK')

	Tuple of method name keys. See the S0s for the actual references

Liquid Absolute Entropy

	
chemicals.reaction.S0l(CASRN, method=None)

	This function handles the retrieval of a chemical’s absolute
entropy at a reference temperature of 298.15 K and pressure of 1 bar,
in the liquid state.

Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	S0lfloat
	Ideal gas standard absolute entropy of compound, [J/mol/K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
S0l_all_methods.

See also

	S0l_methods
	

Notes

Sources are:

	‘CRC’, from the CRC handbook

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

Examples

>>> S0l('7439-97-6') # Mercury
75.9

	
chemicals.reaction.S0l_methods(CASRN)

	Return all methods available to obtain the absolute entropy for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the S0l with the given
inputs.

See also

	S0l
	

	
chemicals.reaction.S0l_all_methods = ('CRC', 'WEBBOOK', 'JANAF')

	Tuple of method name keys. See the S0l for the actual references

Gas Absolute Entropy

	
chemicals.reaction.S0g(CASRN, method=None)

	This function handles the retrieval of a chemical’s absolute
entropy at a reference temperature of 298.15 K and pressure of 1 bar,
in the ideal gas state.

Lookup is based on CASRNs. Will automatically select a data
source to use if no method is provided; returns None if the data is not
available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	S0gfloat
	Ideal gas standard absolute entropy of compound, [J/mol/K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
S0g_all_methods

See also

	S0g_methods
	

Notes

Function has data for approximately 5400 chemicals. Sources are:

	‘CRC’, from the CRC handbook (520 values)

	‘YAWS’, a large compillation of values, mostly estimated (4890 values)

	‘WEBBOOK’, a NIST resource [3] containing mostly experimental
and averaged values

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	2

	Yaws, Carl L. Thermophysical Properties of Chemicals and
Hydrocarbons, Second Edition. Amsterdam Boston: Gulf Professional
Publishing, 2014.

	3

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

Examples

>>> S0g('67-56-1')
239.9
>>> S0g('67-56-1', method='YAWS')
239.88

	
chemicals.reaction.S0g_methods(CASRN)

	Return all methods available to obtain the S0g for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the S0g with the given
inputs.

See also

	S0g
	

	
chemicals.reaction.S0g_all_methods = ('CRC', 'WEBBOOK', 'JANAF', 'YAWS')

	Tuple of method name keys. See the S0g for the actual references

Utility Functions

	
chemicals.reaction.Gibbs_formation(dHf, S0_abs, dHfs_std, S0_abs_elements, coeffs_elements, T_ref=298.15)

	This function calculates the Gibbs free energy of formation of a
compound, from its constituent elements.

The calculated value will be for a “standard-state” value if dHf and
S0_abs are provided in the standard state; or it will be in an
“ideal gas” basis if they are both for an ideal gas. For compounds which
are gases at STP, the two values are the same.

	Parameters

	
	dHffloat
	Molar enthalpy of formation of the created compound, [J/mol]

	S0_absfloat
	Absolute molar entropy of the created compound at the reference
temperature, [J/mol/K]

	dHfs_stdlist[float]
	List of standard molar enthalpies of formation of all elements used in
the formation of the created compound, [J/mol]

	S0_abs_elementslist[float]
	List of standard absolute molar entropies at the reference temperature
of all elements used in the formation of the created compound,
[J/mol/K]

	coeffs_elementslist[float]
	List of coefficients for each compound (i.e. 1 for C, 2 for H2 if the
target is methane), in the same order as dHfs_std and
S0_abs_elements, [-]

	T_reffloat, optional
	The standard state temperature, default 298.15 K; few values are
tabulated at other temperatures, [-]

	Returns

	
	dGffloat
	Gibbs free energy of formation for the created compound, [J/mol]

Notes

Be careful for elements like Bromine - is the tabulated value for Br2 or
Br?

References

	1

	“Standard Gibbs Free Energy of Formation Calculations Chemistry
Tutorial.” Accessed March, 2019. https://www.ausetute.com.au/gibbsform.html.

Examples

Calculate the standard-state Gibbs free energy of formation for water,
using water’s standard state heat of formation and absolute entropy
at 298.15 K:

>>> Gibbs_formation(-285830, 69.91, [0, 0], [130.571, 205.147], [1, .5])
-237161.633825

Calculate the ideal-gas state Gibbs free energy of formation for water,
using water’s ideal-gas state heat of formation and absolute entropy
at 298.15 K as a gas:

>>> Gibbs_formation(-241818, 188.825, [0, 0], [130.571, 205.147], [1, .5])
-228604.141075

Calculate the Gibbs free energy of formation for CBrF3 (it is a gas at STP,
so its standard-state and ideal-gas state values are the same) at 298.15 K:

>>> Gibbs_formation(-648980, 297.713, [0, 0, 0], [5.74, 152.206, 202.789], [1, .5, 1.5])
-622649.329975

Note in the above calculation that the Bromine’s S0 and Hf are for Br2;
and that the value for Bromine as a liquid, which is its standard state,
is used.

	
chemicals.reaction.entropy_formation(Hf, Gf, T_ref=298.15)

	This function calculates the entropy of formation of a
compound, from its constituent elements.

The calculated value will be for a “standard-state” value if Hf and
Gf are provided in the standard state; or it will be in an
“ideal gas” basis if they are both for an ideal gas. For compounds which
are gases at STP, the two values are the same.

	Parameters

	
	Hffloat
	Molar enthalpy of formation of the compound, [J/mol]

	Gffloat
	Molar Gibbs free energy of formation of the compound, [J/mol]

	T_reffloat, optional
	The standard state temperature, default 298.15 K; few values are
tabulated at other temperatures, [-]

	Returns

	
	S0float
	Entropy of formation of the compound, [J/mol/K]

Examples

Entropy of formation of methane:

>>> entropy_formation(Hf=-74520, Gf=-50490)
-80.59701492537314

Entropy of formation of water in ideal gas state:

>>> entropy_formation(Hf=-241818, Gf=-228572)
-44.427301693778304

	
chemicals.reaction.Hf_basis_converter(Hvapm, Hf_liq=None, Hf_gas=None)

	This function converts a liquid or gas enthalpy of formation to the
other. This is useful, as thermodynamic packages often work with ideal-
gas as the reference state and require ideal-gas enthalpies of formation.

	Parameters

	
	Hvapmfloat
	Molar enthalpy of vaporization of compound at 298.15 K or (unlikely)
the reference temperature, [J/mol]

	Hf_liqfloat, optional
	Enthalpy of formation of the compound in its liquid state, [J/mol]

	Hf_gasfloat, optional
	Enthalpy of formation of the compound in its ideal-gas state, [J/mol]

	Returns

	
	Hf_calcfloat, optional
	Enthalpy of formation of the compound in the other state to the one
provided, [J/mol]

Examples

Calculate the ideal-gas enthalpy of formation for water, from its standard-
state (liquid) value:

>>> Hf_basis_converter(44018, Hf_liq=-285830)
-241812

Calculate the standard-state (liquid) enthalpy of formation for water, from
its ideal-gas value:

>>> Hf_basis_converter(44018, Hf_gas=-241812)
-285830

Chemical Reactions

	
chemicals.reaction.balance_stoichiometry(matrix, rounding=9, allow_fractional=False)

	This function balances a chemical reaction.

	Parameters

	
	matrixlist[list[float]]
	
	Chemical reaction matrix for further processing; rows contain element
	counts of each compound, and the columns represent each chemical, [-]

	Returns

	
	coefficientslist[float]
	Balanced coefficients; all numbers are positive, [-]

Notes

Balance the reaction 4 NH3 + 5 O2 = 4 NO + 6 H2O, without knowing the
coefficients:

>>> matrix = stoichiometric_matrix([{'N': 1, 'H': 3}, {'O': 2}, {'N': 1, 'O': 1}, {'H': 2, 'O': 1}], [True, True, False, False])
>>> matrix
[[3, 0, 0, -2], [1, 0, -1, 0], [0, 2, -1, -1]]
>>> balance_stoichiometry(matrix)
[4.0, 5.0, 4.0, 6.0]
>>> balance_stoichiometry(matrix, allow_fractional=True)
[1.0, 1.25, 1.0, 1.5]

This algorithm relies on scipy.
The behavior of this function for inputs which do not have a unique
solution is undefined.

This algorithm may suffer from floating point issues. If you believe there
is an error in the result, please report your reaction to the developers.

References

	1

	Sen, S. K., Hans Agarwal, and Sagar Sen. “Chemical Equation
Balancing: An Integer Programming Approach.” Mathematical and Computer
Modelling 44, no. 7 (October 1, 2006): 678-91.
https://doi.org/10.1016/j.mcm.2006.02.004.

	2

	URAVNOTE, NOVOODKRITI PARADOKSI V. TEORIJI, and ENJA KEMIJSKIH
REAKCIJ. “New Discovered Paradoxes in Theory of Balancing Chemical
Reactions.” Materiali in Tehnologije 45, no. 6 (2011): 503-22.

	
chemicals.reaction.stoichiometric_matrix(atomss, reactants)

	This function calculates a stoichiometric matrix of reactants and
stoichiometric matrix, as required by a solver to compute the reation
coefficients.

	Parameters

	
	atomsslist[dict[(str, float)]]
	A list of dictionaties of (element, element_count) pairs for each
chemical, [-]

	reactantslist[bool]
	List of booleans indicating whether each chemical is a reactant (True)
or a product (False), [-]

	Returns

	
	matrixlist[list[float]]
	
	Chemical reaction matrix for further processing; rows contain element
	counts of each compound, and the columns represent each chemical, [-]

Notes

The rows of the matrix contain the element counts of each compound,
and the columns represent each chemical.

References

	1

	Sen, S. K., Hans Agarwal, and Sagar Sen. “Chemical Equation
Balancing: An Integer Programming Approach.” Mathematical and Computer
Modelling 44, no. 7 (October 1, 2006): 678-91.
https://doi.org/10.1016/j.mcm.2006.02.004.

	2

	URAVNOTE, NOVOODKRITI PARADOKSI V. TEORIJI, and ENJA KEMIJSKIH
REAKCIJ. “New Discovered Paradoxes in Theory of Balancing Chemical
Reactions.” Materiali in Tehnologije 45, no. 6 (2011): 503-22.

Examples

MgO2 -> Mg + 1/2 O2
(k=1)

>>> stoichiometric_matrix([{'Mg': 1, 'O': 1}, {'Mg': 1}, {'O': 2}], [True, False, False])
[[1, -1, 0], [1, 0, -2]]

Cl2 + propylene -> allyl chloride + HCl

>>> stoichiometric_matrix([{'Cl': 2}, {'C': 3, 'H': 6}, {'C': 3, 'Cl': 1, 'H': 5}, {'Cl': 1, 'H': 1}], [True, True, False, False, False])
[[0, 3, -3, 0], [2, 0, -1, -1], [0, 6, -5, -1]]

Al + 4HNO3 -> Al(NO3)3 + NO + 2H2O
(k=1)

>>> stoichiometric_matrix([{'Al': 1}, {'H': 1, 'N': 1, 'O': 3}, {'Al': 1, 'N': 3, 'O': 9}, {'N': 1, 'O': 1}, {'H': 2, 'O': 1}], [True, True, False, False, False])
[[1, 0, -1, 0, 0], [0, 1, 0, 0, -2], [0, 1, -3, -1, 0], [0, 3, -9, -1, -1]]

4Fe + 3O2 -> 2(Fe2O3)
(k=2)

>>> stoichiometric_matrix([{'Fe': 1}, {'O': 2}, {'Fe':2, 'O': 3}], [True, True, False])
[[1, 0, -2], [0, 2, -3]]

4NH3 + 5O2 -> 4NO + 6(H2O)
(k=4)

>>> stoichiometric_matrix([{'N': 1, 'H': 3}, {'O': 2}, {'N': 1, 'O': 1}, {'H': 2, 'O': 1}], [True, True, False, False])
[[3, 0, 0, -2], [1, 0, -1, 0], [0, 2, -1, -1]]

No unique solution:
C2H5NO2 + C3H7NO3 + 2C6H14N4O2 + 3C5H9NO2 + 2C9H11NO2 -> 8H2O + C50H73N15O11

>>> stoichiometric_matrix([{'C': 2, 'H': 5, 'N': 1, 'O': 2}, {'C': 3, 'H': 7, 'N': 1, 'O': 3}, {'C': 6, 'H': 14, 'N': 4, 'O': 2}, {'C': 5, 'H': 9, 'N': 1, 'O': 2}, {'C': 9, 'H': 11, 'N': 1, 'O': 2}, {'H': 2, 'O': 1}, {'C': 50, 'H': 73, 'N': 15, 'O': 11}], [True, True, True, True, True, False, False])
[[2, 3, 6, 5, 9, 0, -50], [5, 7, 14, 9, 11, -2, -73], [1, 1, 4, 1, 1, 0, -15], [2, 3, 2, 2, 2, -1, -11]]

 Refractive Index (chemicals.refractivity)

Refractive Index (chemicals.refractivity)

This module contains various refractive index lookup, calculation,
and unit conversion routines and dataframes.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Lookup Functions

	Correlations for Specific Substances

	Unit Conversions

	Utility functions

	Pure Component Liquid Fit Correlations

Lookup Functions

	
chemicals.refractivity.RI(CASRN, method=None)

	This function handles the retrieval of a chemical’s refractive
index. Lookup is based on CASRNs. Will automatically select a data source
to use if no method is provided; returns None if the data is not available.

Function has data for approximately 4500 chemicals.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	RIfloat
	Refractive Index on the Na D line, [-]

	Tfloat or None
	Temperature at which refractive index reading was made; None if not
available, [K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined by constants in
RI_methods

Notes

The available sources are as follows:

	‘CRC’, a compillation of Organic RI data in [1].

	‘WIKIDATA’, data from the Wikidata project [2]

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014.

	2

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

Examples

>>> RI(CASRN='64-17-5')
(1.3611, 293.15)
>>> RI("60-35-5")
(1.4278, None)
>>> RI('100-41-4', method='WIKIDATA')
(1.495, None)

	
chemicals.refractivity.RI_methods(CASRN)

	Return all methods available to obtain the refractive index for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the RI with the given
inputs.

See also

	RI
	

	
chemicals.refractivity.RI_all_methods = ('CRC', 'WIKIDATA')

	Tuple of method name keys. See the RI for the actual references

Correlations for Specific Substances

	
chemicals.refractivity.RI_IAPWS(T, rho, wavelength=5.893e-07)

	Calculates the refractive index of water at a given temperature,
density, and wavelength.

\[n(\rho, T, \lambda) = \left(\frac{2A + 1}{1-A}\right)^{0.5}

\]

\[A(\delta, \theta, \Lambda) = \delta\left(a_0 + a_1\delta +
a_2\theta + a_3\Lambda^2\theta + a_4\Lambda^{-2}
\frac{a_5}{\Lambda^2-\Lambda_{UV}^2} + \frac{a_6}
{\Lambda^2 - \Lambda_{IR}^2} + a_7\delta^2\right)

\]

\[\delta = \rho/(1000 \text{ kg/m}^3)

\]

\[\theta = T/273.15\text{K}

\]

\[\Lambda = \lambda/0.589 \mu m

\]

\[\Lambda_{IR} = 5.432937

\]

\[\Lambda_{UV} = 0.229202

\]

	Parameters

	
	Tfloat
	Temperature of the water [K]

	rhofloat
	Density of the water [kg/m^3]

	wavelengthfloat
	Wavelength of fluid [meters]

	Returns

	
	RIfloat
	Refractive index of the water, [-]

Notes

This function is valid in the following range:
261.15 K < T < 773.15 K
0 < rho < 1060 kg/m^3
0.2 < wavelength < 1.1 micrometers

Test values are from IAPWS 2010 book.

References

	1

	IAPWS, 1997. Release on the Refractive Index of Ordinary Water
Substance as a Function of Wavelength, Temperature and Pressure.

Examples

>>> RI_IAPWS(298.15, 997.047435)
1.3328581926471605

Unit Conversions

	
chemicals.refractivity.brix_to_RI(brix)

	Convert a refractive index measurement on the brix scale to a standard
refractive index.

	Parameters

	
	brixfloat
	Degrees brix to be converted, [°Bx]

	Returns

	
	RIfloat
	Refractive index, [-]

Notes

The scale is officially defined from 0 to 85; but the data source contains
values up to 95. Linear extrapolation outside of the bounds is performed;
and a table of 96 values are linearly interpolated.

The ICUMSA (International Committee of Uniform Method of Sugar Analysis)
published a document setting out the reference values in 1974; but an
original data source has not been found and reviewed.

References

	1

	“Refractometer　Data Book-Refractive Index and Brix | ATAGO CO.,
LTD.” Accessed June 13, 2020.
https://www.atago.net/en/databook-refractometer_relationship.php.

Examples

>>> brix_to_RI(5.8)
1.341452
>>> brix_to_RI(0.0)
1.33299
>>> brix_to_RI(95.0)
1.532

	
chemicals.refractivity.RI_to_brix(RI)

	Convert a standard refractive index measurement to the brix scale.

	Parameters

	
	RIfloat
	Refractive index, [-]

	Returns

	
	brixfloat
	Degrees brix to be converted, [°Bx]

Notes

The scale is officially defined from 0 to 85; but the data source contains
values up to 95.

Linear extrapolation to values under 0 or above 95 is performed.

The ICUMSA (International Committee of Uniform Method of Sugar Analysis)
published a document setting out the reference values in 1974; but an
original data source has not been found and reviewed.

References

	1

	“Refractometer　Data Book-Refractive Index and Brix | ATAGO CO.,
LTD.” Accessed June 13, 2020.
https://www.atago.net/en/databook-refractometer_relationship.php.

Examples

>>> RI_to_brix(1.341452)
5.800000000000059
>>> RI_to_brix(1.33299)
0.0
>>> RI_to_brix(1.532)
95.0

Utility functions

	
chemicals.refractivity.polarizability_from_RI(RI, Vm)

	Returns the polarizability of a fluid given its molar volume and
refractive index.

\[\alpha = \left(\frac{3}{4\pi N_A}\right)
\left(\frac{n^2-1}{n^2+2}\right)V_m

\]

	Parameters

	
	RIfloat
	Refractive Index on Na D line, [-]

	Vmfloat
	Molar volume of fluid, [m^3/mol]

	Returns

	
	alphafloat
	Polarizability [m^3]

Notes

This Lorentz-Lorentz-expression is most correct when van der Waals
interactions dominate. Alternate conversions have been suggested.
This is often expressed in units of cm^3 or Angstrom^3. To convert to these
units, multiply by 1E9 or 1E30 respectively.

References

	1

	Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M.
Vargas. “A Simple Method for Estimation of Dielectric Constants and
Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.”
International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24.
doi:10.1007/s10765-016-2075-8.

Examples

>>> polarizability_from_RI(1.3611, 5.8676E-5)
5.147658206528923e-30

	
chemicals.refractivity.molar_refractivity_from_RI(RI, Vm)

	Returns the molar refractivity of a fluid given its molar volume and
refractive index.

\[R_m = \left(\frac{n^2-1}{n^2+2}\right)V_m

\]

	Parameters

	
	RIfloat
	Refractive Index on Na D line, [-]

	Vmfloat
	Molar volume of fluid, [m^3/mol]

	Returns

	
	Rmfloat
	Molar refractivity [m^3/mol]

References

	1

	Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M.
Vargas. “A Simple Method for Estimation of Dielectric Constants and
Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.”
International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24.
doi:10.1007/s10765-016-2075-8.

Examples

>>> molar_refractivity_from_RI(1.3611, 5.8676E-5)
1.2985217089649597e-05

	
chemicals.refractivity.RI_from_molar_refractivity(Rm, Vm)

	Returns the refractive index of a fluid given its molar volume and
molar refractivity.

\[RI = \sqrt{\frac{-2R_m - V_m}{R_m-V_m}}

\]

	Parameters

	
	Rmfloat
	Molar refractivity [m^3/mol]

	Vmfloat
	Molar volume of fluid, [m^3/mol]

	Returns

	
	RIfloat
	Refractive Index on Na D line, [-]

References

	1

	Panuganti, Sai R., Fei Wang, Walter G. Chapman, and Francisco M.
Vargas. “A Simple Method for Estimation of Dielectric Constants and
Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons.”
International Journal of Thermophysics 37, no. 7 (June 6, 2016): 1-24.
doi:10.1007/s10765-016-2075-8.

Examples

>>> RI_from_molar_refractivity(1.2985e-5, 5.8676E-5)
1.3610932757685672

Pure Component Liquid Fit Correlations

	
chemicals.refractivity.TDE_RIXExpansion(T, Bs, Cs, wavelength=5.8926e-07)

	Calculates the refractive index of a pure liquid at a given temperature,
and wavelength, using the NIST TDE RIXExpansion formula [1].

\[n(T, \lambda) = \sum_{i=0}^{i} B_i t^i + \sum_j C_j w^j

\]

\[t = T - 298.15

\]

\[w = WL\times 10^{9} - 589.26

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	Bslist[float]
	Polynomial temperature expansion coefficients, in reverse order to the
polynomial (as needed for efficient computation with horner’s method’),
[-]

	Cslist[float]
	Polynomial wavelength expansion coefficients, in reverse order to the
polynomial (as needed for efficient computation with horner’s method’),
[-]

	wavelengthfloat
	Wavelength of fluid [meters]

	Returns

	
	RIfloat
	Refractive index of the pure fluid, [-]

References

	1

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-RefractiveIndex/RIXExpansion.htm.

Examples

>>> TDE_RIXExpansion(330.0, Bs=[-0.000125041, 1.33245], Cs=[1.20771e-7, -3.56795e-5, 0.0], wavelength=589.26e-9*.7)
1.33854894426073

 Health, Safety, and Flammability Properties (chemicals.safety)

Health, Safety, and Flammability Properties (chemicals.safety)

This module contains functions for lookup the following properties for a
chemical:

	Short-term Exposure Limit (STEL)

	Time-Weighted Average Exposure Limit (TWA)

	Celing limit for working exposure

	Whether a chemicals is absorbed thorough human skin

	Whether a chemical is a carcinogen, suspected of being a carcinogen, or has
been identified as unlikely to be a carcinogen

	Flash point

	Auto ignition point

	Lower flammability limit

	Upper flammability limit

In addition, several estimation methods for chemicals without flammability
limits are provided and for calculating the flammability limits of mixtures.

This module also contains several utility functions.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Short-term Exposure Limit

	Time-Weighted Average Exposure Limit

	Ceiling Limit

	Skin Absorbance

	Carcinogenicity

	Flash Point

	Autoignition Point

	Lower Flammability Limit

	Upper Flammability Limit

	Mixture Flammability Limit

	Utility Methods

Short-term Exposure Limit

	
chemicals.safety.STEL(CASRN, method=None)

	This function handles the retrieval of Short-term Exposure Limit (STEL)
on worker exposure to dangerous chemicals.

	Parameters

	
	CASRNstr
	CASRN, [-]

	methodstr
	Name of method to use, [-]

	Returns

	
	STELfloat
	Short-term Exposure Limit, [ppm or mg/m^3]

	unitsstr
	One of ppm or mg/m^3, [-]

Notes

The ppm value is preferentially returned if both are available. While they
can be converted in specific cases, it is better to work with the specified
units of the original source.

Examples

>>> STEL('67-64-1')
(750.0, 'ppm')
>>> STEL('7664-38-2')
(0.7489774978301237, 'ppm')
>>> STEL('55720-99-5')
(2.0, 'mg/m^3')

	
chemicals.safety.STEL_methods(CASRN)

	Return all methods available to obtain STEL for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain STEL with the given inputs.

See also

	STEL
	

	
chemicals.safety.STEL_all_methods = ('Ontario Limits',)

	Tuple of method name keys. See the STEL for the actual references

Time-Weighted Average Exposure Limit

	
chemicals.safety.TWA(CASRN, method=None)

	Return the Time-Weighted Average exposure
limits (TWA) for the desired chemical if it is available.

	Parameters

	
	CASRNstr
	CASRN, [-]

	methodstr
	Name of method to use, [-]

	Returns

	
	TWAfloat
	Time-Weighted Average exposure, [ppm or mg/m^3]

	unitsstr
	One of ppm or mg/m^3, [-]

Notes

The ppm value is preferentially returned if both are available. While they
can be converted in specific cases, it is better to work with the specified
units of the original source.

Examples

>>> TWA('98-00-0')
(10.0, 'ppm')
>>> TWA('1303-00-0')
(5.0742430905659505e-05, 'ppm')

	
chemicals.safety.TWA_methods(CASRN)

	Return all methods available to obtain the Time-Weighted Average exposure
limits (TWA) for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain TWA with the given inputs.

See also

	TWA
	

Examples

>>> TWA_methods('71-43-2')
['Ontario Limits']

	
chemicals.safety.TWA_all_methods = ('Ontario Limits',)

	Tuple of method name keys. See the TWA for the actual references

Ceiling Limit

	
chemicals.safety.Ceiling(CASRN, method=None)

	This function handles the retrieval of ceiling limits on worker exposure
to dangerous chemicals. Ceiling limits are not to be exceeded at any time.

	Parameters

	
	CASRNstr
	CASRN, [-]

	methodstr
	Name of method to use, [-]

	Returns

	
	Ceilingfloat
	Ceiling Limit, [ppm or mg/m^3]

	unitsstr
	One of ppm or mg/m^3, [-]

Examples

>>> Ceiling('75-07-0')
(25.0, 'ppm')
>>> Ceiling('1395-21-7')
(6e-05, 'mg/m^3')

	
chemicals.safety.Ceiling_methods(CASRN)

	Return all methods available to obtain Ceiling limits for the desired
chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Ceiling limits with the given inputs.

See also

	Ceiling
	

	
chemicals.safety.Ceiling_all_methods = ('Ontario Limits',)

	Tuple of method name keys. See the Ceiling for the actual references

Skin Absorbance

	
chemicals.safety.Skin(CASRN, method=None)

	This function handles the retrieval of whether or not a chemical can be
absorbed through the skin, relevant to chemical safety calculations.

	Parameters

	
	CASRNstr
	CASRN, [-]

	methodstr
	Name of method to use, [-]

	Returns

	
	skinbool
	Whether or not the substance is absorbed through human skin, [-]

Examples

>>> Skin('108-94-1')
True
>>> Skin('1395-21-7')
False

	
chemicals.safety.Skin_methods(CASRN)

	Return all methods available to obtain whether or not a chemical can be
absorbed through the skin.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain whether or not a chemical can
be absorbed through the skin.

See also

	Skin
	

	
chemicals.safety.Skin_all_methods = ('Ontario Limits',)

	Tuple of method name keys. See the Skin for the actual references

Carcinogenicity

	
chemicals.safety.Carcinogen(CASRN, method=None)

	Looks up if a chemical is listed as a carcinogen or not according to
either a specifc method or with all methods.
Returns either the status as a string for a specified method, or the
status of the chemical in all available data sources, in the format
{source: status}.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	statusstr or dict
	Carcinogen status information [-].

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
Carcinogen_all_methods.

Notes

	Supported methods are:
	
	IARC: International Agency for Research on Cancer, [1]. As
extracted with a last update of February 22, 2016. Has listing
information of 863 chemicals with CAS numbers. Chemicals without
CAS numbers not included here. If two listings for the same CAS
were available, the harshest rating was used. If two
listings were available published at different times, the latest
value was used. All else equal, the most pessimistic value was used.

	NTP: National Toxicology Program, [2]. Has data on 228
chemicals.

References

	1

	International Agency for Research on Cancer. Agents Classified by
the IARC Monographs, Volumes 1-115. Lyon, France: IARC; 2020 Available
from: http://monographs.iarc.fr/ENG/Classification/

	2

	NTP (National Toxicology Program). 2021. Report on Carcinogens,
Fifteenth Edition.; Research Triangle Park, NC: U.S. Department of
Health and Human Services, Public Health Service.
https://doi.org/10.22427/NTP-OTHER-1003

Examples

>>> Carcinogen('61-82-5')
{'International Agency for Research on Cancer': 'Not classifiable as to its carcinogenicity to humans (3)', 'National Toxicology Program 13th Report on Carcinogens': 'Reasonably Anticipated'}

	
chemicals.safety.Carcinogen_methods(CASRN)

	Return all methods available to obtain Carcinogen listings for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain Carcinogen listings with the given inputs.

See also

	Carcinogen
	

	
chemicals.safety.Carcinogen_all_methods = ('International Agency for Research on Cancer', 'National Toxicology Program 13th Report on Carcinogens')

	Tuple of method name keys. See the Carcinogen for the actual references

Flash Point

	
chemicals.safety.T_flash(CASRN, method=None)

	This function handles the retrieval or calculation of a chemical’s
flash point. Lookup is based on CASRNs. No predictive methods are currently
implemented. Will automatically select a data source to use if no method
is provided; returns None if the data is not available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	T_flashfloat
	Flash point of the chemical, [K]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
T_flash_all_methods,

See also

	T_flash_methods
	

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source
‘NFPA 497 (2008)’ [2] having very similar data. A third source
‘Serat DIPPR (2017)’ [3] provides third hand experimental but evaluated
data from the DIPPR database, version unspecified, for 870 compounds.

The predicted values from the DIPPR databank are also available in the
supporting material in [3], but are not included.

References

	1

	IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1:
Material characteristics for gas and vapour classification - Test
methods and data.” https://webstore.iec.ch/publication/635. See also
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf

	2

	National Fire Protection Association. NFPA 497: Recommended
Practice for the Classification of Flammable Liquids, Gases, or Vapors
and of Hazardous. NFPA, 2008.

	3(1,2)

	Serat, Fatima Zohra, Ali Mustapha Benkouider, Ahmed Yahiaoui, and
Farid Bagui. “Nonlinear Group Contribution Model for the Prediction of
Flash Points Using Normal Boiling Points.” Fluid Phase Equilibria 449
(October 15, 2017): 52-59. doi:10.1016/j.fluid.2017.06.008.

	4

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

Examples

>>> T_flash(CASRN='64-17-5')
285.15
>>> T_flash('111-69-3', method='WIKIDATA')
365.92778

	
chemicals.safety.T_flash_methods(CASRN)

	Return all methods available to obtain T_flash for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain T_flash with the given inputs.

See also

	T_flash
	

	
chemicals.safety.T_flash_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'Serat DIPPR (2017)', 'WIKIDATA')

	Tuple of method name keys. See the T_flash for the actual references

Autoignition Point

	
chemicals.safety.T_autoignition(CASRN, method=None)

	This function handles the retrieval or calculation of a chemical’s
autoifnition temperature. Lookup is based on CASRNs. No predictive methods
are currently implemented. Will automatically select a data source to use
if no Method is provided; returns None if the data is not available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Tautoignitionfloat
	Autoignition point of the chemical, [K].

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
T_autoignition_all_methods.

See also

	T_autoignition_methods
	

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source
‘NFPA 497 (2008)’ [2] having very similar data.

References

	1

	IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1:
Material characteristics for gas and vapour classification - Test
methods and data.” https://webstore.iec.ch/publication/635. See also
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf

	2

	National Fire Protection Association. NFPA 497: Recommended
Practice for the Classification of Flammable Liquids, Gases, or Vapors
and of Hazardous. NFPA, 2008.

	3

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

Examples

>>> T_autoignition(CASRN='71-43-2')
771.15
>>> T_autoignition('111-69-3', method='WIKIDATA')
823.15

	
chemicals.safety.T_autoignition_methods(CASRN)

	Return all methods available to obtain T_autoignition for the desired
chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain T_autoignition with the given inputs.

See also

	T_autoignition
	

	
chemicals.safety.T_autoignition_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'WIKIDATA')

	Tuple of method name keys. See the T_autoignition for the actual references

Lower Flammability Limit

	
chemicals.safety.LFL(Hc=None, atoms=None, CASRN='', method=None)

	This function handles the retrieval or calculation of a chemical’s
Lower Flammability Limit. Lookup is based on CASRNs. Will automatically
select a data source to use if no Method is provided; returns None if the
data is not available.

	Parameters

	
	Hcfloat, optional
	Heat of combustion of gas [J/mol].

	atomsdict, optional
	Dictionary of atoms and atom counts.

	CASRNstr, optional
	CASRN, [-]

	Returns

	
	LFLfloat
	Lower flammability limit of the gas in an atmosphere at STP, [mole fraction].

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
LFL_all_methods.

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source
‘NFPA 497 (2008)’ [2] having very similar data. If the heat of combustion
is provided, the estimation method Suzuki_LFL can be used. If the atoms
of the molecule are available, the method Crowl_Louvar_LFL can be used.

References

	1

	IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1:
Material characteristics for gas and vapour classification - Test
methods and data.” https://webstore.iec.ch/publication/635. See also
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf

	2

	National Fire Protection Association. NFPA 497: Recommended
Practice for the Classification of Flammable Liquids, Gases, or Vapors
and of Hazardous. NFPA, 2008.

	3

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

Examples

>>> LFL(CASRN='71-43-2')
0.012
>>> LFL(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
0.044
>>> LFL(CASRN='111-69-3', method='WIKIDATA')
0.017

	
chemicals.safety.LFL_methods(Hc=None, atoms=None, CASRN='')

	Return all methods available to obtain LFL for the desired chemical.

	Parameters

	
	Hcfloat, optional
	Heat of combustion of gas [J/mol].

	atomsdict, optional
	Dictionary of atoms and atom counts.

	CASRNstr, optional
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain LFL with the given inputs.

See also

	LFL
	

Examples

Methane

>>> LFL_methods(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
['IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'Suzuki (1994)', 'Crowl and Louvar (2001)']

	
chemicals.safety.LFL_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'WIKIDATA', 'Suzuki (1994)', 'Crowl and Louvar (2001)')

	Tuple of method name keys. See the LFL for the actual references

	
chemicals.safety.Suzuki_LFL(Hc)

	Calculates lower flammability limit, using the Suzuki [1] correlation.
Uses heat of combustion only.

The lower flammability limit of a gas is air is:

\[\text{LFL} = \frac{-3.42}{\Delta H_c^{\circ}} + 0.569

\]

\[\Delta H_c^{\circ} + 0.0538\Delta H_c^{\circ 2} + 1.80

\]

	Parameters

	
	Hcfloat
	Heat of combustion of gas [J/mol]

	Returns

	
	LFLfloat
	Lower flammability limit, mole fraction [-]

Notes

Fit performed with 112 compounds, r^2 was 0.977.
LFL in percent volume in air. Hc is at standard conditions, in MJ/mol.
11 compounds left out as they were outliers.
Equation does not apply for molecules with halogen atoms, only hydrocarbons
with oxygen or nitrogen or sulfur.
No sample calculation provided with the article. However, the equation is
straightforward.
Limits of equations’s validity are -6135596 J where it predicts a
LFL of 0, and -48322129 J where it predicts a LFL of 1.

References

	1

	Suzuki, Takahiro. “Note: Empirical Relationship between Lower
Flammability Limits and Standard Enthalpies of Combustion of Organic
Compounds.” Fire and Materials 18, no. 5 (September 1, 1994): 333-36.
doi:10.1002/fam.810180509.

Examples

Pentane, 1.5 % LFL in literature

>>> Suzuki_LFL(-3536600)
0.014276107095811815

	
chemicals.safety.Crowl_Louvar_LFL(atoms)

	Calculates lower flammability limit, using the Crowl-Louvar [1]
correlation. Uses molecular formula only.
The lower flammability limit of a gas is air is:

\[C_mH_xO_y + zO_2 \to mCO_2 + \frac{x}{2}H_2O

\]

\[\text{LFL} = \frac{0.55}{4.76m + 1.19x - 2.38y + 1}

\]

	Parameters

	
	atomsdict
	Dictionary of atoms and atom counts

	Returns

	
	LFLfloat
	Lower flammability limit, mole fraction

Notes

Coefficient of 0.55 taken from [2]

References

	1(1,2)

	Crowl, Daniel A., and Joseph F. Louvar. Chemical Process Safety:
Fundamentals with Applications. 2E. Upper Saddle River, N.J:
Prentice Hall, 2001.

	2

	Jones, G. W. “Inflammation Limits and Their Practical Application
in Hazardous Industrial Operations.” Chemical Reviews 22, no. 1
(February 1, 1938): 1-26. doi:10.1021/cr60071a001

Examples

Hexane, example from [1], lit. 1.2 %

>>> Crowl_Louvar_LFL({'H': 14, 'C': 6})
0.011899610558199915

	
chemicals.safety.LFL_ISO_10156_2017(zs, LFLs, CASs)

	Calculate the lower flammability limit of a mixture of combustible gases
and inert gases according to ISO 10156 (2017) [1].

\[\text{LFL} = \frac{1}{\sum_{i=1}^{n_{combustible}}\frac{A_i}{\text{LFL}_i'}}

\]

\[\text{LFL}_i' = \frac{1 - \text{LFL}_m' - (1 - K)
\frac{\sum_j^{n_{inert}} B_j}{\sum_j^{n_{combustible}} A_j} \text{LFL}_m'
}
{100 - \text{LFL}_m'}\text{LFL}_i

\]

\[K = \sum_i^{n_{inert}} z_i K_k

\]

The B sum is the total mole fraction of all inert gas compounds;
and the A sum is the total mole fraction of all combustible compounds.
\(K_k\) are the looked up inert gas coefficients.
\(\text{LFL}_m'\) is calculated as the Le Chatelier’s lower
flammability limit if there were no inert gases in the mixture.

	Parameters

	
	zslist[float]
	Mole fractions of all components in a gas including inerts, [-]

	LFLslist[float]
	Lower or upper flammability limits for each flammable component in a
gas, [-]

	CASslist[str]
	CAS numbers of each compound; required to look up inert gas factors, [-]

	Returns

	
	LFLfloat
	Lower or flammability limit of a gas mixture, [-]

Notes

Inert gas parameters are available for O2, N2, CO2, He, Ar, Ne, Kr, Xe,
SO2, SF6, CF4, C3F8, and C2HF5.

References

	1(1,2)

	Standardization, International Organization for. ISO 10156: 2017 :
Gas Cylinders - Gases and Gas Mixtures - Determination of Fire Potential
and Oxidizing Ability for the Selection of Cylinder Valve Outlets, 2017.

Examples

All the sample problems from [1] have been implemented as tests.

>>> zs = [.15, .15, .3, .35+.05*.79, .05*.21]
>>> LFLs = [.04, .044, None, None, None]
>>> CASs = ['1333-74-0', '74-82-8', '124-38-9', '7727-37-9', '7782-44-7']
>>> LFL_ISO_10156_2017(zs, LFLs, CASs)
0.1427372274

Upper Flammability Limit

	
chemicals.safety.UFL(Hc=None, atoms=None, CASRN='', method=None)

	This function handles the retrieval or calculation of a chemical’s
Upper Flammability Limit. Lookup is based on CASRNs. Two predictive methods
are currently implemented. Will automatically select a data source to use
if no Method is provided; returns None if the data is not available.

	Parameters

	
	Hcfloat, optional
	Heat of combustion of gas [J/mol]

	atomsdict, optional
	Dictionary of atoms and atom counts

	CASRNstr, optional
	CASRN [-]

	Returns

	
	UFLfloat
	Upper flammability limit of the gas in an atmosphere at STP, [mole fraction]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
UFL_all_methods.

Notes

Preferred source is ‘IEC 60079-20-1 (2010)’ [1], with the secondary source
‘NFPA 497 (2008)’ [2] having very similar data. If the heat of combustion
is provided, the estimation method Suzuki_UFL can be used. If the atoms
of the molecule are available, the method Crowl_Louvar_UFL can be used.

References

	1

	IEC. “IEC 60079-20-1:2010 Explosive atmospheres - Part 20-1:
Material characteristics for gas and vapour classification - Test
methods and data.” https://webstore.iec.ch/publication/635. See also
https://law.resource.org/pub/in/bis/S05/is.iec.60079.20.1.2010.pdf

	2

	National Fire Protection Association. NFPA 497: Recommended
Practice for the Classification of Flammable Liquids, Gases, or Vapors
and of Hazardous. NFPA, 2008.

	3

	Wikidata. Wikidata. Accessed via API. https://www.wikidata.org/

Examples

>>> UFL(CASRN='71-43-2')
0.086

Methane

>>> UFL(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
0.17
>>> UFL(CASRN='111-69-3', method='WIKIDATA')
0.05

	
chemicals.safety.UFL_methods(Hc=None, atoms=None, CASRN='')

	Return all methods available to obtain UFL for the desired chemical.

	Parameters

	
	Hcfloat, optional
	Heat of combustion of gas [J/mol].

	atomsdict, optional
	Dictionary of atoms and atom counts.

	CASRNstr, optional
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain UFL with the given inputs.

See also

	UFL
	

Examples

Methane

>>> UFL_methods(Hc=-890590.0, atoms={'C': 1, 'H': 4}, CASRN='74-82-8')
['IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'Suzuki (1994)', 'Crowl and Louvar (2001)']

	
chemicals.safety.UFL_all_methods = ('IEC 60079-20-1 (2010)', 'NFPA 497 (2008)', 'WIKIDATA', 'Suzuki (1994)', 'Crowl and Louvar (2001)')

	Tuple of method name keys. See the UFL for the actual references

	
chemicals.safety.Suzuki_UFL(Hc)

	Calculates upper flammability limit, using the Suzuki [1] correlation.
Uses heat of combustion only.
The upper flammability limit of a gas is air is:

\[\text{UFL} = 6.3\Delta H_c^\circ + 0.567\Delta H_c^{\circ 2} + 23.5

\]

	Parameters

	
	Hcfloat
	Heat of combustion of gas [J/mol]

	Returns

	
	UFLfloat
	Upper flammability limit, mole fraction

Notes

UFL in percent volume in air according to original equation.
Hc is at standard conditions in the equation, in units of MJ/mol.
AAPD = 1.2% for 95 compounds used in fit.
Somewhat better results than the High and Danner method.
4.9% < UFL < 23.0%
-890.3 kJ/mol < dHc < -6380 kJ/mol
r^2 = 0.989
Sample calculations provided for all chemicals, both this method and
High and Danner. Examples are from the article.
Predicts a UFL of 1 at 7320190 J and a UFL of 0 at -5554160 J.

References

	1

	Suzuki, Takahiro, and Kozo Koide. “Short Communication: Correlation
between Upper Flammability Limits and Thermochemical Properties of
Organic Compounds.” Fire and Materials 18, no. 6 (November 1, 1994):
393-97. doi:10.1002/fam.810180608.

Examples

Pentane, literature 7.8% UFL

>>> Suzuki_UFL(-3536600)
0.0831119493052

	
chemicals.safety.Crowl_Louvar_UFL(atoms)

	Calculates upper flammability limit, using the Crowl-Louvar [1]
correlation. Uses molecular formula only.
The upper flammability limit of a gas is air is:

\[C_mH_xO_y + zO_2 \to mCO_2 + \frac{x}{2}H_2O

\]

\[\text{UFL} = \frac{3.5}{4.76m + 1.19x - 2.38y + 1}

\]

	Parameters

	
	atomsdict
	Dictionary of atoms and atom counts

	Returns

	
	UFLfloat
	Upper flammability limit, mole fraction

Notes

Coefficient of 3.5 taken from [2]

References

	1(1,2)

	Crowl, Daniel A., and Joseph F. Louvar. Chemical Process Safety:
Fundamentals with Applications. 2E. Upper Saddle River, N.J:
Prentice Hall, 2001.

	2

	Jones, G. W. “Inflammation Limits and Their Practical Application
in Hazardous Industrial Operations.” Chemical Reviews 22, no. 1
(February 1, 1938): 1-26. doi:10.1021/cr60071a001

Examples

Hexane, example from [1], lit. 7.5 %

>>> Crowl_Louvar_UFL({'H': 14, 'C': 6})
0.07572479446127219

Mixture Flammability Limit

	
chemicals.safety.fire_mixing(ys, FLs)

	Le Chatelier’s mixing rule for lower and upper flammability limits of
mixtures of gases.

	Parameters

	
	yslist[float]
	Normalized mole fractions of all flammable components in a gas, [-]

	FLslist[float]
	Lower or upper flammability limits for each flammable component in a
gas, [-]

	Returns

	
	FLfloat
	Lower or upper flammability limit of a gas, [-]

Notes

This equation has a higher accuracy for lower flammability limits than
upper flammability limits. Some sources recommend not using it for
upper flammability limits.

References

	1

	Crowl, Daniel A., and Joseph F. Louvar. Chemical Process Safety:
Fundamentals with Applications. 2E. Upper Saddle River, N.J: Prentice
Hall, 2001.

Examples

Sample problems from [1] for the lower and upper flammability limit.

>>> fire_mixing(ys=normalize([0.0024, 0.0061, 0.0015]), FLs=[.012, .053, .031])
0.02751172136637642

>>> fire_mixing(ys=normalize([0.0024, 0.0061, 0.0015]), FLs=[.075, .15, .32])
0.12927551844869378

Utility Methods

	
chemicals.safety.ppmv_to_mgm3(ppmv, MW, T=298.15, P=101325.0)

	Converts a concentration in ppmv to units of mg/m^3. Used in
industrial toxicology.

\[\frac{mg}{m^3} = \frac{ppmv\cdot P}{RT}\cdot \frac{MW}{1000}

\]

	Parameters

	
	ppmvfloat
	Concentration of a component in a gas mixure [parts per million,
volumetric]

	MWfloat
	Molecular weight of the trace gas [g/mol]

	Tfloat, optional
	Temperature of the gas at which the ppmv is reported, [K]

	Pfloat, optional
	Pressure of the gas at which the ppmv is reported, [Pa]

	Returns

	
	mgm3float
	Concentration of a substance in an ideal gas mixture [mg/m^3]

Notes

The term P/(RT)/1000 converts to 0.040874 at STP. Its inverse is reported
as 24.45 in [1].

References

	1

	ACGIH. Industrial Ventilation: A Manual of Recommended Practice,
23rd Edition. American Conference of Governmental and Industrial
Hygenists, 2004.

Examples

>>> ppmv_to_mgm3(1.0, 40.0)
1.6349617809430446

	
chemicals.safety.mgm3_to_ppmv(mgm3, MW, T=298.15, P=101325.0)

	Converts a concentration in mg/m^3 to units of ppmv. Used in
industrial toxicology.

\[ppmv = \frac{1000RT}{MW\cdot P} \cdot \frac{mg}{m^3}

\]

	Parameters

	
	mgm3float
	Concentration of a substance in an ideal gas mixture [mg/m^3]

	MWfloat
	Molecular weight of the trace gas [g/mol]

	Tfloat, optional
	Temperature of the gas at which the ppmv is reported, [K]

	Pfloat, optional
	Pressure of the gas at which the ppmv is reported, [Pa]

	Returns

	
	ppmvfloat
	Concentration of a component in a gas mixure [parts per million,
volumetric]

Notes

The term P/(RT)/1000 converts to 0.040874 at STP. Its inverse is reported
as 24.45 in [1].

References

	1

	ACGIH. Industrial Ventilation: A Manual of Recommended Practice,
23rd Edition. American Conference of Governmental and Industrial
Hygenists, 2004.

Examples

>>> mgm3_to_ppmv(1.635, 40.0)
1.0000233761164334

	
chemicals.safety.NFPA_30_classification(T_flash, Tb=None, Psat_100F=None)

	Classify a chemical’s flammability/combustibility according
to the NFPA 30 standard Flammable and Combustible Liquids Code.

Class IA: Flash Point < 73°F; Boiling Point < 100°F
Class IB: Flash Point < 73°F; 100°F <= Boiling Point
Class IC: 73°F <= Flash Point < 100°F
Class II: 100°F <= Flash Point < 140°F
Class IIIA: 140°F <= Flash Point < 200°F
Class IIIB: 200°F <= Flash Point

Class I liquids are designated as flammable; class II and II
liquids are designated as combustible.

	Parameters

	
	T_flashfloat
	Flash point (closed-cup method, adjusted for sea level), [K]

	Tbfloat, optional
	Normal boiling point (needed to classify IA and IB liquids), [K]

	Psat_100Ffloat, optional
	Vapor pressure at 100°F (needed to classify IA and IB liquids), [K]

	Returns

	
	classificationstr
	One of ‘IA’, ‘IB’, ‘IC’, ‘II’, ‘IIIA’, ‘IIIB’, [-]

Notes

Only one of Tb or Psat_100F is needed.

Class ‘IA’ also includes unstable liquids.

References

	1

	NFPA (National Fire Prevention Association). NFPA 30: Flammable and
Combustible Liquids Code, 2008. National Fire Protection Association
(NFPA), 2007.

Examples

Ethylene oxide

>>> NFPA_30_classification(253.15, 283.55)
'IA'

Butyl alcohol

>>> NFPA_30_classification(308.15)
'IC'

 Solubility (chemicals.solubility)

Solubility (chemicals.solubility)

This module contains various solubility calculation routines and a Henry’s law
coefficient converter.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Henry’s Law

	Utility functions

Henry’s Law

	
chemicals.solubility.Henry_pressure(T, A, B=0.0, C=0.0, D=0.0, E=0.0, F=0.0)

	Calculates Henry’s law constant as a function of temperature according
to the SI units of Pa and using a common temperature dependence as used
in many process simulation applications.

Only the A parameter is required - which has no temperature dependence
when used by itself.
As the model is exponential, a sufficiently high temperature may cause an
OverflowError.
A negative temperature (or just low, if fit poorly) may cause a math domain
error.

\[H_{12} = \exp\left(A_{12} + \frac{B_{12}}{T} + C_{12}\ln(T) + D_{12}T
 + \frac{E_{12}}{T^2} \right)

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	A-Ffloat
	Parameter for the equation; chemical and property specific [-]

	Returns

	
	H12float
	Henry’s constant [Pa]

Notes

Add 11.51292 to the A constant if it is said to provide units of bar,
so that it provides units of Pa instead.

The F parameter is not often included in models. It is rare to fit
all parameters.

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

Random test example.

>>> Henry_pressure(300.0, A=15.0, B=300.0, C=.04, D=1e-3, E=1e2, F=1e-5)
37105004.47898146

	
chemicals.solubility.Henry_pressure_mixture(Hs, weights=None, zs=None)

	Mixing rule for Henry’s law components. Applies a logarithmic average
to all solvent components and mole fractions. Optionally, weight factors
can be provided instead of using mole fractions - only specify one of them.

A common weight factor is using volume fractions of powers of them, or
using critical volumes.

	Parameters

	
	Hslist[float or None]
	Henry’s law constant between each gas and the solvent (None for other
solvents of gases without parameters available), [Pa]

	weightslist[float], optional
	Weight factors, [-]

	zslist[float]
	Mole fractions of all species in phase, [-]

	Returns

	
	Hvalue
	Henry’s law constant for the gas in the liquid phase, [-]

Notes

The default weight factor formulation is from [1].

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

>>> Henry_pressure_mixture([1072330.36341, 744479.751106, None], zs=[.48, .48, .04])
893492.1611602883

	
chemicals.solubility.Henry_converter(val, old_scale, new_scale, rhom=None, MW=None)

	Converts Henry’s law constant for a gas with respect to a solvent from
one scale to another.

There are many scales, but it is recommemed to operate in the scale of
SI - which returns a value with units Pa, and directly gets used in
place of vapor pressure inside a flash calculation. This removes the
complexity of Henry’s law, avoiding possible simplication in favor of use
with other thermodynamic models.

Only some scales require the molecular weight and the molar density of the
solvent. Values for water, the most common solute, are 55344.59 mol/m^3 at
STP and 18.01528 g/mol.

	Parameters

	
	valfloat
	Henry’s law constant, various units

	old_scalestr
	String representing the scale that val is in originally.

	new_scalestr
	String representing the scale that val should be converted to.

	Returns

	
	resultfloat
	Input val converted from old_scale to new_scale, various units

Notes

The valid scales for this function are any of the following:

(‘Hcp’, ‘mol/(m^3*Pa)’, ‘M/atm’, ‘Hcc’, ‘mol/(kg*Pa)’, ‘Hbp’,
‘mol/(kg*atm)’, ‘Hxp’, ‘1/atm’, ‘alpha’, ‘bunsen coefficient’, ‘KHpx’,
‘atm’, ‘m^3*Pa/mol’, ‘KHpc’, ‘m^3*atm/mol’, ‘KHcc’, ‘SI’)

References

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
8E. McGraw-Hill Professional, 2007.

Examples

>>> Henry_converter(1.2e-5, old_scale='Hcp', new_scale='SI', rhom=55344.59,
... MW=18.01528)
4612049166.666666

>>> Henry_converter(0.0297475, old_scale='Hcc', new_scale='KHcc',
... rhom=55344.59, MW=18.01528)
33.61627027481301

	
chemicals.solubility.Henry_constants(lnHenry_matrix, zs, henry_components, skip_zero=True, Hs=None)

	Calculate the Henry’s law constants for a list of components, only some of
which are henry’s law following components (solutes) and the rest that are
solvents. The empirical mixing rule from [1] is used as follows:

\[H_i = \exp\left(\frac{\sum_{\text{j=solvent}} z_j \ln H_{i,j}}
{\sum_{\text{j=solvent}} z_j}\right)

\]

	Parameters

	
	lnHenry_matrixlist[list[float]]
	Henry’s law constants between every species; 0.0 for non-applicable
solvents, [log(Pa)]

	zslist[float]
	Mole fractions of all species in phase; this can be mass or volume
fractions as well, [-]

	henry_componentslist[bool]
	Whether or not each component is a henry’s law solvent or not, [-]

	skip_zerobool
	If true, if parameters are missing from a solvent-solute pair, that pair
will not be counted as part of the solvent fraction. If false, the
calculation proceeds and the solubility is underestimated.
Missing parameters are assumed from the value of lnHenry_matrix
being 0, [-]

	Hslist[float], optional
	Henry’s law constants for each component; 0 for non-henry components
(input array), [Pa]

	Returns

	
	Hslist[float]
	Henry’s law constants for each component; 0 for non-henry components, [Pa]

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

Oxygen and methane in water:

>>> lnHenry_matrix = [[0.0, 0.0, 0.0], [22.13581843104147, 0.0, 0.0], [22.239038459475733, 0.0, 0.0]]
>>> Henry_constants(lnHenry_matrix, [0.8, 0.15, 0.05], [False, True, True], True)
[0.0, 4106424071.093, 4552937470.331]

	
chemicals.solubility.dHenry_constants_dT(lnHenry_matrix, dlnHenry_matrix_dT, zs, henry_components, skip_zero=True, dH_dTs=None)

	Calculate the first temperature derivative of
Henry’s law constants for a list of components, only some of
which are henry’s law following components (solutes) and the rest that are
solvents. The empirical mixing rule from [1] is used as follows:

	Parameters

	
	lnHenry_matrixlist[list[float]]
	Henry’s law constants between every species; 0.0 for non-applicable
solvents, [log(Pa)]

	dlnHenry_matrix_dTlist[list[float]]
	First temperature derivative of Henry’s law constants between every
species; 0.0 for non-applicable solvents, [log(Pa)/K]

	zslist[float]
	Mole fractions of all species in phase; this can be mass or volume
fractions as well, [-]

	henry_componentslist[bool]
	Whether or not each component is a henry’s law solvent or not, [-]

	skip_zerobool
	If true, if parameters are missing from a solvent-solute pair, that pair
will not be counted as part of the solvent fraction. If false, the
calculation proceeds and the solubility is underestimated.
Missing parameters are assumed from the value of lnHenry_matrix
being 0, [-]

	dH_dTslist[float], optional
	First temperature derivative of Henry’s law constants for each component;
0 for non-henry components (input array), [Pa/K]

	Returns

	
	dH_dTslist[float]
	First temperature derivative of Henry’s law constants for each component;
0 for non-henry components, [Pa/K]

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

Oxygen and methane in water:

>>> lnHenry_matrix = [[0.0, 0.0, 0.0], [22.13581843104147, 0.0, 0.0], [22.239038459475733, 0.0, 0.0]]
>>> dlnHenry_matrix_dT = [[0.0, 0.0, 0.0], [0.017113988888888904, 0.0, 0.0], [0.015461911111111101, 0.0, 0.0]]
>>> dHenry_constants_dT(lnHenry_matrix, dlnHenry_matrix_dT, [0.8, 0.15, 0.05], [False, True, True], True)
[0.0, 70277295.92576516, 70397114.46071726]

	
chemicals.solubility.d2Henry_constants_dT2(lnHenry_matrix, dlnHenry_matrix_dT, d2lnHenry_matrix_dT2, zs, henry_components, skip_zero=True, d2H_dT2s=None)

	Calculate the second temperature derivative of
Henry’s law constants for a list of components, only some of
which are henry’s law following components (solutes) and the rest that are
solvents. The empirical mixing rule from [1] is used as follows:

	Parameters

	
	lnHenry_matrixlist[list[float]]
	Henry’s law constants between every species; 0.0 for non-applicable
solvents, [log(Pa)]

	dlnHenry_matrix_dTlist[list[float]]
	First temperature derivative of Henry’s law constants between every
species; 0.0 for non-applicable solvents, [log(Pa)/K]

	d2lnHenry_matrix_dT2list[list[float]]
	Second temperature derivative of Henry’s law constants between every
species; 0.0 for non-applicable solvents, [log(Pa)/K^2]

	zslist[float]
	Mole fractions of all species in phase; this can be mass or volume
fractions as well, [-]

	henry_componentslist[bool]
	Whether or not each component is a henry’s law solvent or not, [-]

	skip_zerobool
	If true, if parameters are missing from a solvent-solute pair, that pair
will not be counted as part of the solvent fraction. If false, the
calculation proceeds and the solubility is underestimated.
Missing parameters are assumed from the value of lnHenry_matrix
being 0, [-]

	d2H_dT2slist[float], optional
	Second temperature derivative of Henry’s law constants for each component;
0 for non-henry components (input array), [Pa/K^2]

	Returns

	
	d2H_dT2slist[float]
	Second temperature derivative of Henry’s law constants for each component;
0 for non-henry components, [Pa/K^2]

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

Oxygen and methane in water:

>>> lnHenry_matrix = [[0.0, 0.0, 0.0], [22.13581843104147, 0.0, 0.0], [22.239038459475733, 0.0, 0.0]]
>>> dlnHenry_matrix_dT = [[0.0, 0.0, 0.0], [0.017113988888888904, 0.0, 0.0], [0.015461911111111101, 0.0, 0.0]]
>>> d2lnHenry_matrix_dT2 = [[0.0, 0.0, 0.0], [-0.0004070325925925928, 0.0, 0.0], [-0.00034016518518518524, 0.0, 0.0]]
>>> d2Henry_constants_dT2(lnHenry_matrix, dlnHenry_matrix_dT, d2lnHenry_matrix_dT2, [0.8, 0.15, 0.05], [False, True, True], True)
[0.0, -468723.574327235, -460276.89146166]

Utility functions

	
chemicals.solubility.solubility_eutectic(T, Tm, Hm, Cpl=0, Cps=0, gamma=1)

	Returns the maximum solubility of a solute in a solvent.

\[\ln x_i^L \gamma_i^L = \frac{\Delta H_{m,i}}{RT}\left(
1 - \frac{T}{T_{m,i}}\right) - \frac{\Delta C_{p,i}(T_{m,i}-T)}{RT}
+ \frac{\Delta C_{p,i}}{R}\ln\frac{T_m}{T}

\]

\[\Delta C_{p,i} = C_{p,i}^L - C_{p,i}^S

\]

	Parameters

	
	Tfloat
	Temperature of the system [K]

	Tmfloat
	Melting temperature of the solute [K]

	Hmfloat
	Heat of melting at the melting temperature of the solute [J/mol]

	Cplfloat, optional
	Molar heat capacity of the solute as a liquid [J/mol/K]

	Cps: float, optional
	Molar heat capacity of the solute as a solid [J/mol/K]

	gammafloat, optional
	Activity coefficient of the solute as a liquid [-]

	Returns

	
	xfloat
	Mole fraction of solute at maximum solubility [-]

Notes

gamma is of the solute in liquid phase

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

From [1], matching example

>>> solubility_eutectic(T=260., Tm=278.68, Hm=9952., Cpl=0, Cps=0, gamma=3.0176)
0.243400713

	
chemicals.solubility.solubility_parameter(T, Hvapm, Vml)

	This function handles the calculation of a chemical’s solubility
parameter. Calculation is a function of temperature, but is not always
presented as such. Hvapm, Vml, T are required.

\[\delta = \sqrt{\frac{\Delta H_{vap} - RT}{V_m}}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [k]

	Hvapmfloat
	Heat of vaporization [J/mol/K]

	Vmlfloat
	Specific volume of the liquid [m^3/mol]

	Returns

	
	deltafloat
	Solubility parameter, [Pa^0.5]

Notes

Undefined past the critical point. For convenience, if Hvap is not defined,
an error is not raised; None is returned instead. Also for convenience,
if Hvapm is less than RT, None is returned to avoid taking the root of a
negative number.

This parameter is often given in units of cal/ml, which is 2045.48 times
smaller than the value returned here.

References

	1

	Barton, Allan F. M. CRC Handbook of Solubility Parameters and Other
Cohesion Parameters, Second Edition. CRC Press, 1991.

Examples

Pentane at STP

>>> solubility_parameter(T=298.2, Hvapm=26403.3, Vml=0.000116055)
14357.68128600315

	
chemicals.solubility.Tm_depression_eutectic(Tm, Hm, x=None, M=None, MW=None)

	Returns the freezing point depression caused by a solute in a solvent.
Can use either the mole fraction of the solute or its molality and the
molecular weight of the solvent. Assumes ideal system behavior.

\[\Delta T_m = \frac{R T_m^2 x}{\Delta H_m}

\]

\[\Delta T_m = \frac{R T_m^2 (MW) M}{1000 \Delta H_m}

\]

	Parameters

	
	Tmfloat
	Melting temperature of the solute [K]

	Hmfloat
	Heat of melting at the melting temperature of the solute [J/mol]

	xfloat, optional
	Mole fraction of the solute [-]

	Mfloat, optional
	Molality [mol/kg]

	MW: float, optional
	Molecular weight of the solvent [g/mol]

	Returns

	
	dTmfloat
	Freezing point depression [K]

Notes

MW is the molecular weight of the solvent. M is the molality of the solute.

References

	1

	Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation.
Weinheim, Germany: Wiley-VCH, 2012.

Examples

From [1], matching example.

>>> Tm_depression_eutectic(353.35, 19110, .02)
1.0864598583150

 ITS Temperature Scales (chemicals.temperature)

ITS Temperature Scales (chemicals.temperature)

This module contains functionality for converting between the temperature scales
ITS-90, ITS-76, ITS-68, ITS-48, and ITS-27. These historical temperature scales
can deviate quite a bit from modern temperature measurements! It is important
to convert old measurements of temperature to their modern equivalent.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Conversion functions

Conversion functions

	
chemicals.temperature.T_converter(T, current, desired)

	Converts the a temperature reading made in any of the scales
‘ITS-90’, ‘ITS-68’,’ITS-48’, ‘ITS-76’, or ‘ITS-27’ to any of the other
scales. Not all temperature ranges can be converted to other ranges; for
instance, ‘ITS-76’ is purely for low temperatures, and 5 K on it has no
conversion to ‘ITS-90’ or any other scale. Both a conversion to ITS-90 and
to the desired scale must be possible for the conversion to occur.
The conversion uses cubic spline interpolation.

ITS-68 conversion is valid from 14 K to 4300 K.
ITS-48 conversion is valid from 93.15 K to 4273.15 K
ITS-76 conversion is valid from 5 K to 27 K.
ITS-27 is valid from 903.15 K to 4273.15 k.

	Parameters

	
	Tfloat
	Temperature, on current scale [K]

	currentstr
	String representing the scale T is in, ‘ITS-90’, ‘ITS-68’,
‘ITS-48’, ‘ITS-76’, or ‘ITS-27’.

	desiredstr
	String representing the scale T will be returned in, ‘ITS-90’,
‘ITS-68’, ‘ITS-48’, ‘ITS-76’, or ‘ITS-27’.

	Returns

	
	Tfloat
	Temperature, on scale desired [K]

Notes

Because the conversion is performed by spline functions, a re-conversion
of a value will not yield exactly the original value. However, it is quite
close.

The use of splines is quite quick (20 micro seconds/calculation). While
just a spline for one-way conversion could be used, a numerical solver
would have to be used to obtain an exact result for the reverse conversion.
This was found to take approximately 1 ms/calculation, depending on the
region.

References

	1

	Wier, Ron D., and Robert N. Goldberg. “On the Conversion of
Thermodynamic Properties to the Basis of the International Temperature
Scale of 1990.” The Journal of Chemical Thermodynamics 28, no. 3
(March 1996): 261-76. doi:10.1006/jcht.1996.0026.

	2

	Goldberg, Robert N., and R. D. Weir. “Conversion of Temperatures
and Thermodynamic Properties to the Basis of the International
Temperature Scale of 1990 (Technical Report).” Pure and Applied
Chemistry 64, no. 10 (1992): 1545-1562. doi:10.1351/pac199264101545.

Examples

>>> T_converter(500, 'ITS-68', 'ITS-48')
499.9470092992346

	
chemicals.temperature.ITS90_68_difference(T)

	Calculates the difference between ITS-90 and ITS-68 scales using a
series of models listed in [1], [2], and [3].

The temperature difference is given by the following equations:

From 13.8 K to 73.15 K:

\[T_{90} - T_{68} = a_0 + \sum_{i=1}^{12} a_i[(T_{90}/K-40)/40]^i

\]

From 83.8 K to 903.75 K:

\[T_{90} - T_{68} = \sum_{i=1}^8 b_i[(T_{90}/K - 273.15)/630]^i

\]

From 903.75 K to 1337.33 K:

\[T_{90} - T_{68} = \sum_{i=0}^5 c_i[T_{90}/^\circ C]^i

\]

Above 1337.33 K:

\[T_{90} - T_{68} = -1.398\cdot 10^{-7}\left(\frac{T_{90}}{K}\right)^2

\]

	Parameters

	
	Tfloat
	Temperature, ITS-90, or approximately ITS-68 [K]

	Returns

	
	dTfloat
	Temperature, difference between ITS-90 and ITS-68 at T [K]

Notes

The conversion is straightforward when T90 is known. Theoretically, the
model should be solved numerically to convert the reverse way. However,
according to [4], the difference is under 0.05 mK from 73.15 K to
903.15 K, and under 0.26 mK up to 1337.33 K.

For temperatures under 13.8 K, no conversion is performed.

The first set of coefficients is:

-0.005903, 0.008174, -0.061924, -0.193388, 1.490793, 1.252347, -9.835868,
1.411912, 25.277595, -19.183815, -18.437089, 27.000895, -8.716324.

The second set of coefficients is:

0, -0.148759, -0.267408, 1.08076, 1.269056, -4.089591, -1.871251,
7.438081, -3.536296.

The third set of coefficients is:

7.8687209E1, -4.7135991E-1, 1.0954715E-3, -1.2357884E-6, 6.7736583E-10,
-1.4458081E-13.

These last coefficients use the temperature in degrees Celcius. A slightly
older model used the following coefficients but a different equation over
the same range:

-0.00317, -0.97737, 1.2559, 2.03295, -5.91887, -3.23561, 7.23364,
5.04151.

The model for these coefficients was:

\[T_{90} - T_{68} = c_0 + \sum_{i=1}^7 c_i[(T_{90}/K - 1173.15)/300]^i

\]

For temperatures larger than several thousand K, the differences have no
meaning and grows quadratically.

References

	1

	Bedford, R. E., G. Bonnier, H. Maas, and F. Pavese. “Techniques for
Approximating the International Temperature Scale of 1990.” Bureau
International Des Poids et Mesures, Sfievres, 1990.

	2

	Wier, Ron D., and Robert N. Goldberg. “On the Conversion of
Thermodynamic Properties to the Basis of the International Temperature
Scale of 1990.” The Journal of Chemical Thermodynamics 28, no. 3
(March 1996): 261-76. doi:10.1006/jcht.1996.0026.

	3

	Goldberg, Robert N., and R. D. Weir. “Conversion of Temperatures
and Thermodynamic Properties to the Basis of the International
Temperature Scale of 1990 (Technical Report).” Pure and Applied
Chemistry 64, no. 10 (1992): 1545-1562. doi:10.1351/pac199264101545.

	4

	Code10.info. “Conversions among International Temperature Scales.”
Accessed May 22, 2016. http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D83:conversions-among-international-temperature-scales%26catid%3D60:temperature%26Itemid%3D83.

Examples

>>> ITS90_68_difference(1000.)
0.01231818956580355

 Thermal Conductivity (chemicals.thermal_conductivity)

Thermal Conductivity (chemicals.thermal_conductivity)

This module contains various thermal conductivity estimation routines, dataframes
of fit coefficients, and mixing rules.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Pure Low Pressure Liquid Correlations

	Pure High Pressure Liquid Correlations

	Liquid Mixing Rules

	Pure Low Pressure Gas Correlations

	Pure High Pressure Gas Correlations

	Gas Mixing Rules

	Correlations for Specific Substances

	Fit Correlations

	Fit Coefficients

Pure Low Pressure Liquid Correlations

	
chemicals.thermal_conductivity.Sheffy_Johnson(T, MW, Tm)

	Calculate the thermal conductivity of a liquid as a function of
temperature using the Sheffy-Johnson (1961) method. Requires
Temperature, molecular weight, and melting point.

\[k = 1.951 \frac{1-0.00126(T-T_m)}{T_m^{0.216}MW^{0.3}}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Tmfloat
	Melting point of the fluid [K]

	Returns

	
	klfloat
	Thermal conductivity of the fluid, W/m/k

Notes

The origin of this equation has been challenging to trace. It is
presently unknown, and untested.

References

	1

	Scheffy, W. J., and E. F. Johnson. “Thermal Conductivities of
Liquids at High Temperatures.” Journal of Chemical & Engineering Data
6, no. 2 (April 1, 1961): 245-49. doi:10.1021/je60010a019

Examples

>>> Sheffy_Johnson(300, 47, 280)
0.17740150413112193

	
chemicals.thermal_conductivity.Sato_Riedel(T, MW, Tb, Tc)

	Calculate the thermal conductivity of a liquid as a function of
temperature using the CSP method of Sato-Riedel [1], [2], published in
Reid [3]. Requires temperature, molecular weight, and boiling and critical
temperatures.

\[k = \frac{1.1053}{\sqrt{MW}}\frac{3+20(1-T_r)^{2/3}}
{3+20(1-T_{br})^{2/3}}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

This equation has a complicated history. It is proposed by Reid [3].
Limited accuracy should be expected. Uncheecked.

References

	1

	Riedel, L.: Chem. Ing. Tech., 21, 349 (1949); 23: 59, 321, 465 (1951)

	2

	Maejima, T., private communication, 1973

	3(1,2)

	Properties of Gases and Liquids”, 3rd Ed., McGraw-Hill, 1977

Examples

>>> Sato_Riedel(300, 47, 390, 520)
0.21037692461337687

	
chemicals.thermal_conductivity.Lakshmi_Prasad(T, MW)

	Estimates thermal conductivity of pure liquids as a function of
temperature using a reference fluid approach. Low accuracy but quick.
Developed using several organic fluids.

\[\lambda = 0.0655-0.0005T + \frac{1.3855-0.00197T}{MW^{0.5}}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

This equation returns negative numbers at high T sometimes.
This equation is one of those implemented by DDBST.
If this results in a negative thermal conductivity, no value is returned.

References

	1

	Lakshmi, D. S., and D. H. L. Prasad. “A Rapid Estimation Method for
Thermal Conductivity of Pure Liquids.” The Chemical Engineering Journal
48, no. 3 (April 1992): 211-14. doi:10.1016/0300-9467(92)80037-B

Examples

>>> Lakshmi_Prasad(273.15, 100)
0.013664450

	
chemicals.thermal_conductivity.Gharagheizi_liquid(T, MW, Tb, Pc, omega)

	Estimates the thermal conductivity of a liquid as a function of
temperature using the CSP method of Gharagheizi [1]. A convoluted
method claiming high-accuracy and using only statistically significant
variable following analalysis.

Requires temperature, molecular weight, boiling temperature and critical
pressure and acentric factor.

\[k = 10^{-4}\left[10\omega + 2P_c-2T+4+1.908(T_b+\frac{1.009B^2}{MW^2})
+\frac{3.9287MW^4}{B^4}+\frac{A}{B^8}\right]

\]

\[A = 3.8588MW^8(1.0045B+6.5152MW-8.9756)

\]

\[B = 16.0407MW+2T_b-27.9074

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Tbfloat
	Boiling temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor of the fluid [-]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

Pressure is internally converted into bar, as used in the original equation.

This equation was derived with 19000 points representing 1640 unique compounds.

References

	1

	Gharagheizi, Farhad, Poorandokht Ilani-Kashkouli, Mehdi Sattari,
Amir H. Mohammadi, Deresh Ramjugernath, and Dominique Richon.
“Development of a General Model for Determination of Thermal
Conductivity of Liquid Chemical Compounds at Atmospheric Pressure.”
AIChE Journal 59, no. 5 (May 1, 2013): 1702-8. doi:10.1002/aic.13938

Examples

>>> Gharagheizi_liquid(300, 40, 350, 1E6, 0.27)
0.2171113029534838

	
chemicals.thermal_conductivity.Nicola_original(T, MW, Tc, omega, Hfus)

	Estimates the thermal conductivity of a liquid as a function of
temperature using the CSP method of Nicola [1]. A simpler but long
method claiming high-accuracy and using only statistically significant
variable following analalysis.

Requires temperature, molecular weight, critical temperature, acentric
factor and the heat of vaporization.

\[\frac{\lambda}{1 \text{Wm/K}}=-0.5694-0.1436T_r+5.4893\times10^{-10}
\frac{\Delta_{fus}H}{\text{kmol/J}}+0.0508\omega +
\left(\frac{1 \text{kg/kmol}}{MW}\right)^{0.0622}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Tcfloat
	Critical temperature of the fluid [K]

	omegafloat
	Acentric factor of the fluid [-]

	Hfusfloat
	Heat of fusion of the fluid [J/mol]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

A weird statistical correlation. Recent and yet to be reviewed.
This correlation has been superceded by the author’s later work.
Hfus is internally converted to be in J/kmol.

References

	1

	Nicola, Giovanni Di, Eleonora Ciarrocchi, Mariano Pierantozzi, and
Roman Stryjek. “A New Equation for the Thermal Conductivity of Organic
Compounds.” Journal of Thermal Analysis and Calorimetry 116, no. 1
(April 1, 2014): 135-40. doi:10.1007/s10973-013-3422-7

Examples

>>> Nicola_original(300, 142.3, 611.7, 0.49, 201853)
0.2305018632230984

	
chemicals.thermal_conductivity.Nicola(T, MW, Tc, Pc, omega)

	Estimates the thermal conductivity of a liquid as a function of
temperature using the CSP method of [1]. A statistically derived
equation using any correlated terms.

Requires temperature, molecular weight, critical temperature and pressure,
and acentric factor.

\[\frac{\lambda}{0.5147 W/m/K} = -0.2537T_r+\frac{0.0017Pc}{\text{bar}}
+0.1501 \omega + \left(\frac{1}{MW}\right)^{-0.2999}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor of the fluid [-]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

A statistical correlation. A revision of an original correlation.

References

	1

	Di Nicola, Giovanni, Eleonora Ciarrocchi, Gianluca Coccia, and
Mariano Pierantozzi. “Correlations of Thermal Conductivity for
Liquid Refrigerants at Atmospheric Pressure or near Saturation.”
International Journal of Refrigeration. 2014.
doi:10.1016/j.ijrefrig.2014.06.003

Examples

>>> Nicola(300, 142.3, 611.7, 2110000.0, 0.49)
0.10863821554584034

	
chemicals.thermal_conductivity.Bahadori_liquid(T, MW)

	Estimates the thermal conductivity of parafin liquid hydrocarbons.
Fits their data well, and is useful as only MW is required.
X is the Molecular weight, and Y the temperature.

\[K = a + bY + CY^2 + dY^3

\]

\[a = A_1 + B_1 X + C_1 X^2 + D_1 X^3

\]

\[b = A_2 + B_2 X + C_2 X^2 + D_2 X^3

\]

\[c = A_3 + B_3 X + C_3 X^2 + D_3 X^3

\]

\[d = A_4 + B_4 X + C_4 X^2 + D_4 X^3

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

The accuracy of this equation has not been reviewed.

References

	1

	Bahadori, Alireza, and Saeid Mokhatab. “Estimating Thermal
Conductivity of Hydrocarbons.” Chemical Engineering 115, no. 13
(December 2008): 52-54

Examples

Data point from [1].

>>> Bahadori_liquid(273.15, 170)
0.1427427810827268

	
chemicals.thermal_conductivity.kl_Mersmann_Kind(T, MW, Tc, Vc, na)

	Estimates the thermal conductivity of organic liquid substances
according to the method of [1].

\[\lambda^* = \frac{\lambda\cdot V_c^{2/3}\cdot T_c\cdot \text{MW}^{0.5}}
{(k\cdot T_c)^{1.5}\cdot N_A^{7/6}}

\]

\[\lambda^* = \frac{2}{3}\left(n_a + 40\sqrt{1-T_r}\right)

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MWfloat
	Molecular weight of the fluid [g/mol]

	Tcfloat
	Critical temperature of the fluid [K]

	Vcfloat
	Critical volume of the fluid [m^3/mol]

	nafloat
	Number of atoms in the molecule, [-]

	Returns

	
	klfloat
	Estimated liquid thermal conductivity [W/m/k]

Notes

In the equation, all quantities must be in SI units but N_A is in a kmol
basis and Vc is in units of (m^3/kmol); this is converted internally.

References

	1

	Mersmann, Alfons, and Matthias Kind. “Prediction of Mechanical and
Thermal Properties of Pure Liquids, of Critical Data, and of Vapor
Pressure.” Industrial & Engineering Chemistry Research, January 31,
2017. https://doi.org/10.1021/acs.iecr.6b04323.

Examples

Dodecane at 400 K:

>>> kl_Mersmann_Kind(400, 170.33484, 658.0,
... 0.000754, 38)
0.0895271829899285

Pure High Pressure Liquid Correlations

	
chemicals.thermal_conductivity.DIPPR9G(T, P, Tc, Pc, kl)

	Adjustes for pressure the thermal conductivity of a liquid using an
emperical formula based on [1], but as given in [2].

\[k = k^* \left[0.98 + 0.0079 P_r T_r^{1.4} + 0.63 T_r^{1.2}
\left(\frac{P_r}{30 + P_r}\right)\right]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Pfloat
	Pressure of fluid [Pa]

	Tc: float
	Critical point of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	klfloat
	Thermal conductivity of liquid at 1 atm or saturation, [W/m/K]

	Returns

	
	kl_densefloat
	Thermal conductivity of liquid at P, [W/m/K]

Notes

This equation is entrely dimensionless; all dimensions cancel.
The original source has not been reviewed.

This is DIPPR Procedure 9G: Method for the Thermal Conductivity of Pure
Nonhydrocarbon Liquids at High Pressures

References

	1

	Missenard, F. A., Thermal Conductivity of Organic Liquids of a
Series or a Group of Liquids , Rev. Gen.Thermodyn., 101 649 (1970).

	2(1,2)

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

Examples

From [2], for butyl acetate.

>>> DIPPR9G(515.05, 3.92E7, 579.15, 3.212E6, 7.085E-2)
0.0864419738671184

	
chemicals.thermal_conductivity.Missenard(T, P, Tc, Pc, kl)

	Adjustes for pressure the thermal conductivity of a liquid using an
emperical formula based on [1], but as given in [2].

\[\frac{k}{k^*} = 1 + Q P_r^{0.7}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Pfloat
	Pressure of fluid [Pa]

	Tc: float
	Critical point of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	klfloat
	Thermal conductivity of liquid at 1 atm or saturation, [W/m/K]

	Returns

	
	kl_densefloat
	Thermal conductivity of liquid at P, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.
An interpolation routine is used here from tabulated values of Q.
The original source has not been reviewed.

References

	1

	Missenard, F. A., Thermal Conductivity of Organic Liquids of a
Series or a Group of Liquids , Rev. Gen.Thermodyn., 101 649 (1970).

	2(1,2)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Example from [2], toluene; matches.

>>> Missenard(304., 6330E5, 591.8, 41E5, 0.129)
0.2198375777069657

Liquid Mixing Rules

	
chemicals.thermal_conductivity.DIPPR9H(ws, ks)

	Calculates thermal conductivity of a liquid mixture according to
mixing rules in [1] and also in [2].

\[\lambda_m = \left(\sum_i w_i \lambda_i^{-2}\right)^{-1/2}

\]

This is also called the Vredeveld (1973) equation. A review in [3] finds
this the best model on average. However, they did caution that in some
cases a linear mole-fraction mixing rule performs better. This equation
according to Poling [1] should not be used if some components have
thermal conductivities more than twice other components. They also say this
should not be used with water.

	Parameters

	
	wsfloat
	Mass fractions of components

	ksfloat
	Liquid thermal conductivites of all components, [W/m/K]

	Returns

	
	klfloat
	Thermal conductivity of liquid mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.
The example is from [2]; all results agree.
The original source has not been reviewed.

DIPPR Procedure 9H: Method for the Thermal Conductivity of Nonaqueous Liquid Mixtures

Average deviations of 3%. for 118 nonaqueous systems with 817 data points.
Max deviation 20%. According to DIPPR.

In some sources, this equation is given with the molecular weights included:

\[\lambda_m^{-2} = \frac{\sum_i z_i {MW}_i \lambda_i^{-2}}
{\sum_i z_i {MW}_i}

\]

References

	1(1,2)

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. The
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

	2(1,2)

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

	3

	Focke, Walter W. “Correlating Thermal-Conductivity Data for Ternary
Liquid Mixtures.” International Journal of Thermophysics 29, no. 4
(August 1, 2008): 1342-60. https://doi.org/10.1007/s10765-008-0465-2.

Examples

>>> DIPPR9H([0.258, 0.742], [0.1692, 0.1528])
0.15657104706719646

	
chemicals.thermal_conductivity.DIPPR9I(zs, Vms, ks)

	Calculates thermal conductivity of a liquid mixture according to
mixing rules in [1]. This is recommended in [2] for aqueous and
nonaqueous systems.

\[k_{mix} = \sum_{i}\sum_j \phi_i\phi_j k_{i,j}

\]

\[k_{i,j} = \frac{2}{\frac{1}{k_i} + \frac{1}{k_j}}

\]

\[\phi_i = \frac{z_i V_{m,i}}{\sum_j^n z_j V_{m,j}}

\]

	Parameters

	
	zslist[float]
	Mole fractions of components, [-]

	Vmslist[float]
	Molar volumes of each component, [m^3/mol]

	ksfloat
	Liquid thermal conductivites of all components, [W/m/K]

	Returns

	
	klfloat
	Thermal conductivity of liquid mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.
The example is from [2]; all results agree.

[2] found average deviations of 4-6% for 118 nonaqueous systems
and 15 aqueous systems at atmospheric pressure, with a maximum deviation of
33%.

The computational complexity here is N^2, with a division present in the
inner loop.

References

	1

	Li, C. C. “Thermal Conductivity of Liquid Mixtures.” AIChE Journal
22, no. 5 (1976): 927-30. https://doi.org/10.1002/aic.690220520.

	2(1,2,3)

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

Examples

>>> DIPPR9I(zs=[.682, .318], Vms=[1.723e-2, 7.338e-2], ks=[.6037, .1628])
0.25397430656658937

	
chemicals.thermal_conductivity.Filippov(ws, ks)

	Calculates thermal conductivity of a binary liquid mixture according to
mixing rules in [2] as found in [1].

\[\lambda_m = w_1 \lambda_1 + w_2\lambda_2
- 0.72 w_1 w_2(\lambda_2-\lambda_1)

\]

	Parameters

	
	wsfloat
	Mass fractions of components

	ksfloat
	Liquid thermal conductivites of all components, [W/m/K]

	Returns

	
	klfloat
	Thermal conductivity of liquid mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.
The original source has not been reviewed.
Only useful for binary mixtures.

References

	1

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. The
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

	2

	Filippov, L. P.: Vest. Mosk. Univ., Ser. Fiz. Mat. Estestv. Nauk,
(8I0E): 67-69A955); Chem. Abstr., 50: 8276 A956).
Filippov, L. P., and N. S. Novoselova: Vestn. Mosk. Univ., Ser. F
iz. Mat. Estestv.Nauk, CI0B): 37-40A955); Chem. Abstr., 49: 11366 A955).

Examples

>>> Filippov([0.258, 0.742], [0.1692, 0.1528])
0.15929167628799998

Pure Low Pressure Gas Correlations

	
chemicals.thermal_conductivity.Eucken(MW, Cvm, mu)

	Estimates the thermal conductivity of a gas as a function of
temperature using the CSP method of Eucken [1].

\[\frac{\lambda MW}{\eta C_v} = 1 + \frac{9/4}{C_v/R}

\]

	Parameters

	
	MWfloat
	Molecular weight of the gas [g/mol]

	Cvmfloat
	Molar contant volume heat capacity of the gas [J/mol/K]

	mufloat
	Gas viscosity [Pa*s]

	Returns

	
	kgfloat
	Estimated gas thermal conductivity [W/m/k]

Notes

Temperature dependence is introduced via heat capacity and viscosity.
A theoretical equation. No original author located.
MW internally converted to kg/g-mol.

References

	1(1,2)

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

2-methylbutane at low pressure, 373.15 K. Mathes calculation in [1].

>>> Eucken(MW=72.151, Cvm=135.9, mu=8.77E-6)
0.018792645058456698

	
chemicals.thermal_conductivity.Eucken_modified(MW, Cvm, mu)

	Estimates the thermal conductivity of a gas as a function of
temperature using the Modified CSP method of Eucken [1].

\[\frac{\lambda MW}{\eta C_v} = 1.32 + \frac{1.77}{C_v/R}

\]

	Parameters

	
	MWfloat
	Molecular weight of the gas [g/mol]

	Cvmfloat
	Molar contant volume heat capacity of the gas [J/mol/K]

	mufloat
	Gas viscosity [Pa*s]

	Returns

	
	kgfloat
	Estimated gas thermal conductivity [W/m/k]

Notes

Temperature dependence is introduced via heat capacity and viscosity.
A theoretical equation. No original author located.
MW internally converted to kg/g-mol.

References

	1(1,2)

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

2-methylbutane at low pressure, 373.15 K. Mathes calculation in [1].

>>> Eucken_modified(MW=72.151, Cvm=135.9, mu=8.77E-6)
0.02359353760551249

	
chemicals.thermal_conductivity.DIPPR9B(T, MW, Cvm, mu, Tc=None, chemtype=None)

	Calculates the thermal conductivity of a gas using one of several
emperical equations developed in [1], [2], and presented in [3].

For monoatomic gases:

\[k = 2.5 \frac{\eta C_v}{MW}

\]

For linear molecules:

\[k = \frac{\eta}{MW} \left(1.30 C_v + 14644.00 - \frac{2928.80}{T_r}\right)

\]

For nonlinear molecules:

\[k = \frac{\eta}{MW}(1.15C_v + 16903.36)

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	MWfloat
	Molwcular weight of fluid [g/mol]

	Cvmfloat
	Molar heat capacity at constant volume of fluid, [J/mol/K]

	mufloat
	Viscosity of gas, [Pa*s]

	Returns

	
	k_gfloat
	Thermal conductivity of gas, [W/m/k]

Notes

Tested with DIPPR values.
Cvm is internally converted to J/kmol/K.

References

	1

	Bromley, LeRoy A., Berkeley. University of California, and U.S.
Atomic Energy Commission. Thermal Conductivity of Gases at Moderate
Pressures. UCRL;1852. Berkeley, CA: University of California Radiation
Laboratory, 1952.

	2

	Stiel, Leonard I., and George Thodos. “The Thermal Conductivity of
Nonpolar Substances in the Dense Gaseous and Liquid Regions.” AIChE
Journal 10, no. 1 (January 1, 1964): 26-30. doi:10.1002/aic.690100114

	3

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

Examples

CO:

>>> DIPPR9B(200., 28.01, 20.826, 1.277E-5, 132.92, chemtype='linear')
0.01813208676438415

	
chemicals.thermal_conductivity.Chung(T, MW, Tc, omega, Cvm, mu)

	Estimates the thermal conductivity of a gas as a function of
temperature using the CSP method of Chung [1].

\[\frac{\lambda MW}{\eta C_v} = \frac{3.75 \Psi}{C_v/R}

\]

\[\Psi = 1 + \alpha \left\{[0.215+0.28288\alpha-1.061\beta+0.26665Z]/
[0.6366+\beta Z + 1.061 \alpha \beta]\right\}

\]

\[\alpha = \frac{C_v}{R}-1.5

\]

\[\beta = 0.7862-0.7109\omega + 1.3168\omega^2

\]

\[Z=2+10.5T_r^2

\]

	Parameters

	
	Tfloat
	Temperature of the gas [K]

	MWfloat
	Molecular weight of the gas [g/mol]

	Tcfloat
	Critical temperature of the gas [K]

	omegafloat
	Acentric factor of the gas [-]

	Cvmfloat
	Molar contant volume heat capacity of the gas [J/mol/K]

	mufloat
	Gas viscosity [Pa*s]

	Returns

	
	kgfloat
	Estimated gas thermal conductivity [W/m/k]

Notes

MW internally converted to kg/g-mol.

References

	1

	Chung, Ting Horng, Lloyd L. Lee, and Kenneth E. Starling.
“Applications of Kinetic Gas Theories and Multiparameter Correlation for
Prediction of Dilute Gas Viscosity and Thermal Conductivity.”
Industrial & Engineering Chemistry Fundamentals 23, no. 1
(February 1, 1984): 8-13. doi:10.1021/i100013a002

	2

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

2-methylbutane at low pressure, 373.15 K. Mathes calculation in [2].

>>> Chung(T=373.15, MW=72.151, Tc=460.4, omega=0.227, Cvm=135.9, mu=8.77E-6)
0.023015653797111124

	
chemicals.thermal_conductivity.Eli_Hanley(T, MW, Tc, Vc, Zc, omega, Cvm)

	Estimates the thermal conductivity of a gas as a function of
temperature using the reference fluid method of Eli and Hanley [1] as
shown in [2].

\[\lambda = \lambda^* + \frac{\eta^*}{MW}(1.32)\left(C_v - \frac{3R}{2}\right)

\]

\[Tr = \text{min}(Tr, 2)

\]

\[\theta = 1 + (\omega-0.011)\left(0.56553 - 0.86276\ln Tr - \frac{0.69852}{Tr}\right)

\]

\[\psi = [1 + (\omega - 0.011)(0.38560 - 1.1617\ln Tr)]\frac{0.288}{Z_c}

\]

\[f = \frac{T_c}{190.4}\theta

\]

\[h = \frac{V_c}{9.92E-5}\psi

\]

\[T_0 = T/f

\]

\[\eta_0^*(T_0)= \sum_{n=1}^9 C_n T_0^{(n-4)/3}

\]

\[\theta_0 = 1944 \eta_0

\]

\[\lambda^* = \lambda_0 H

\]

\[\eta^* = \eta^*_0 H \frac{MW}{16.04}

\]

\[H = \left(\frac{16.04}{MW}\right)^{0.5}f^{0.5}/h^{2/3}

\]

	Parameters

	
	Tfloat
	Temperature of the gas [K]

	MWfloat
	Molecular weight of the gas [g/mol]

	Tcfloat
	Critical temperature of the gas [K]

	Vcfloat
	Critical volume of the gas [m^3/mol]

	Zcfloat
	Critical compressibility of the gas []

	omegafloat
	Acentric factor of the gas [-]

	Cvmfloat
	Molar contant volume heat capacity of the gas [J/mol/K]

	Returns

	
	kgfloat
	Estimated gas thermal conductivity [W/m/k]

Notes

Reference fluid is Methane.
MW internally converted to kg/g-mol.

References

	1

	Ely, James F., and H. J. M. Hanley. “Prediction of Transport
Properties. 2. Thermal Conductivity of Pure Fluids and Mixtures.”
Industrial & Engineering Chemistry Fundamentals 22, no. 1 (February 1,
1983): 90-97. doi:10.1021/i100009a016.

	2(1,2)

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

2-methylbutane at low pressure, 373.15 K. Matches calculation in [2].

>>> Eli_Hanley(T=373.15, MW=72.151, Tc=460.4, Vc=3.06E-4, Zc=0.267,
... omega=0.227, Cvm=135.9)
0.02247951724513664

	
chemicals.thermal_conductivity.Gharagheizi_gas(T, MW, Tb, Pc, omega)

	Estimates the thermal conductivity of a gas as a function of
temperature using the CSP method of Gharagheizi [1]. A convoluted
method claiming high-accuracy and using only statistically significant
variable following analalysis.

Requires temperature, molecular weight, boiling temperature and critical
pressure and acentric factor.

\[k = 7.9505\times 10^{-4} + 3.989\times 10^{-5} T
-5.419\times 10^-5 MW + 3.989\times 10^{-5} A

\]

\[A = \frac{\left(2\omega + T - \frac{(2\omega + 3.2825)T}{T_b} + 3.2825\right)}{0.1MP_cT}
 \times (3.9752\omega + 0.1 P_c + 1.9876B + 6.5243)^2

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	MW: float
	Molecular weight of the fluid [g/mol]

	Tbfloat
	Boiling temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor of the fluid [-]

	Returns

	
	kgfloat
	Estimated gas thermal conductivity [W/m/k]

Notes

Pressure is internally converted into 10*kPa but author used correlation with
kPa; overall, errors have been corrected in the presentation of the formula.

This equation was derived with 15927 points and 1574 compounds.
Example value from [1] is the first point in the supportinf info, for CH4.

References

	1(1,2)

	Gharagheizi, Farhad, Poorandokht Ilani-Kashkouli, Mehdi Sattari,
Amir H. Mohammadi, Deresh Ramjugernath, and Dominique Richon.
“Development of a General Model for Determination of Thermal
Conductivity of Liquid Chemical Compounds at Atmospheric Pressure.”
AIChE Journal 59, no. 5 (May 1, 2013): 1702-8. doi:10.1002/aic.13938

Examples

>>> Gharagheizi_gas(580., 16.04246, 111.66, 4599000.0, 0.0115478000)
0.09594861261873211

	
chemicals.thermal_conductivity.Bahadori_gas(T, MW)

	Estimates the thermal conductivity of hydrocarbons gases at low P.
Fits their data well, and is useful as only MW is required.
Y is the Molecular weight, and X the temperature.

\[K = a + bY + CY^2 + dY^3

\]

\[a = A_1 + B_1 X + C_1 X^2 + D_1 X^3

\]

\[b = A_2 + B_2 X + C_2 X^2 + D_2 X^3

\]

\[c = A_3 + B_3 X + C_3 X^2 + D_3 X^3

\]

\[d = A_4 + B_4 X + C_4 X^2 + D_4 X^3

\]

	Parameters

	
	Tfloat
	Temperature of the gas [K]

	MWfloat
	Molecular weight of the gas [g/mol]

	Returns

	
	kgfloat
	Estimated gas thermal conductivity [W/m/k]

Notes

The accuracy of this equation has not been reviewed.

References

	1

	Bahadori, Alireza, and Saeid Mokhatab. “Estimating Thermal
Conductivity of Hydrocarbons.” Chemical Engineering 115, no. 13
(December 2008): 52-54

Examples

>>> Bahadori_gas(40+273.15, 20.0) # Point from article
0.03196816533787329

Pure High Pressure Gas Correlations

	
chemicals.thermal_conductivity.Stiel_Thodos_dense(T, MW, Tc, Pc, Vc, Zc, Vm, kg)

	Estimates the thermal conductivity of a gas at high pressure as a
function of temperature using difference method of Stiel and Thodos [1]
as shown in [2].

if \(\rho_r < 0.5\):

\[(\lambda-\lambda^\circ)\Gamma Z_c^5=1.22\times 10^{-2} [\exp(0.535 \rho_r)-1]

\]

if \(0.5 < \rho_r < 2.0\):

\[(\lambda-\lambda^\circ)\Gamma Z_c^5=1.22\times 10^{-2} [\exp(0.535 \rho_r)-1]

\]

if \(2 < \rho_r < 2.8\):

\[(\lambda-\lambda^\circ)\Gamma Z_c^5=1.22\times 10^{-2} [\exp(0.535 \rho_r)-1]

\]

\[\Gamma = 210 \left(\frac{T_cMW^3}{P_c^4}\right)^{1/6}

\]

	Parameters

	
	Tfloat
	Temperature of the gas [K]

	MWfloat
	Molecular weight of the gas [g/mol]

	Tcfloat
	Critical temperature of the gas [K]

	Pcfloat
	Critical pressure of the gas [Pa]

	Vcfloat
	Critical volume of the gas [m^3/mol]

	Zcfloat
	Critical compressibility of the gas [-]

	Vmfloat
	Molar volume of the gas at T and P [m^3/mol]

	kgfloat
	Low-pressure gas thermal conductivity [W/m/k]

	Returns

	
	kgfloat
	Estimated dense gas thermal conductivity [W/m/k]

Notes

Pc is internally converted to bar.

References

	1

	Stiel, Leonard I., and George Thodos. “The Thermal Conductivity of
Nonpolar Substances in the Dense Gaseous and Liquid Regions.” AIChE
Journal 10, no. 1 (January 1, 1964): 26-30. doi:10.1002/aic.690100114.

	2

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

>>> Stiel_Thodos_dense(T=378.15, MW=44.013, Tc=309.6, Pc=72.4E5,
... Vc=97.4E-6, Zc=0.274, Vm=144E-6, kg=2.34E-2)
0.041245574404863684

	
chemicals.thermal_conductivity.Eli_Hanley_dense(T, MW, Tc, Vc, Zc, omega, Cvm, Vm)

	Estimates the thermal conductivity of a gas at high pressure as a
function of temperature using the reference fluid method of Eli and
Hanley [1] as shown in [2].

\[Tr = min(Tr, 2)

\]

\[Vr = min(Vr, 2)

\]

\[f = \frac{T_c}{190.4}\theta

\]

\[h = \frac{V_c}{9.92E-5}\psi

\]

\[T_0 = T/f

\]

\[\rho_0 = \frac{16.04}{V}h

\]

\[\theta = 1 + (\omega-0.011)\left(0.09057 - 0.86276\ln Tr + \left(
0.31664 - \frac{0.46568}{Tr}\right) (V_r - 0.5)\right)

\]

\[\psi = [1 + (\omega - 0.011)(0.39490(V_r - 1.02355) - 0.93281(V_r -
0.75464)\ln T_r]\frac{0.288}{Z_c}

\]

\[\lambda_1 = 1944 \eta_0

\]

\[\lambda_2 = \left\{b_1 + b_2\left[b_3 - \ln \left(\frac{T_0}{b_4}
\right)\right]^2\right\}\rho_0

\]

\[\lambda_3 = \exp\left(a_1 + \frac{a_2}{T_0}\right)\left\{\exp[(a_3 +
\frac{a_4}{T_0^{1.5}})\rho_0^{0.1} + (\frac{\rho_0}{0.1617} - 1)
\rho_0^{0.5}(a_5 + \frac{a_6}{T_0} + \frac{a_7}{T_0^2})] - 1\right\}

\]

\[\lambda^{**} = [\lambda_1 + \lambda_2 + \lambda_3]H

\]

\[H = \left(\frac{16.04}{MW}\right)^{0.5}f^{0.5}/h^{2/3}

\]

\[X = \left\{\left[1 - \frac{T}{f}\left(\frac{df}{dT}\right)_v \right]
\frac{0.288}{Z_c}\right\}^{1.5}

\]

\[\left(\frac{df}{dT}\right)_v = \frac{T_c}{190.4}\left(\frac{d\theta}
{d T}\right)_v

\]

\[\left(\frac{d\theta}{d T}\right)_v = (\omega-0.011)\left[
\frac{-0.86276}{T} + (V_r-0.5)\frac{0.46568T_c}{T^2}\right]

\]

	Parameters

	
	Tfloat
	Temperature of the gas [K]

	MWfloat
	Molecular weight of the gas [g/mol]

	Tcfloat
	Critical temperature of the gas [K]

	Vcfloat
	Critical volume of the gas [m^3/mol]

	Zcfloat
	Critical compressibility of the gas [-]

	omegafloat
	Acentric factor of the gas [-]

	Cvmfloat
	Molar contant volume heat capacity of the gas [J/mol/K]

	Vmfloat
	Volume of the gas at T and P [m^3/mol]

	Returns

	
	kgfloat
	Estimated dense gas thermal conductivity [W/m/k]

Notes

Reference fluid is Methane.
MW internally converted to kg/g-mol.

References

	1

	Ely, James F., and H. J. M. Hanley. “Prediction of Transport
Properties. 2. Thermal Conductivity of Pure Fluids and Mixtures.”
Industrial & Engineering Chemistry Fundamentals 22, no. 1 (February 1,
1983): 90-97. doi:10.1021/i100009a016.

	2

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

>>> Eli_Hanley_dense(T=473., MW=42.081, Tc=364.9, Vc=1.81E-4, Zc=0.274,
... omega=0.144, Cvm=82.70, Vm=1.721E-4)
0.06038475754109959

	
chemicals.thermal_conductivity.Chung_dense(T, MW, Tc, Vc, omega, Cvm, Vm, mu, dipole, association=0.0)

	Estimates the thermal conductivity of a gas at high pressure as a
function of temperature using the reference fluid method of
Chung [1] as shown in [2].

\[\lambda = \frac{31.2 \eta^\circ \Psi}{M'}(G_2^{-1} + B_6 y)+qB_7y^2T_r^{1/2}G_2

\]

\[\Psi = 1 + \alpha \left\{[0.215+0.28288\alpha-1.061\beta+0.26665Z]/
[0.6366+\beta Z + 1.061 \alpha \beta]\right\}

\]

\[\alpha = \frac{C_v}{R}-1.5

\]

\[\beta = 0.7862-0.7109\omega + 1.3168\omega^2

\]

\[Z=2+10.5T_r^2

\]

\[q = 3.586\times 10^{-3} (T_c/M')^{1/2}/V_c^{2/3}

\]

\[y = \frac{V_c}{6V}

\]

\[G_1 = \frac{1-0.5y}{(1-y)^3}

\]

\[G_2 = \frac{(B_1/y)[1-\exp(-B_4y)]+ B_2G_1\exp(B_5y) + B_3G_1}
{B_1B_4 + B_2 + B_3}

\]

\[B_i = a_i + b_i \omega + c_i \mu_r^4 + d_i \kappa

\]

	Parameters

	
	Tfloat
	Temperature of the gas [K]

	MWfloat
	Molecular weight of the gas [g/mol]

	Tcfloat
	Critical temperature of the gas [K]

	Vcfloat
	Critical volume of the gas [m^3/mol]

	omegafloat
	Acentric factor of the gas [-]

	Cvmfloat
	Molar contant volume heat capacity of the gas [J/mol/K]

	Vmfloat
	Molar volume of the gas at T and P [m^3/mol]

	mufloat
	Low-pressure gas viscosity [Pa*s]

	dipolefloat
	Dipole moment [debye]

	associationfloat, optional
	Association factor [-]

	Returns

	
	kgfloat
	Estimated dense gas thermal conductivity [W/m/k]

Notes

MW internally converted to kg/g-mol.
Vm internally converted to mL/mol.
[1] is not the latest form as presented in [1].
Association factor is assumed 0. Relates to the polarity of the gas.

Coefficients as follows:

ais = [2.4166E+0, -5.0924E-1, 6.6107E+0, 1.4543E+1, 7.9274E-1, -5.8634E+0, 9.1089E+1]

bis = [7.4824E-1, -1.5094E+0, 5.6207E+0, -8.9139E+0, 8.2019E-1, 1.2801E+1, 1.2811E+2]

cis = [-9.1858E-1, -4.9991E+1, 6.4760E+1, -5.6379E+0, -6.9369E-1, 9.5893E+0, -5.4217E+1]

dis = [1.2172E+2, 6.9983E+1, 2.7039E+1, 7.4344E+1, 6.3173E+0, 6.5529E+1, 5.2381E+2]

References

	1(1,2,3)

	Chung, Ting Horng, Mohammad Ajlan, Lloyd L. Lee, and Kenneth E.
Starling. “Generalized Multiparameter Correlation for Nonpolar and Polar
Fluid Transport Properties.” Industrial & Engineering Chemistry Research
27, no. 4 (April 1, 1988): 671-79. doi:10.1021/ie00076a024.

	2

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Chung_dense(T=473., MW=42.081, Tc=364.9, Vc=184.6E-6, omega=0.142,
... Cvm=82.67, Vm=172.1E-6, mu=134E-7, dipole=0.4)
0.06160569232570781

Gas Mixing Rules

	
chemicals.thermal_conductivity.Lindsay_Bromley(T, ys, ks, mus, Tbs, MWs)

	Calculates thermal conductivity of a gas mixture according to
mixing rules in [1] and also in [2]. It is significantly more complicated
than other kinetic theory models.

\[k = \sum_i \frac{y_i k_i}{\sum_j y_i A_{ij}}

\]

\[A_{ij} = \frac{1}{4} \left\{ 1 + \left[\frac{\eta_i}{\eta_j}
\left(\frac{MW_j}{MW_i}\right)^{0.75} \left(\frac{T+S_i}{T+S_j}\right)
\right]^{0.5} \right\}^2 \left(\frac{T+S_{ij}}{T+S_i}\right)

\]

\[S_{ij} = S_{ji} = (S_i S_j)^{0.5}

\]

\[S_i = 1.5 T_b

\]

	Parameters

	
	Tfloat
	Temperature of gas [K]

	ysfloat
	Mole fractions of gas components

	ksfloat
	Gas thermal conductivites of all components, [W/m/K]

	musfloat
	Gas viscosities of all components, [Pa*s]

	Tbsfloat
	Boiling points of all components, [K]

	MWsfloat
	Molecular weights of all components, [g/mol]

	Returns

	
	kgfloat
	Thermal conductivity of gas mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.
The example is from [2]; all results agree.
The original source has not been reviewed.

DIPPR Procedure 9D: Method for the Thermal Conductivity of Gas Mixtures

Average deviations of 4-5% for 77 binary mixtures reviewed in [2], from
1342 points; also six ternary mixtures (70 points); max deviation observed
was 40%. (DIPPR)

References

	1

	Lindsay, Alexander L., and LeRoy A. Bromley. “Thermal Conductivity
of Gas Mixtures.” Industrial & Engineering Chemistry 42, no. 8
(August 1, 1950): 1508-11. doi:10.1021/ie50488a017.

	2(1,2,3)

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

	3

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Lindsay_Bromley(323.15, [0.23, 0.77], [1.939E-2, 1.231E-2], [1.002E-5, 1.015E-5], [248.31, 248.93], [46.07, 50.49])
0.013902644179693132

	
chemicals.thermal_conductivity.Wassiljewa_Herning_Zipperer(zs, ks, MWs, MW_roots=None)

	Calculates thermal conductivity of a gas mixture according to
the kinetic theory expression of Wassiljewa with the interaction
term from the Herning-Zipperer expression. This is also used for
the prediction of gas mixture viscosity.

\[k = \sum \frac{y_i k_i}{\sum y_i A_{ij}}

\]

\[A_{ij} = \left(\frac{MW_j}{MW_i}\right)^{0.5}

\]

	Parameters

	
	zsfloat
	Mole fractions of gas components, [-]

	ksfloat
	gas thermal conductivites of all components, [W/m/K]

	MWsfloat
	Molecular weights of all components, [g/mol]

	MW_rootsfloat, optional
	Square roots of molecular weights of all components;
speeds up the calculation if provided, [g^0.5/mol^0.5]

	Returns

	
	kgfloat
	Thermal conductivity of gas mixture, [W/m/K]

Notes

This equation is entirely dimensionless; all dimensions cancel.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Wassiljewa_Herning_Zipperer(zs=[.1, .4, .5], ks=[1.002E-5, 1.15E-5, 2e-5], MWs=[40.0, 50.0, 60.0])
1.5861181979916883e-05

Correlations for Specific Substances

	
chemicals.thermal_conductivity.k_IAPWS(T, rho, Cp=None, Cv=None, mu=None, drho_dP=None, drho_dP_Tr=None)

	Calculate the thermal conductivity of water or steam according to the
2011 IAPWS [1] formulation. Critical enhancement is ignored unless
parameters for it are provided.

\[\bar\lambda = \bar\lambda_0\times \bar\lambda_1(\bar T, \bar \rho)
+ \bar\lambda_2(\bar T, \bar\rho)

\]

\[\bar\lambda_0 = \frac{\sqrt{\bar T}}
{\sum_{k=0}^4 \frac{L_k}{\bar T^k}}

\]

\[\bar \lambda_1(\bar T, \bar \rho) = \exp\left[\bar\rho \sum_{i=0}^4
\left(\left(\frac{1}{\bar T} - 1 \right)^i
\sum_{j=0}^5 L_{ij}(\bar\rho - 1)^j\right)\right]

\]

\[\bar\lambda_2 = \Gamma\frac{\bar\rho \bar c_p \bar T}{\bar \mu} Z(y)

\]

\[Z(y) = \frac{2}{\pi y} \left\{\left[(1 - \kappa^{-1})\arctan(y)
+ \kappa^{-1}y\right] - \left[1 - \exp\left(\frac{-1}{y^{-1}
+ y^{-2}/3\bar\rho^2}\right)\right]\right\}

\]

\[y = \bar q_D \xi(\bar T, \bar \rho)

\]

\[\xi = \xi_0 \left(\frac{\Delta \bar\chi}{\Gamma_0}\right)^{\nu/\gamma}

\]

\[\Delta \bar\chi(\bar T, \bar \rho) = \bar\rho\left[
\zeta(\bar T, \bar \rho) - \zeta(\bar T_R, \bar \rho)\frac{\bar T_R}{\bar T}
\right]

\]

\[\zeta = \left(\frac{\partial \bar \rho}{\partial \bar p}\right)_{\bar T}

\]

	Parameters

	
	Tfloat
	Temperature water [K]

	rhofloat
	Density of water [kg/m^3]

	Cpfloat, optional
	Constant pressure heat capacity of water, [J/kg/K]

	Cvfloat, optional
	Constant volume heat capacity of water, [J/kg/K]

	mufloat, optional
	Viscosity of water, [Pa*s]

	drho_dPfloat, optional
	Partial derivative of density with respect to pressure at constant
temperature, [kg/m^3/Pa]

	drho_dP_Trfloat, optional
	Partial derivative of density with respect to pressure at constant
temperature (at the reference temperature (970.644 K) and the actual
density of water); will be calculated from the industrial formulation
fit if omitted, [kg/m^3/Pa]

	Returns

	
	kfloat
	Thermal condiuctivity, [W/m/K]

Notes

Gamma = 177.8514;

qd = 0.4E-9;

nu = 0.630;

gamma = 1.239;

zeta0 = 0.13E-9;

Gamma0 = 0.06;

TRC = 1.5

The formulation uses the industrial variant of the critical enhancement.
It matches to 5E-6 relative tolerance at the check temperature, and should
match even closer outside it.

References

	1

	Huber, M. L., R. A. Perkins, D. G. Friend, J. V. Sengers, M. J.
Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann, and E. Vogel. “New
International Formulation for the Thermal Conductivity of H2O.”
Journal of Physical and Chemical Reference Data 41, no. 3 (September 1,
2012): 033102. doi:10.1063/1.4738955.

Examples

>>> k_IAPWS(647.35, 750.)
0.5976194153179502

Region 1, test 1, from MPEI, exact match:

>>> k_IAPWS(T=620., rho=613.227777440324, Cp=7634.337046792,
... Cv=3037.934412104, mu=70.905106751524E-6, drho_dP=5.209378197916E-6)
0.48148519510200044

Full scientific calculation:

>>> from chemicals.iapws import iapws95_properties, iapws95_P, iapws95_Tc
>>> from chemicals.viscosity import mu_IAPWS
>>> T, P = 298.15, 1e5
>>> rho, _, _, _, Cv, Cp, _, _, _, _, drho_dP = iapws95_properties(T, P)
>>> P_ref = iapws95_P(1.5*iapws95_Tc, rho)
>>> _, _, _, _, _, _, _, _, _, _, drho_dP_Tr = iapws95_properties(1.5*iapws95_Tc, P_ref)
>>> mu = mu_IAPWS(T, rho, drho_dP, drho_dP_Tr)
>>> k_IAPWS(T, rho, Cp, Cv, mu, drho_dP, drho_dP_Tr)
0.60651532815

	
chemicals.thermal_conductivity.k_air_lemmon(T, rho, Cp=None, Cv=None, drho_dP=None, drho_dP_Tr=None, mu=None)

	Calculate the thermal conductivity of air using the Lemmon and Jacobsen
(2004) [1] formulation. The critical enhancement term is ignored unless
all the rquired parameters for it are provided.

\[\lambda = \lambda^0(T) + \lambda^r(\tau, \delta) + \lambda^c(\tau, \delta)

\]

\[\lambda^0 = N_1\left[\frac{\eta^0(T)}{1 \mu \text{Pa}\cdot \text{s}}
\right] + N_2\tau^{t_2} + N_3\tau^{t_3}

\]

\[\lambda^r = \sum_{i=4}^n N_i \tau^{t_i} \delta^{d_i} \exp(-\gamma_i
\delta^{l_i})

\]

\[\lambda^c = \rho C_p \frac{kR_0 T}{6\pi\xi\cdot \eta(T, \rho)}\left(
\tilde \Omega -\tilde \Omega_0\right)

\]

\[\tilde \Omega = \frac{2}{\pi}\left[
\left(\frac{C_p - C_v}{C_p}\right)\tan^{-1} (\xi/q_D) + \frac{C_v}
{C_p}(\xi/q_D) \right]

\]

\[\tilde \Omega_0 = \frac{2}{\pi}\left\{1 - \exp\left[\frac{-1}{q_D/\xi
+ 1/3(\xi/q_D)^2(\rho_c/\rho)^2} \right] \right\}

\]

\[\xi = \xi_0 \left[\frac{\tilde \chi(T, \rho) - \tilde \chi(T_{ref},
\rho)\frac{T_{ref}}{T}}{\Gamma} \right]^{\nu/\gamma}

\]

\[\tilde \chi(T, \rho) = \frac{P_c \rho}{\rho_c^2} \left(\frac{\partial
\rho}{\partial P} \right)_{T}

\]

	Parameters

	
	Tfloat
	Temperature air [K]

	rhofloat
	Molar density of air [mol/m^3]

	Cpfloat, optional
	Molar constant pressure heat capacity of air, [J/mol/K]

	Cvfloat, optional
	Molar constant volume heat capacity of air, [J/mol/K]

	mufloat, optional
	Viscosity of air, [Pa*s]

	drho_dPfloat, optional
	Partial derivative of density with respect to pressure at constant
temperature, [mol/m^3/Pa]

	drho_dP_Trfloat, optional
	Partial derivative of density with respect to pressure at constant
temperature (at the reference temperature (265.262 K) and the actual
density of air), [mol/m^3/Pa]

	Returns

	
	kfloat
	Thermal condiuctivity of air, [W/m/K]

Notes

The constnts are as follows:

Ni = [1.308, 1.405, -1.036, 8.743, 14.76, -16.62, 3.793, -6.142, -0.3778]

ti = [None, -1.1, -0.3, 0.1, 0.0, 0.5, 2.7, 0.3, 1.3]

di = [None, None, None, 1, 2, 3, 7, 7, 11]

li = [None, None, None, 0, 0, 2, 2, 2, 2]

gammai = [None, None, None, 0, 0, 1, 1, 1, 1]

R0 = 1.01; Pc = 3.78502E6 Pa; xi0 = 0.11E-9 nm; qd = 0.31E-9 nm;
Tc = 132.6312 K (actually the maxcondentherm); T_ref = 265.262 (2Tc
rounded differently); rhoc = 10447.7 mol/m^3 (actually the maxcondentherm);
k = 1.380658E-23 J/K; nu = 0.63 and gamma = 1.2415, sigma = 0.36,
MW = 28.9586 g/mol.

References

	1

	Lemmon, E. W., and R. T. Jacobsen. “Viscosity and Thermal
Conductivity Equations for Nitrogen, Oxygen, Argon, and Air.”
International Journal of Thermophysics 25, no. 1 (January 1, 2004):
21-69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3.

Examples

Basic calculation at 300 K and approximately 1 bar:

>>> k_air_lemmon(300, 40.0)
0.0263839695044

Calculation near critical point:

>>> k_air_lemmon(132.64, 10400, 2137.078854678728, 35.24316159996235, 0.07417878614315769, 0.00035919027241528256, 1.7762253265868595e-05)
0.07562307234760

Fit Correlations

	
chemicals.thermal_conductivity.PPDS8(T, Tc, a0, a1, a2, a3)

	Calculate the thermal conductivity of a liquid using the 4-term
tau polynomial developed by the PPDS and named PPDS equation 8.

\[k_l = a_0\left(1 + \sum_i^3 a_i\tau^{i/3} \right)

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a0float
	Coefficient, [-]

	a1float
	Coefficient, [-]

	a2float
	Coefficient, [-]

	a3float
	Coefficient, [-]

	Returns

	
	kfloat
	Low pressure liquid thermal conductivity, [W/(m*K)]

References

	1

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ThermalCondSatL/PPDS8.htm

Examples

Sample coefficients for benzene in [1], at 500 K:

>>> PPDS8(T=500.0, Tc=562.05, a0=0.0641126, a1=0.61057, a2=-1.72442, a3=3.94394)
0.08536381765218425

	
chemicals.thermal_conductivity.PPDS3(T, Tc, a1, a2, a3)

	Calculate the thermal conductivity of a low-pressure gas using the 3-term
Tr polynomial developed by the PPDS and named PPDS equation 3.

\[k_g = \sqrt{T_r}\left(\sum_{i=1}^3 \frac{a_i}{T_r^i} \right)^{-1}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a1float
	Coefficient, [-]

	a2float
	Coefficient, [-]

	a3float
	Coefficient, [-]

	Returns

	
	kfloat
	Low pressure gas thermal conductivity, [W/(m*K)]

References

	1

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-ThermalCondG/PPDS3-ThermCondGas.htm

Examples

Sample coefficients for pentane in [1], at 400 K:

>>> PPDS3(T=400.0, Tc=470.008, a1=11.6366, a2=25.1191, a3=-7.21674)
0.0251734811601927

	
chemicals.thermal_conductivity.Chemsep_16(T, A, B, C, D, E)

	Calculate the thermal conductivity of a low-pressure liquid using the
5-term T exponential polynomial found in ChemSep.

\[k_l = A + \exp\left(\frac{B}{T} + C + DT + ET^2 \right)

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Afloat
	Coefficient, [W/(m*K)]

	Bfloat
	Coefficient, [K]

	Cfloat
	Coefficient, [-]

	Dfloat
	Coefficient, [1/K]

	Efloat
	Coefficient, [1/K^2]

	Returns

	
	kfloat
	Low pressure liquid thermal conductivity, [W/(m*K)]

References

	1

	Kooijman, Harry A., and Ross Taylor. The ChemSep Book. Books on
Demand Norderstedt, Germany, 2000.

Examples

Sample coefficients for liquid thermal conductivity of n-hexane in [1], at
300 K:

>>> Chemsep_16(300.0, -0.12682, -1.5015, -1.0467, -0.00088709, -9.3679E-07)
0.11924904787869

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.thermal_conductivity.k_data_Perrys_8E_2_315

	Data from [1] with chemicals.dippr.EQ100 coefficients for liquids.

	
chemicals.thermal_conductivity.k_data_Perrys_8E_2_314

	Data from [1] with chemicals.dippr.EQ102 coefficients for gases.

	
chemicals.thermal_conductivity.k_data_VDI_PPDS_9

	Data from [2] with polynomial coefficients for liquids.

	
chemicals.thermal_conductivity.k_data_VDI_PPDS_10

	Data from [2] with polynomial coefficients for gases.

	1(1,2)

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

	2(1,2)

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

In [1]: import chemicals

In [2]: chemicals.thermal_conductivity.k_data_Perrys_8E_2_315
Out[2]:
 Chemical C1 C2 ... C5 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 0.37329 -0.000650 ... 0.0 204.00 234.00
55-21-0 Benzamide 0.28485 -0.000252 ... 0.0 403.00 563.15
56-23-5 Carbon tetrachloride 0.15890 -0.000199 ... 0.0 250.33 349.79
57-55-6 1,2-Propylene glycol 0.21520 -0.000050 ... 0.0 213.15 460.75
60-29-7 Diethyl ether 0.24950 -0.000407 ... 0.0 156.85 433.15
...
10028-15-6 Ozone 0.17483 0.000753 ... 0.0 77.35 161.85
10035-10-6 Hydrogen bromide 0.23400 -0.000464 ... 0.0 185.15 290.62
10102-43-9 Nitric oxide 0.18780 0.001029 ... 0.0 110.00 176.40
13511-13-2 Propenylcyclohexene 0.18310 -0.000203 ... 0.0 199.00 431.65
132259-10-0 Air 0.28472 -0.001739 ... 0.0 75.00 125.00

[340 rows x 8 columns]

In [3]: chemicals.thermal_conductivity.k_data_Perrys_8E_2_314
Out[3]:
 Chemical C1 ... Tmin Tmax
CAS ...
50-00-0 Formaldehyde 44.847000 ... 254.05 994.05
55-21-0 Benzamide 0.025389 ... 563.15 1000.00
56-23-5 Carbon tetrachloride 0.000166 ... 349.79 1000.00
57-55-6 1,2-Propylene glycol 0.000167 ... 460.75 1000.00
60-29-7 Diethyl ether -0.004489 ... 200.00 600.00
...
10028-15-6 Ozone 0.004315 ... 161.85 1000.00
10035-10-6 Hydrogen bromide 0.000497 ... 206.45 600.00
10102-43-9 Nitric oxide 0.000410 ... 121.38 750.00
13511-13-2 Propenylcyclohexene 0.000102 ... 431.65 1000.00
132259-10-0 Air 0.000314 ... 70.00 2000.00

[345 rows x 7 columns]

In [4]: chemicals.thermal_conductivity.k_data_VDI_PPDS_9
Out[4]:
 Chemical A ... D E
CAS ...
50-00-0 Formaldehyde 0.3834 ... 1.156000e-09 -2.638000e-12
56-23-5 Carbon tetrachloride 0.1509 ... -7.100000e-11 3.980000e-13
56-81-5 Glycerol 0.2562 ... -1.050000e-10 1.020000e-13
60-29-7 Diethyl ether 0.2499 ... -8.600000e-11 7.300000e-14
62-53-3 Aniline 0.2365 ... -3.600000e-11 2.100000e-14
...
10097-32-2 Bromine -0.1426 ... 2.690200e-08 -1.774400e-11
10102-43-9 Nitric oxide 0.2268 ... -1.993600e-08 1.448400e-11
10102-44-0 Nitrogen dioxide 0.3147 ... 2.620000e-10 -6.980000e-13
10544-72-6 Dinitrogentetroxide 0.1864 ... -5.440000e-10 1.509000e-12
132259-10-0 Air -0.0006 ... 1.114335e-06 -2.670110e-09

[271 rows x 6 columns]

In [5]: chemicals.thermal_conductivity.k_data_VDI_PPDS_10
Out[5]:
 Chemical A ... D E
CAS ...
50-00-0 Formaldehyde 8.870000e-04 ... 0.000000e+00 0.000000e+00
56-23-5 Carbon tetrachloride -2.101000e-03 ... 0.000000e+00 0.000000e+00
56-81-5 Glycerol -9.158000e-03 ... 0.000000e+00 0.000000e+00
60-29-7 Diethyl ether -5.130000e-04 ... 0.000000e+00 0.000000e+00
62-53-3 Aniline -9.960000e-03 ... 0.000000e+00 0.000000e+00
...
10097-32-2 Bromine 5.455000e-03 ... 0.000000e+00 0.000000e+00
10102-43-9 Nitric oxide 1.440000e-04 ... 0.000000e+00 0.000000e+00
10102-44-0 Nitrogen dioxide 6.608500e-02 ... 0.000000e+00 0.000000e+00
10544-72-6 Dinitrogentetroxide 1.460000e-09 ... 0.000000e+00 0.000000e+00
132259-10-0 Air -9.080000e-04 ... 5.696400e-11 -1.563100e-14

[275 rows x 6 columns]

 Triple Point (chemicals.triple)

Triple Point (chemicals.triple)

This module contains lookup functions for a chemical’s triple temperature and
pressure. The triple temperature is the unique co-existence point between a
pure chemicals’s solid, gas, and liquid state.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Triple Temperature

	Triple Pressure

Triple Temperature

	
chemicals.triple.Tt(CASRN, method=None)

	This function handles the retrieval of a chemical’s triple temperature.
Lookup is based on CASRNs. Will automatically select a data source to use
if no method is provided; returns None if the data is not available.

Returns data from [1], [2] or [3], or a chemical’s melting point if available.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Ttfloat
	Triple point temperature, [K].

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
Tt_all_methods.

See also

	Tt_methods
	

Notes

Median difference between melting points and triple points is 0.02 K.
Accordingly, this should be more than good enough for engineering
applications.

The data in [1] is originally on the ITS-68 temperature scale, but was
converted to ITS-90. The numbers were rounded to 6 decimal places
arbitrarily and the conversion was performed with this library.

References

	1(1,2)

	Staveley, L. A. K., L. Q. Lobo, and J. C. G. Calado. “Triple-Points
of Low Melting Substances and Their Use in Cryogenic Work.” Cryogenics
21, no. 3 (March 1981): 131-144. doi:10.1016/0011-2275(81)90264-2.

	2

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	3

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

Ammonia

>>> Tt('7664-41-7')
195.49

	
chemicals.triple.Tt_methods(CASRN)

	Return all methods available to obtain the triple temperature for the
desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Tt with the given
inputs.

See also

	Tt
	

	
chemicals.triple.Tt_all_methods = ('HEOS', 'STAVELEY', 'WEBBOOK', 'MELTING')

	Tuple of method name keys. See the Tt for the actual references

Triple Pressure

	
chemicals.triple.Pt(CASRN, method=None)

	This function handles the retrieval of a chemical’s triple pressure.
Lookup is based on CASRNs. Will automatically select a data source to use
if no method is provided; returns None if the data is not available.

Returns data from [1], [2], or [3].

This function does not implement it but it is also possible to calculate
the vapor pressure at the triple temperature from a vapor pressure
correlation, if data is available; note most Antoine-type correlations do
not extrapolate well to this low of a pressure.

	Parameters

	
	CASRNstr
	CASRN [-]

	Returns

	
	Ptfloat
	Triple point pressure, [Pa]

	Other Parameters

	
	methodstring, optional
	A string for the method name to use, as defined in the variable,
Pt_all_methods.

See also

	Pt_methods
	

References

	1

	Staveley, L. A. K., L. Q. Lobo, and J. C. G. Calado. “Triple-Points
of Low Melting Substances and Their Use in Cryogenic Work.” Cryogenics
21, no. 3 (March 1981): 131-144. doi:10.1016/0011-2275(81)90264-2.

	2

	Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W., Eds.,
NIST WebBook, NIST, http://doi.org/10.18434/T4M88Q

	3

	Huber, Marcia L., Eric W. Lemmon, Ian H. Bell, and Mark O. McLinden.
“The NIST REFPROP Database for Highly Accurate Properties of Industrially
Important Fluids.” Industrial & Engineering Chemistry Research 61, no. 42
(October 26, 2022): 15449-72. https://doi.org/10.1021/acs.iecr.2c01427.

Examples

Ammonia

>>> Pt('7664-41-7')
6053.386

	
chemicals.triple.Pt_methods(CASRN)

	Return all methods available to obtain the Pt for the desired chemical.

	Parameters

	
	CASRNstr
	CASRN, [-]

	Returns

	
	methodslist[str]
	Methods which can be used to obtain the Pt with the given
inputs.

See also

	Pt
	

	
chemicals.triple.Pt_all_methods = ('HEOS', 'STAVELEY', 'WEBBOOK')

	Tuple of method name keys. See the Pt for the actual references

 Utilities (chemicals.utils)

Utilities (chemicals.utils)

This module contains miscellaneous functions which may be useful. This includes
definitions of some chemical properties, and conversions between others.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	
chemicals.utils.API_to_SG(API)

	Calculates specific gravity of a liquid given its API, as shown in
[1].

\[\text{SG at}~60^\circ\text{F} = \frac{141.5}{\text{API gravity} +131.5}

\]

	Parameters

	
	APIfloat
	API of the fluid [-]

	Returns

	
	SGfloat
	Specific gravity of the fluid at 60 degrees Farenheight [-]

Notes

Defined only at 60 degrees Fahrenheit.

References

	1

	API Technical Data Book: General Properties & Characterization.
American Petroleum Institute, 7E, 2005.

Examples

>>> API_to_SG(60.62)
0.7365188423901728

	
chemicals.utils.API_to_rho(API, rho_ref=999.0170824078306)

	Calculates mass density of a liquid given its API, as shown in
[1].

\[\rho~60^\circ\text{F} = \frac{141.5\rho_{ref}}{\text{API} + 131.5}

\]

	Parameters

	
	APIfloat
	API of the fluid [-]

	rho_reffloat, optional
	Density of the reference substance, [kg/m^3]

	Returns

	
	rhofloat
	Mass density the fluid at 60 degrees Farenheight [kg/m^3]

Notes

Defined only at 60 degrees Fahrenheit.

References

	1

	API Technical Data Book: General Properties & Characterization.
American Petroleum Institute, 7E, 2005.

Examples

>>> API_to_rho(rho_to_API(820))
820.0

	
chemicals.utils.Cp_minus_Cv(T, dP_dT, dP_dV)

	Calculate the difference between a real gas’s constant-pressure heat
capacity and constant-volume heat capacity, as given in [1], [2], and
[3]. The required derivatives should be calculated with an equation of
state.

\[C_p - C_v = -T\left(\frac{\partial P}{\partial T}\right)_V^2/
\left(\frac{\partial P}{\partial V}\right)_T

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	dP_dTfloat
	Derivative of P with respect to T, [Pa/K]

	dP_dVfloat
	Derivative of P with respect to V, [Pa*mol/m^3]

	Returns

	
	Cp_minus_Cvfloat
	Cp - Cv for a real gas, [J/mol/K]

Notes

Equivalent expressions are:

\[C_p - C_v= -T\left(\frac{\partial V}{\partial T}\right)_P^2/\left(
\frac{\partial V}{\partial P}\right)_T

C_p - C_v = T\left(\frac{\partial P}{\partial T}\right)
\left(\frac{\partial V}{\partial T}\right)\]

Note that these are not second derivatives, only first derivatives, some
of which are squared.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	2

	Walas, Stanley M. Phase Equilibria in Chemical Engineering.
Butterworth-Heinemann, 1985.

	3

	Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey.
Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim:
Wiley-VCH, 2012.

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> Cp_minus_Cv(299, 582232.475794113, -3665180614672.253)
27.654681381642394

	
chemicals.utils.Joule_Thomson(T, V, Cp, dV_dT=None, beta=None)

	Calculate a real fluid’s Joule Thomson coefficient. The required
derivative should be calculated with an equation of state, and Cp is the
real fluid versions. This can either be calculated with dV_dT directly,
or with beta if it is already known.

\[\mu_{JT} = \left(\frac{\partial T}{\partial P}\right)_H = \frac{1}{C_p}
\left[T \left(\frac{\partial V}{\partial T}\right)_P - V\right]
= \frac{V}{C_p}\left(\beta T-1\right)

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Vfloat
	Molar volume of fluid, [m^3/mol]

	Cpfloat
	Real fluid heat capacity at constant pressure, [J/mol/K]

	dV_dTfloat, optional
	Derivative of V with respect to T, [m^3/mol/K]

	betafloat, optional
	Isobaric coefficient of a thermal expansion, [1/K]

	Returns

	
	mu_JTfloat
	Joule-Thomson coefficient [K/Pa]

References

	1

	Walas, Stanley M. Phase Equilibria in Chemical Engineering.
Butterworth-Heinemann, 1985.

	2

	Pratt, R. M. “Thermodynamic Properties Involving Derivatives: Using
the Peng-Robinson Equation of State.” Chemical Engineering Education 35,
no. 2 (March 1, 2001): 112-115.

Examples

Example from [2]:

>>> Joule_Thomson(T=390, V=0.00229754, Cp=153.235, dV_dT=1.226396e-05)
1.621956080529905e-05

	
chemicals.utils.Parachor(MW, rhol, rhog, sigma)

	Calculate Parachor for a pure species, using its density in the
liquid and gas phases, surface tension, and molecular weight.

\[P = \frac{\sigma^{0.25} MW}{\rho_L - \rho_V}

\]

	Parameters

	
	MWfloat
	Molecular weight, [g/mol]

	rholfloat
	Liquid density [kg/m^3]

	rhogfloat
	Gas density [kg/m^3]

	sigmafloat
	Surface tension, [N/m]

	Returns

	
	Pfloat
	Parachor, [N^0.25*m^2.75/mol]

Notes

To convert the output of this function to units of [mN^0.25*m^2.75/kmol],
multiply by 5623.4132519.

Values in group contribution tables for Parachor are often listed as
dimensionless, in which they are multiplied by 5623413 and the appropriate
units to make them dimensionless.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	2

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
8E. McGraw-Hill Professional, 2007.

	3

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

Examples

Calculating Parachor from a known surface tension for methyl isobutyl
ketone at 293.15 K

>>> Parachor(100.15888, 800.8088185536124, 4.97865317223119, 0.02672166960656005)
5.088443542210164e-05

Converting to the dimensionless form:

>>> 5623413*5.088443542210164e-05
286.14419565030687

Compared to 274.9 according to a group contribution method described in
[3].

	
chemicals.utils.SG(rho, rho_ref=999.0170824078306)

	Calculates the specific gravity of a substance with respect to another
substance; by default, this is water at 15.555 °C (60 °F). For gases,
normally the reference density is 1.2 kg/m^3, that of dry air. However, in
general specific gravity should always be specified with respect to the
temperature and pressure of its reference fluid. This can vary widely.

\[SG = \frac{\rho}{\rho_{ref}}

\]

	Parameters

	
	rhofloat
	Density of the substance, [kg/m^3]

	rho_reffloat, optional
	Density of the reference substance, [kg/m^3]

	Returns

	
	SGfloat
	Specific gravity of the substance with respect to the reference
density, [-]

Notes

Another common reference point is water at 4°C (rho_ref=999.9748691393087).
Specific gravity is often used by consumers instead of density.
The reference for solids is normally the same as for liquids - water.

Examples

>>> SG(860)
0.8608461408159591

	
chemicals.utils.SG_to_API(SG)

	Calculates API of a liquid given its specific gravity, as shown in
[1].

\[\text{API gravity} = \frac{141.5}{\text{SG}} - 131.5

\]

	Parameters

	
	SGfloat
	Specific gravity of the fluid at 60 degrees Farenheight [-]

	Returns

	
	APIfloat
	API of the fluid [-]

Notes

Defined only at 60 degrees Fahrenheit.

References

	1

	API Technical Data Book: General Properties & Characterization.
American Petroleum Institute, 7E, 2005.

Examples

>>> SG_to_API(0.7365)
60.62491513917175

	
chemicals.utils.Vfs_to_zs(Vfs, Vms)

	Converts a list of mass fractions to mole fractions. Requires molecular
weights for all species.

\[z_i = \frac{\frac{\text{Vf}_i}{V_{m,i}}}{\sum_i
\frac{\text{Vf}_i}{V_{m,i}}}

\]

	Parameters

	
	Vfsiterable
	Molar volume fractions [-]

	VMsiterable
	Molar volumes of species [m^3/mol]

	Returns

	
	zslist
	Mole fractions [-]

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

Molar volumes are specified in terms of pure components only. Function
works with any phase.

Examples

Acetone and benzene example

>>> Vfs_to_zs([0.596, 0.404], [8.0234e-05, 9.543e-05])
[0.6369779395901142, 0.3630220604098858]

	
chemicals.utils.Vm_to_rho(Vm, MW)

	Calculate the density of a chemical, given its molar volume and
molecular weight.

\[\rho = \frac{MW}{1000\cdot VM}

\]

	Parameters

	
	Vmfloat
	Molar volume, [m^3/mol]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	rhofloat
	Density, [kg/m^3]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Vm_to_rho(0.000132, 86.18)
652.8787878787879

	
chemicals.utils.Watson_K(Tb, SG)

	Calculates the Watson or UOP K Characterization factor
of a liquid of a liquid given its specific gravity, and its
average boiling point as shown in [1].

\[K_W = \frac{T_b^{1/3}}{\text{SG at}~60^\circ\text{F}}

\]

	Parameters

	
	SGfloat
	Specific gravity of the fluid at 60 degrees Farenheight [-]

	Tbfloat
	Average normal boiling point, [K]

	Returns

	
	K_Wfloat
	Watson characterization factor

Notes

There are different ways to compute the average boiling point,
so two different definitions are often used - K_UOP using volume
average boiling point (VABP) using distillation points of 10%, 30%,
50%, 70%, and 90%; and K_Watson using mean average boiling point (MeABP).

References

	1(1,2)

	API Technical Data Book: General Properties & Characterization.
American Petroleum Institute, 7E, 2005.

Examples

>>> Watson_K(400, .8)
11.20351186639291

Sample problem in Comments on Procedure 2B5.1 of [1];
a fluids has a MEAB of 580 F and a SG of 34.5.

>>> from fluids.core import F2K
>>> Watson_K(F2K(580), API_to_SG(34.5))
11.884570347084471

	
chemicals.utils.Z(T, P, V)

	Calculates the compressibility factor of a gas, given its
temperature, pressure, and molar volume.

\[Z = \frac{PV}{RT}

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure [Pa]

	Vfloat
	Molar volume, [m^3/mol]

	Returns

	
	Zfloat
	Compressibility factor, [-]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Z(600, P=1E6, V=0.00463)
0.9281016730797026

	
chemicals.utils.d2ns_to_dn2_partials(d2ns, dns)

	
	Convert second-order mole number derivatives of a quantity
	to the following second-order partial derivative:

\[\frac{\partial^2 n F}{\partial n_j \partial n_i}
= \frac{\partial^2 F}{\partial n_i \partial n_j}
+ \frac{\partial F}{\partial n_i}
+ \frac{\partial F}{\partial n_j}

\]

Requires the second order mole number derivatives and the first order
mole number derivatives of the mixture only.

	Parameters

	
	d2nslist[float]
	Second order derivatives of a quantity with respect to mole number
(summing to 1), [prop/mol^2]

	dnslist[float]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop/mol]

	Returns

	
	second_partial_propertieslist[list[float]]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop]

See also

	dxs_to_dns
	

	dns_to_dn_partials
	

	dxs_to_dn_partials
	

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

This was originally implemented to allow for the calculation of
first mole number derivatices of log fugacity coefficients; the two
arguments are the second and first mole number derivatives of the overall
mixture log fugacity coefficient.

Derived with the following SymPy code.

>>> from sympy import *
>>> n1, n2 = symbols('n1, n2')
>>> f, g, h = symbols('f, g, h', cls=Function)
>>> diff(h(n1, n2)*f(n1, n2), n1, n2)
f(n1, n2)*Derivative(h(n1, n2), n1, n2) + h(n1, n2)*Derivative(f(n1, n2), n1, n2) + Derivative(f(n1, n2), n1)*Derivative(h(n1, n2), n2) + Derivative(f(n1, n2), n2)*Derivative(h(n1, n2), n1)

Examples

>>> d2ns = [[0.152, 0.08, 0.547], [0.08, 0.674, 0.729], [0.547, 0.729, 0.131]]
>>> d2ns_to_dn2_partials(d2ns, [20.0, .124, 900.52])
[[40.152, 20.203999999999997, 921.067], [20.204, 0.922, 901.3729999999999], [921.067, 901.373, 1801.1709999999998]]

	
chemicals.utils.d2xs_to_d2xsn1(d2xs)

	Convert the second mole fraction derivatives of a quantity (calculated
so they do not sum to 1) to derivatives such that they do sum to 1
Requires the second derivatives of the mixture only. The size of
the returned array is one less than the input in both dimensions

\[\left(\frac{\partial^2 F}{\partial x_i \partial x_j }\right)_{\sum_{x_i}^N =1} =
\left(\frac{\partial^2 F}{\partial x_i\partial x_j}
-\frac{\partial^2 F}{\partial x_i\partial x_N}
-\frac{\partial^2 F}{\partial x_j\partial x_N}
+\frac{\partial^2 F}{\partial x_N\partial x_N}
\right)_{\sum_{x_i}^N \ne 1}

\]

	Parameters

	
	secondlist[float]
	Second of a quantity with respect to mole fraction (not summing to
1), [prop]

	Returns

	
	d2xsm1list[float]
	Second derivatives of a quantity with respect to mole fraction (summing
to 1 by altering the last component’s composition), [prop]

Examples

>>> d2xs_to_d2xsn1([[-2890.4327598108, -6687.0990540960065, -1549.375443699441], [-6687.099054095983, -2811.2832904869883, -1228.6223853777503], [-1549.3754436994498, -1228.6223853777562, -3667.388098758508]])
[[-3459.069971170426, -7576.489323777324], [-7576.489323777299, -4021.4266184899957]]

	
chemicals.utils.d2xs_to_dxdn_partials(d2xs, xs)

	Convert second-order mole fraction derivatives of a quantity
(calculated so they do not sum to 1) to the following second-order
partial derivative:

\[\frac{\partial^2 n F}{\partial x_j \partial n_i}
= \frac{\partial^2 F}{\partial x_i x_j}
- \sum_k x_k \frac{\partial^2 F}{\partial x_k \partial x_j}

\]

Requires the second derivatives and the mole fractions of the mixture only.

	Parameters

	
	d2xslist[float]
	
	Second derivatives of a quantity with respect to mole fraction (not
	summing to 1), [prop]

	xslist[float]
	Mole fractions of the species, [-]

	Returns

	
	partial_propertieslist[float]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop]

See also

	dxs_to_dns
	

	dns_to_dn_partials
	

	dxs_to_dn_partials
	

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

Examples

>>> d2xs = [[0.152, 0.08, 0.547], [0.08, 0.674, 0.729], [0.547, 0.729, 0.131]]
>>> d2xs_to_dxdn_partials(d2xs, [0.7, 0.2, 0.1])
[[-0.02510000000000001, -0.18369999999999997, 0.005199999999999982], [-0.0971, 0.41030000000000005, 0.18719999999999992], [0.3699, 0.4653, -0.41080000000000005]]

	
chemicals.utils.dns_to_dn_partials(dns, F, partial_properties=None)

	Convert the mole number derivatives of a quantity (calculated so
they do sum to 1) to partial molar quantites.

\[\left(\frac{\partial n F}{\partial n_i}\right)_{n_{k \ne i}} = F_i +
n \left(\frac{\partial F}{\partial n_i}\right)_{n_{k\ne i}}\]

In the formula, the n is 1.

	Parameters

	
	dnslist[float]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop/mol]

	Ffloat
	Property evaluated at constant composition, [prop]

	partial_propertieslist[float], optional
	Optional output array for derivatives of a quantity with respect
to mole number (summing to 1), [prop]

	Returns

	
	partial_propertieslist[float]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop]

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

This applies to a specific phase only, not to a mixture of multiple phases.

This is especially useful for fugacity calculations.

Examples

>>> dns_to_dn_partials([0.001459, -0.002939, -0.004334], -0.0016567)
[-0.0001977000000000001, -0.0045957, -0.0059907]

	
chemicals.utils.dxs_to_dn_partials(dxs, xs, F, partial_properties=None)

	Convert the mole fraction derivatives of a quantity (calculated so
they do not sum to 1) to partial molar quantites. Requires the derivatives
and the mole fractions of the mixture.

\[\left(\frac{\partial n F}{\partial n_i}\right) =
\left(\frac{\partial F}{\partial x_i}\right)+ F
- \sum_j x_j \left(\frac{\partial F}{\partial x_j}\right)\]

	Parameters

	
	dxslist[float]
	Derivatives of a quantity with respect to mole fraction (not summing to
1), [prop]

	xslist[float]
	Mole fractions of the species, [-]

	Ffloat
	Property evaluated at constant composition, [prop]

	partial_propertieslist[float], optional
	Array for Derivatives of a quantity with respect to mole number (summing to
1), [prop]

	Returns

	
	partial_propertieslist[float]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop]

See also

	dxs_to_dns
	

	dns_to_dn_partials
	

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

This applies to a specific phase only, not to a mixture of multiple phases.

Examples

>>> dxs_to_dn_partials([-0.0026404, -0.00719, -0.00859], [0.7, 0.2, 0.1],
... -0.0016567)
[-0.00015182, -0.0047014199999999996, -0.00610142]

	
chemicals.utils.dxs_to_dns(dxs, xs, dns=None)

	Convert the mole fraction derivatives of a quantity (calculated so
they do not sum to 1) to mole number derivatives (where the mole fractions
do sum to one). Requires the derivatives and the mole fractions of the
mixture.

\[\left(\frac{\partial M}{\partial n_i}\right)_{n_{k\ne i}} = \left[
 \left(\frac{\partial M}{\partial x_i}\right)_{x_{k\ne i}}
 - \sum_j x_j \left(\frac{\partial M}{\partial x_j} \right)_{x_{k\ne j}}
 \right]

\]

	Parameters

	
	dxslist[float]
	Derivatives of a quantity with respect to mole fraction (not summing to
1), [prop]

	xslist[float]
	Mole fractions of the species, [-]

	dnslist[float], optional
	Return array, [prop/mol]

	Returns

	
	dnslist[float]
	Derivatives of a quantity with respect to mole number (summing to
1), [prop/mol]

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

This applies to a specific phase only, not to a mixture of multiple phases.

Examples

>>> dxs_to_dns([-0.0028, -0.00719, -0.00859], [0.7, 0.2, 0.1])
[0.0014570000000000004, -0.002933, -0.004333]

	
chemicals.utils.dxs_to_dxsn1(dxs)

	Convert the mole fraction derivatives of a quantity (calculated so
they do not sum to 1) to derivatives such that they do sum to 1 by changing
the composition of the last component in the negative of the component
which is changed. Requires the derivatives of the mixture only. The size of
the returned array is one less than the input.

\[\left(\frac{\partial F}{\partial x_i}\right)_{\sum_{x_i}^N =1} =
\left(\frac{\partial F}{\partial x_i}
- \frac{\partial F}{\partial x_N}\right)_{\sum_{x_i}^N \ne 1}

\]

	Parameters

	
	dxslist[float]
	Derivatives of a quantity with respect to mole fraction (not summing to
1), [prop]

	Returns

	
	dxsm1list[float]
	Derivatives of a quantity with respect to mole fraction (summing to
1 by altering the last component’s composition), [prop]

Examples

>>> dxs_to_dxsn1([-2651.3181821109024, -2085.574403592012, -2295.0860830203587])
[-356.23209909054367, 209.51167942834672]

	
chemicals.utils.isentropic_exponent(Cp, Cv)

	Calculate the isentropic coefficient of an ideal gas, given its constant-
pressure and constant-volume heat capacity.

\[k = \frac{C_p}{C_v}

\]

	Parameters

	
	Cpfloat
	Ideal gas heat capacity at constant pressure, [J/mol/K]

	Cvfloat
	Ideal gas heat capacity at constant volume, [J/mol/K]

	Returns

	
	kfloat
	Isentropic exponent, [-]

See also

	isentropic_exponent_PV
	

	isentropic_exponent_PT
	

	isentropic_exponent_TV
	

Notes

For real gases, there are more complexities and formulas. Each of the
formulas reverts to this formula in the case of an ideal gas.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> isentropic_exponent(33.6, 25.27)
1.329639889196676

	
chemicals.utils.isentropic_exponent_PT(Cp, P, dV_dT_P)

	Calculate the isentropic coefficient of real fluid using the definition
of \(P^{(1-k)}T^k = \text{const}\).

\[k = \frac{1}{1 - \frac{P}{C_p}\left(\frac{\partial V}{\partial T}\right)_P}

\]

	Parameters

	
	Cpfloat
	Real heat capacity at constant pressure, [J/mol/K]

	Pfloat
	Pressure [Pa]

	dV_dT_Pfloat
	Derivative of V with respect to T (at constant pressure),
[m^3/(mol*K)]

	Returns

	
	k_PTfloat
	Isentropic exponent of a real fluid, [-]

See also

	isentropic_exponent_PV
	

	isentropic_exponent
	

	isentropic_exponent_TV
	

References

	1

	Pini, Matteo. “NiceProp: An Interactive Python-Based Educational
Tool for Non-Ideal Compressible Fluid Dynamics.” SoftwareX 17 (2022):
100897.

	2

	Kouremenos, D. A., and K. A. Antonopoulos. “Isentropic Exponents of
Real Gases and Application for the Air at Temperatures from 150 K to 450
K.” Acta Mechanica 65, no. 1 (January 1, 1987): 81-99.
https://doi.org/10.1007/BF01176874.

Examples

Isentropic exponent of air according to Lemmon (2000) at 1000 bar and 300 K:

>>> isentropic_exponent_PT(Cp=38.36583283578205, P=100000000.0, dV_dT_P=9.407705210161724e-08)
1.32487270350443

	
chemicals.utils.isentropic_exponent_PV(Cp, Cv, Vm, P, dP_dV_T)

	Calculate the isentropic coefficient of real fluid using the definition
of \(PV^k = \text{const}\).

\[k = -\frac{V}{P}\frac{C_p}{C_v}\left(\frac{\partial P}{\partial V}\right)_T

\]

	Parameters

	
	Cpfloat
	Real heat capacity at constant pressure, [J/mol/K]

	Cvfloat
	Real heat capacity at constant volume, [J/mol/K]

	Vmfloat
	Molar volume, [m^3/mol]

	Pfloat
	Pressure [Pa]

	dP_dV_Tfloat
	Derivative of P with respect to V (at constant temperature),
[Pa*mol/m^3]

	Returns

	
	k_PVfloat
	Isentropic exponent of a real fluid, [-]

See also

	isentropic_exponent
	

	isentropic_exponent_PT
	

	isentropic_exponent_TV
	

References

	1

	Pini, Matteo. “NiceProp: An Interactive Python-Based Educational
Tool for Non-Ideal Compressible Fluid Dynamics.” SoftwareX 17 (2022):
100897.

	2

	Kouremenos, D. A., and K. A. Antonopoulos. “Isentropic Exponents of
Real Gases and Application for the Air at Temperatures from 150 K to 450
K.” Acta Mechanica 65, no. 1 (January 1, 1987): 81-99.
https://doi.org/10.1007/BF01176874.

Examples

Isentropic exponent of air according to Lemmon (2000) at 1000 bar and 300 K:

>>> isentropic_exponent_PV(Cp=38.36583283578205, Cv=23.98081290153672, Vm=4.730885141495376e-05, P=100000000.0, dP_dV_T=-5417785576072.434)
4.100576762582646

	
chemicals.utils.isentropic_exponent_TV(Cv, Vm, dP_dT_V)

	Calculate the isentropic coefficient of real fluid using the definition
of \(TV^{k-1} = \text{const}\).

\[k = 1 + \frac{V}{C_v} \left(\frac{\partial P}{\partial T}\right)_V

\]

	Parameters

	
	Cvfloat
	Real heat capacity at constant volume, [J/mol/K]

	Vmfloat
	Molar volume, [m^3/mol]

	dP_dT_Vfloat
	Derivative of P with respect to T (at constant volume),
[Pa/K]

	Returns

	
	k_TVfloat
	Isentropic exponent of a real fluid, [-]

See also

	isentropic_exponent_PV
	

	isentropic_exponent_PT
	

	isentropic_exponent
	

References

	1

	Pini, Matteo. “NiceProp: An Interactive Python-Based Educational
Tool for Non-Ideal Compressible Fluid Dynamics.” SoftwareX 17 (2022):
100897.

	2

	Kouremenos, D. A., and K. A. Antonopoulos. “Isentropic Exponents of
Real Gases and Application for the Air at Temperatures from 150 K to 450
K.” Acta Mechanica 65, no. 1 (January 1, 1987): 81-99.
https://doi.org/10.1007/BF01176874.

Examples

Isentropic exponent of air according to Lemmon (2000) at 1000 bar and 300 K:

>>> isentropic_exponent_TV(Cv=23.98081290153672, Vm=4.730885141495376e-05, dP_dT_V=509689.2959155567)
2.005504495083

	
chemicals.utils.isobaric_expansion(V, dV_dT)

	Calculate the isobaric coefficient of a thermal expansion, given its
molar volume at a certain T and P, and its derivative of molar volume
with respect to T.

\[\beta = \frac{1}{V}\left(\frac{\partial V}{\partial T} \right)_P

\]

	Parameters

	
	Vfloat
	Molar volume at T and P, [m^3/mol]

	dV_dTfloat
	Derivative of molar volume with respect to T, [m^3/mol/K]

	Returns

	
	betafloat
	Isobaric coefficient of a thermal expansion, [1/K]

Notes

For an ideal gas, this expression simplified to:

\[\beta = \frac{1}{T}

\]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> isobaric_expansion(0.000130229900873546, 1.58875261849113e-7)
0.0012199599384121608

	
chemicals.utils.isothermal_compressibility(V, dV_dP)

	Calculate the isothermal coefficient of compressibility, given its
molar volume at a certain T and P, and its derivative of molar volume
with respect to P.

\[\kappa = -\frac{1}{V}\left(\frac{\partial V}{\partial P} \right)_T

\]

	Parameters

	
	Vfloat
	Molar volume at T and P, [m^3/mol]

	dV_dPfloat
	Derivative of molar volume with respect to P, [m^3/mol/Pa]

	Returns

	
	kappafloat
	Isothermal coefficient of compressibility, [1/Pa]

Notes

For an ideal gas, this expression simplified to:

\[\kappa = \frac{1}{P}

\]

The isothermal bulk modulus is the inverse of this quantity:

\[K = -V\left(\frac{\partial P}{\partial V} \right)_T

\]

The ideal gas isothermal bulk modulus is simply the gas’s pressure.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> isothermal_compressibility(0.000130229900873546, -2.72902118209903e-13)
2.095541165119158e-09

Calculate the bulk modulus of propane from the PR EOS at 294 K as a gas:

>>> 1/isothermal_compressibility(0.0024576770482135617, -3.5943321700795866e-09)
683764.5859979445

	
chemicals.utils.mix_component_flows(IDs1, IDs2, flow1, flow2, fractions1, fractions2)

	Mix two flows of potentially different chemicals of given overall flow
rates and flow fractions to determine the outlet components, flow rates,
and compositions. The flows do not need to be of the same length.

	Parameters

	
	IDs1list[str]
	List of identifiers of the chemical species in flow one, [-]

	IDs2list[str]
	List of identifiers of the chemical species in flow two, [-]

	flow1float
	Total flow rate of the chemicals in flow one, [mol/s]

	flow2float
	Total flow rate of the chemicals in flow two, [mol/s]

	fractions1list[float]
	Mole fractions of each chemical in flow one, [-]

	fractions2list[float]
	Mole fractions of each chemical in flow two, [-]

	Returns

	
	cmpslist[str]
	List of identifiers of the chemical species in the combined flow, [-]

	moleslist[float]
	Flow rates of all chemical species in the combined flow, [mol/s]

Notes

Mass or volume flows and fractions can be used instead of molar ones.

If the two flows have the same components, the output list will be in the
same order as the one given; otherwise they are sorted alphabetically.

Examples

>>> mix_component_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'], 1, 1, [0.5, 0.5], [0.5, 0.5])
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.5, 1.0])

	
chemicals.utils.mix_component_partial_flows(IDs1, IDs2, ns1=None, ns2=None)

	Mix two flows of potentially different chemicals; with the feature that
the mole flows of either or both streams may be unknown.

The flows do not need to be of the same length.

	Parameters

	
	IDs1list[str]
	List of identifiers of the chemical species in flow one, [-]

	IDs2list[str]
	List of identifiers of the chemical species in flow two, [-]

	ns1list[float]
	Total flow rate of the chemicals in flow one, [mol/s]

	ns2list[float]
	Total flow rate of the chemicals in flow two, [mol/s]

	Returns

	
	cmpslist[str]
	List of identifiers of the chemical species in the combined flow, [-]

	moleslist[float]
	Flow rates of all chemical species in the combined flow, [mol/s]

Notes

Mass or volume flows and fractions can be used instead of molar ones.

If the two flows have the same components, the output list will be in the
same order as the one given; otherwise they are sorted alphabetically.

Examples

>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'], [0.5, 0.5], [0.5, 0.5])
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.5, 1.0])
>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'], None, [0.5, 0.5])
(['64-17-5', '67-56-1', '7732-18-5'], [0.0, 0.5, 0.5])
>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'], [0.5, 0.5], None)
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.0, 0.5])
>>> mix_component_partial_flows(['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1'], None, None)
(['64-17-5', '67-56-1', '7732-18-5'], [0.0, 0.0, 0.0])

	
chemicals.utils.mix_multiple_component_flows(IDs, flows, fractions)

	Mix multiple flows of potentially different chemicals of given overall
flow rates and flow fractions to determine the outlet components, flow
rates, and compositions. The flows do not need to be of the same length.

	Parameters

	
	IDslist[list[str]]
	List of lists of identifiers of the chemical species in the flows, [-]

	flowslist[float]
	List of total flow rates of the chemicals in the streams, [mol/s]

	fractionslist[list[float]]
	List of lists of mole fractions of each chemical in each flow, [-]

	Returns

	
	cmpslist[str]
	List of identifiers of the chemical species in the combined flow, [-]

	moleslist[float]
	Flow rates of all chemical species in the combined flow, [mol/s]

Notes

Mass or volume flows and fractions can be used instead of molar ones.

If the every flow have the same components, the output list will be in the
same order as the one given; otherwise they are sorted alphabetically.

Examples

>>> mix_multiple_component_flows([['7732-18-5', '64-17-5'], ['7732-18-5', '67-56-1']],
... [1, 1], [[0.5, 0.5], [0.5, 0.5]])
(['64-17-5', '67-56-1', '7732-18-5'], [0.5, 0.5, 1.0])

	
chemicals.utils.mixing_logarithmic(fracs, props)

	Simple function calculates a property based on weighted averages of
logarithmic properties.

\[y = \sum_i \text{frac}_i \cdot \ln(\text{prop}_i)

\]

	Parameters

	
	fracsarray-like
	Fractions of a mixture

	props: array-like
	Properties

	Returns

	
	propvalue
	Calculated property

Notes

Does not work on negative values.
Returns None if any fractions or properties are missing or are not of the
same length.

Examples

>>> mixing_logarithmic([0.1, 0.9], [0.01, 0.02])
0.01866065983073615

	
chemicals.utils.mixing_power(fracs, props, r)

	Power law mixing rule for any property, with a variable exponent
r as input. Optimiezd routines are available for r=-4,-3,-2,-1,1,2,3,4.

\[\text{prop}_{mix}^r = \sum_i z_i \left(\text{prop}_i \right)^{r}

\]

	Parameters

	
	fracslist[float]
	Mole fractions of components (or mass, or volume, etc.), [-]

	propslist[float]
	Properties of all components, [various]

	rfloat
	Power mixing exponent, [-]

	Returns

	
	propfloat
	Property for mixture, [props]

Notes

This equation is entirely dimensionless; all dimensions cancel.

The following recommendations in [1] exist for different properties:

Surface tension: r = 1 Recommended by an author in [1]; but often
non-linear behavior is shown and r= -1 to r=-3 is recommended. r = -1
is most often used.

Liquid thermal conductivity: r = -2 in [1]; this is known also as
procedure DIPPR9B.

References

	1(1,2)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> mixing_power([0.258, 0.742], [0.1692, 0.1528], -2)
0.15657104706719646

	
chemicals.utils.mixing_simple(fracs, props)

	Simple function calculates a property based on weighted averages of
properties. Weights could be mole fractions, volume fractions, mass
fractions, or anything else.

\[y = \sum_i \text{frac}_i \cdot \text{prop}_i

\]

	Parameters

	
	fracsarray-like
	Fractions of a mixture

	props: array-like
	Properties

	Returns

	
	propvalue
	Calculated property

Notes

Returns None if there is an error, normally if one of the properties is
missing or if they are not the same length as the fractions.

Examples

>>> mixing_simple([0.1, 0.9], [0.01, 0.02])
0.019000000000000003

	
chemicals.utils.molar_velocity_to_velocity(v_molar, MW)

	Calculate the mass-based velocity (m/s) from the molar velocity of
the fluid.

\[v = \frac{v_{molar}\sqrt{1000}}{\sqrt{\text{MW}}}

\]

	Parameters

	
	v_molarfloat
	Molar velcoity, [m*kg^0.5/s/mol^0.5]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	vfloat
	Velocity, [m/s]

Examples

>>> molar_velocity_to_velocity(46., 40.445)
228.73

	
chemicals.utils.none_and_length_check(all_inputs, length=None)

	Checks inputs for suitability of use by a mixing rule which requires
all inputs to be of the same length and non-None. A number of variations
were attempted for this function; this was found to be the quickest.

	Parameters

	
	all_inputsarray-like of array-like
	list of all the lists of inputs, [-]

	lengthint, optional
	Length of the desired inputs, [-]

	Returns

	
	False/Truebool
	Returns True only if all inputs are the same length (or length length)
and none of the inputs contain None [-]

Notes

Does not check for nan values.

Examples

>>> none_and_length_check(([1, 1], [1, 1], [1, 30], [10,0]), length=2)
True

	
chemicals.utils.normalize(values)

	Simple function which normalizes a series of values to be from 0 to 1,
and for their sum to add to 1.

\[x = \frac{x}{sum_i x_i}

\]

	Parameters

	
	valuesarray-like
	array of values

	Returns

	
	fractionsarray-like
	Array of values from 0 to 1

Notes

Does not work on negative values, or handle the case where the sum is zero.

Examples

>>> normalize([3, 2, 1])
[0.5, 0.3333333333333333, 0.16666666666666666]

	
chemicals.utils.phase_identification_parameter(V, dP_dT, dP_dV, d2P_dV2, d2P_dVdT)

	Calculate the Phase Identification Parameter developed in [1] for
the accurate and efficient determination of whether a fluid is a liquid or
a gas based on the results of an equation of state. For supercritical
conditions, this provides a good method for choosing which property
correlations to use.

\[\Pi = V \left[\frac{\frac{\partial^2 P}{\partial V \partial T}}
{\frac{\partial P }{\partial T}}- \frac{\frac{\partial^2 P}{\partial
V^2}}{\frac{\partial P}{\partial V}} \right]

\]

	Parameters

	
	Vfloat
	Molar volume at T and P, [m^3/mol]

	dP_dTfloat
	Derivative of P with respect to T, [Pa/K]

	dP_dVfloat
	Derivative of P with respect to V, [Pa*mol/m^3]

	d2P_dV2float
	Second derivative of P with respect to V, [Pa*mol^2/m^6]

	d2P_dVdTfloat
	Second derivative of P with respect to both V and T, [Pa*mol/m^3/K]

	Returns

	
	PIPfloat
	Phase Identification Parameter, [-]

Notes

Heuristics were used by process simulators before the invent of this
parameter.

The criteria for liquid is Pi > 1; for vapor, Pi <= 1.

There is also a solid phase mechanism available. For solids, the Solid
Phase Identification Parameter is greater than 1, like liquids; however,
unlike liquids, d2P_dVdT is always >0; it is < 0 for liquids and gases.

References

	1

	Venkatarathnam, G., and L. R. Oellrich. “Identification of the Phase
of a Fluid Using Partial Derivatives of Pressure, Volume, and
Temperature without Reference to Saturation Properties: Applications in
Phase Equilibria Calculations.” Fluid Phase Equilibria 301, no. 2
(February 25, 2011): 225-33. doi:10.1016/j.fluid.2010.12.001.

	2

	Jayanti, Pranava Chaitanya, and G. Venkatarathnam. “Identification
of the Phase of a Substance from the Derivatives of Pressure, Volume and
Temperature, without Prior Knowledge of Saturation Properties: Extension
to Solid Phase.” Fluid Phase Equilibria 425 (October 15, 2016): 269-277.
doi:10.1016/j.fluid.2016.06.001.

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> phase_identification_parameter(0.000130229900874, 582169.397484,
... -3.66431747236e+12, 4.48067893805e+17, -20518995218.2)
11.33428990564796

	
chemicals.utils.phase_identification_parameter_phase(d2P_dVdT, V=None, dP_dT=None, dP_dV=None, d2P_dV2=None)

	Uses the Phase Identification Parameter concept developed in [1] and
[2] to determine if a chemical is a solid, liquid, or vapor given the
appropriate thermodynamic conditions.

The criteria for liquid is PIP > 1; for vapor, PIP <= 1.

For solids, PIP(solid) is defined to be d2P_dVdT. If it is larger than 0,
the species is a solid. It is less than 0 for all liquids and gases.

	Parameters

	
	d2P_dVdTfloat
	Second derivative of P with respect to both V and T, [Pa*mol/m^3/K]

	Vfloat, optional
	Molar volume at T and P, [m^3/mol]

	dP_dTfloat, optional
	Derivative of P with respect to T, [Pa/K]

	dP_dVfloat, optional
	Derivative of P with respect to V, [Pa*mol/m^3]

	d2P_dV2float, optionsl
	Second derivative of P with respect to V, [Pa*mol^2/m^6]

	Returns

	
	phasestr
	Either ‘s’, ‘l’ or ‘g’

Notes

The criteria for being a solid phase is checked first, which only
requires d2P_dVdT. All other inputs are optional for this reason.
However, an exception will be raised if the other inputs become
needed to determine if a species is a liquid or a gas.

References

	1

	Venkatarathnam, G., and L. R. Oellrich. “Identification of the Phase
of a Fluid Using Partial Derivatives of Pressure, Volume, and
Temperature without Reference to Saturation Properties: Applications in
Phase Equilibria Calculations.” Fluid Phase Equilibria 301, no. 2
(February 25, 2011): 225-33. doi:10.1016/j.fluid.2010.12.001.

	2

	Jayanti, Pranava Chaitanya, and G. Venkatarathnam. “Identification
of the Phase of a Substance from the Derivatives of Pressure, Volume and
Temperature, without Prior Knowledge of Saturation Properties: Extension
to Solid Phase.” Fluid Phase Equilibria 425 (October 15, 2016): 269-277.
doi:10.1016/j.fluid.2016.06.001.

Examples

Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):

>>> phase_identification_parameter_phase(-20518995218.2, 0.000130229900874,
... 582169.397484, -3.66431747236e+12, 4.48067893805e+17)
'l'

	
chemicals.utils.property_mass_to_molar(A_mass, MW)

	Convert a quantity in mass units [thing/kg] to molar units [thing/mol].
The standard gram-mole is used here, as it is everwhere in this library.

\[A_{\text{molar}} = \frac{A_{\text{mass}} \text{MW}}{1000}

\]

	Parameters

	
	A_massfloat
	Quantity in molar units [thing/kg]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	A_molarfloat
	Quantity in molar units [thing/mol]

Notes

For legacy reasons, if the value A_mass is None, None is also returned
and no exception is returned.

Examples

>>> property_mass_to_molar(20.0, 18.015)
0.3603

	
chemicals.utils.property_molar_to_mass(A_molar, MW)

	Convert a quantity in molar units [thing/mol] to mass units [thing/kg].
The standard gram-mole is used here, as it is everwhere in this library.

\[A_{\text{mass}} = \frac{1000 A_{\text{molar}}}{\text{MW}}

\]

	Parameters

	
	A_molarfloat
	Quantity in molar units [thing/mol]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	A_massfloat
	Quantity in molar units [thing/kg]

Notes

For legacy reasons, if the value A_molar is None, None is also returned
and no exception is returned.

Examples

>>> property_molar_to_mass(500, 18.015)
27754.648903691366

	
chemicals.utils.radius_of_gyration(MW, A, B, C, planar=False)

	Calculates the radius of gyration of a molecule using the DIPPR
definition. The parameters A, B, and C must be obtained from
either vibrational scpectra and analysis or quantum chemistry calculations
of programs such as psi <https://psicode.org/>.

For planar molecules defined by only two moments of inertia,

\[R_g = \sqrt{\sqrt{AB}\frac{N_A}{\text{MW}}}

\]

For non-planar molecules with three moments of inertia,

\[R_g = \sqrt{\frac{2\pi(ABC)^{1/3}N_A}{\text{MW}}}

\]

	Parameters

	
	MWfloat
	Molecular weight, [g/mol]

	Afloat
	First principle moment of inertia, [kg*m^2]

	Bfloat
	Second principle moment of inertia, [kg*m^2]

	Cfloat
	Third principle moment of inertia, [kg*m^2]

	planarbool
	Whether the molecule is flat or not, [-]

	Returns

	
	Rgfloat
	Radius of gyration, [m]

Notes

There are many, many quantum chemistry models available which give
different results.

References

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
8E. McGraw-Hill Professional, 2007.

	2

	Johnson III, Russell D. “NIST 101. Computational Chemistry
Comparison and Benchmark Database,” 1999. https://cccbdb.nist.gov

Examples

Example calcultion in [1] for hydrazine (optimized with HF/6-31G model):

>>> radius_of_gyration(MW=32.00452, planar=False, A=5.692E-47, B=3.367E-46, C=3.681E-46)
1.50581642e-10

The same calculation was performed with psi and somewhat different parameters obtained

>>> radius_of_gyration(MW=32.00452, planar=False, A=6.345205205562681e-47, B=3.2663291891213418e-46, C=3.4321304373822523e-46)
1.507895671e-10

A planar molecule, bromosilane, has two principle moments of inertia
in [2]. They are 2.80700 cm^-1 and 0.14416 cm^-1. These can be converted to
MHz as follows:

These can then be converted to units of AMU*Angstrom^2, and from there
to kg*m^2.

>>> A, B = 2.80700, 0.14416
>>> from scipy.constants import atomic_mass, c, angstrom
>>> A, B = A*c*1e-4, B*c*1e-4 # from cm^-1 to MHz
>>> A, B = [505379.15/i for i in (A, B)] # TODO which constants did this conversion factor come from, AMU*Angstrom^2
>>> A, B = [i*atomic_mass*angstrom**2 for i in (A, B)] # amu*angstrom^2 to kg*m^2
>>> radius_of_gyration(A=A, B=B, planar=True, MW=111.01, C=0)
4.8859099776e-11

Alternatively, doing the conversion all in one:

>>> A, B = 2.80700, 0.14416
>>> from scipy.constants import c, h, pi
>>> A, B = A*c*100, B*c*100 # from cm^-1 to Hz
>>> A, B = [h/(8*pi**2)/i for i in (A, B)] # from Hz to kg*m^2
>>> radius_of_gyration(A=A, B=B, planar=True, MW=111.01, C=0)
4.885909296e-11

This is also nicely documented on this page: https://cccbdb.nist.gov/convertmomint.asp
which was unfortunately found by the author after figuring it out the hard way.

	
chemicals.utils.remove_zeros(values, tol=1e-06)

	Simple function which removes zero values from an array, and replaces
them with a user-specified value, normally a very small number. Helpful
for the case where a function can work with values very close to zero but
not quite zero. The resulting array is normalized so the sum is still one.

	Parameters

	
	valuesarray-like
	array of values

	tolfloat
	The replacement value for zeroes

	Returns

	
	fractionsarray-like
	Array of values from 0 to 1

Notes

Works on numpy arrays, and returns numpy arrays only for that case.

Examples

>>> remove_zeros([0, 1e-9, 1], 1e-12)
[9.99999998999e-13, 9.99999998999e-10, 0.999999998999]

	
chemicals.utils.rho_to_API(rho, rho_ref=999.0170824078306)

	Calculates API of a liquid given its mass density, as shown in
[1].

\[\text{API gravity} = \frac{141.5\rho_{ref}}{\rho} - 131.5

\]

	Parameters

	
	rhofloat
	Mass density the fluid at 60 degrees Farenheight [kg/m^3]

	rho_reffloat, optional
	Density of the reference substance, [kg/m^3]

	Returns

	
	APIfloat
	API of the fluid [-]

Notes

Defined only at 60 degrees Fahrenheit.

References

	1

	API Technical Data Book: General Properties & Characterization.
American Petroleum Institute, 7E, 2005.

Examples

>>> rho_to_API(820)
40.8913623
>>> SG_to_API(SG(820))
40.8913623

	
chemicals.utils.rho_to_Vm(rho, MW)

	Calculate the molar volume of a chemical, given its density and
molecular weight.

\[V_m = \left(\frac{1000 \rho}{MW}\right)^{-1}

\]

	Parameters

	
	rhofloat
	Density, [kg/m^3]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	Vmfloat
	Molar volume, [m^3/mol]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> rho_to_Vm(652.9, 86.18)
0.0001319957114412621

	
chemicals.utils.solve_flow_composition_mix(Fs, zs, ws, MWs)

	Solve a stream composition problem where some specs are mole flow rates;
some are mass fractions; and some are mole fractions. This algorithm
requires at least one mole flow rate; and for every other component, a
single spec in mole or mass or a flow rate. It is permissible for no
components to have mole fractions; or no components to have weight
fractions; or both.

	Parameters

	
	Fslist[float]
	List of mole flow rates; None if not specified for a component, [mol/s]

	zslist[float]
	Mole fractions; None if not specified for a component [-]

	wslist[float]
	Mass fractions; None if not specified for a component [-]

	MWslist[float]
	Molecular weights, [g/mol]

	Returns

	
	Fslist[float]
	List of mole flow rates, [mol/s]

	zslist[float]
	Mole fractions, [-]

	wslist[float]
	Mass fractions, [-]

Notes

A fast path is used if no weight fractions are provided; the calculation is
much simpler for that case.

This algorithm was derived using SymPy, and framed in a form which allows
for explicit solving.
This is capable of solving large-scale problems i.e. with 1000 components a
solve time is 1 ms; with 10000 it is 10 ms.

Examples

>>> Fs = [3600, None, None, None, None]
>>> zs = [None, .1, .2, None, None]
>>> ws = [None, None, None, .01, .02]
>>> MWs = [18.01528, 46.06844, 32.04186, 72.151, 142.286]
>>> Fs, zs, ws = solve_flow_composition_mix(Fs, zs, ws, MWs)
>>> Fs
[3600, 519.3039148597746, 1038.6078297195493, 17.44015034881175, 17.687253669610733]
>>> zs
[0.6932356751002141, 0.1, 0.2, 0.0033583706669188186, 0.003405954232867038]
>>> ws
[0.5154077420893426, 0.19012206531421305, 0.26447019259644433, 0.01, 0.02]

	
chemicals.utils.speed_of_sound(V, dP_dV, Cp, Cv, MW=None)

	Calculate a real fluid’s speed of sound. The required derivatives should
be calculated with an equation of state, and Cp and Cv are both the
real fluid versions. Expression is given in [1] and [2]; a unit conversion
is further performed to obtain a result in m/s. If MW is not provided the
result is returned in units of m*kg^0.5/s/mol^0.5.

\[w = \left[-V^2 \left(\frac{\partial P}{\partial V}\right)_T \frac{C_p}
{C_v}\right]^{1/2}

\]

	Parameters

	
	Vfloat
	Molar volume of fluid, [m^3/mol]

	dP_dVfloat
	Derivative of P with respect to V, [Pa*mol/m^3]

	Cpfloat
	Real fluid heat capacity at constant pressure, [J/mol/K]

	Cvfloat
	Real fluid heat capacity at constant volume, [J/mol/K]

	MWfloat, optional
	Molecular weight, [g/mol]

	Returns

	
	wfloat
	Speed of sound for a real gas, m/s or m*kg^0.5/s/mol^0.5 if MW missing

Notes

An alternate expression based on molar density is as follows:

\[w = \left[\left(\frac{\partial P}{\partial \rho}\right)_T \frac{C_p}
{C_v}\right]^{1/2}

\]

The form with the unit conversion performed inside it is as follows:

\[w = \left[-V^2 \frac{1000}{MW}\left(\frac{\partial P}{\partial V}
\right)_T \frac{C_p}{C_v}\right]^{1/2}

\]

References

	1

	Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey.
Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim:
Wiley-VCH, 2012.

	2(1,2)

	Pratt, R. M. “Thermodynamic Properties Involving Derivatives: Using
the Peng-Robinson Equation of State.” Chemical Engineering Education 35,
no. 2 (March 1, 2001): 112-115.

Examples

Example from [2]:

>>> speed_of_sound(V=0.00229754, dP_dV=-3.5459e+08, Cp=153.235, Cv=132.435, MW=67.152)
179.5868138460819

	
chemicals.utils.to_num(values)

	Legacy function to turn a list of strings into either floats
(if numeric), stripped strings (if not) or None if the string is empty.
Accepts any numeric formatting the float function does.

	Parameters

	
	valueslist
	list of strings

	Returns

	
	valueslist
	list of floats, strings, and None values [-]

Examples

>>> to_num(['1', '1.1', '1E5', '0xB4', ''])
[1.0, 1.1, 100000.0, '0xB4', None]

	
chemicals.utils.v_molar_to_v(v_molar, MW)

	Convert a velocity from units of the molar velocity form to standard
m/s units.

\[v \text{(m/s)} = v\left(\frac{\text{m}\sqrt{\text{kg}} }
{s \sqrt{\text{mol}}} \right)
{\text{MW (g/mol)}}^{-0.5}\cdot
\left(\frac{1000 \text{g}}{1 \text{kg}}\right)^{0.5}

\]

	Parameters

	
	v_molarfloat
	Molar velocity, [m*kg^0.5/s/mol^0.5]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	vfloat
	Velocity, [m/s]

Examples

>>> v_molar_to_v(67.10998435404377, 18.015)
499.99999999999994

	
chemicals.utils.v_to_v_molar(v, MW)

	Convert a velocity from units of m/s to a “molar” form of velocity,
compatible with thermodynamic calculations on a molar basis.

\[v\left(\frac{\text{m}\sqrt{\text{kg}} }{s \sqrt{\text{mol}}} \right)
= v \text{(m/s)}
\sqrt{\text{MW (g/mol)}}\cdot
\left(\frac{1000 \text{g}}{1 \text{kg}}\right)^{-0.5}

\]

	Parameters

	
	vfloat
	Velocity, [m/s]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	v_molarfloat
	Molar velocity, [m*kg^0.5/s/mol^0.5]

Examples

>>> v_to_v_molar(500, 18.015)
67.10998435404377

	
chemicals.utils.vapor_mass_quality(VF, MWl, MWg)

	Calculates the vapor quality on a mass basis of a two-phase mixture;
this is the most common definition, where 1 means a pure vapor and 0 means
a pure liquid. The vapor quality on a mass basis is related to the mole
basis vapor fraction according to the following relationship:

\[x = \frac{\frac{V}{F}\cdot \text{MW}_g}
{(1-\frac{V}{F})\text{MW}_l + \frac{V}{F}\text{MW}_g}

\]

	Parameters

	
	VFfloat
	Mole-basis vapor fraction (0 = pure vapor, 1 = pure liquid), [-]

	MWlfloat
	Average molecular weight of the liquid phase, [g/mol]

	MWgfloat
	Average molecular weight of the vapor phase, [g/mol]

	Returns

	
	qualityfloat
	Vapor mass fraction of the two-phase system, [-]

Notes

Other definitions of vapor fraction use an enthalpy basis instead of a mass
basis; still other less common ones take 1 to be the value of the
liquid, and 0 as pure vapor.

References

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
8E. McGraw-Hill Professional, 2007.

Examples

>>> vapor_mass_quality(0.5, 60, 30)
0.3333333333333333

	
chemicals.utils.velocity_to_molar_velocity(v, MW)

	Calculate the molar velocity from the mass-based (m/s) velocity of
the fluid.

\[v_{molar} = \frac{v \sqrt{\text{MW}}}{\sqrt{1000}}

\]

	Parameters

	
	vfloat
	Velocity, [m/s]

	MWfloat
	Molecular weight, [g/mol]

	Returns

	
	v_molarfloat
	Molar velcoity, [m*kg^0.5/s/mol^0.5]

Examples

>>> velocity_to_molar_velocity(228.73, 40.445)
46.

	
chemicals.utils.ws_to_zs(ws, MWs)

	Converts a list of mass fractions to mole fractions. Requires molecular
weights for all species.

\[z_i = \frac{\frac{w_i}{MW_i}}{\sum_i \frac{w_i}{MW_i}}

\]

	Parameters

	
	wsiterable
	Mass fractions [-]

	MWsiterable
	Molecular weights [g/mol]

	Returns

	
	zsiterable
	Mole fractions [-]

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

Examples

>>> ws_to_zs([0.3333333333333333, 0.6666666666666666], [10, 20])
[0.5, 0.5]

	
chemicals.utils.zs_to_Vfs(zs, Vms)

	Converts a list of mole fractions to volume fractions. Requires molar
volumes for all species.

\[\text{Vf}_i = \frac{z_i V_{m,i}}{\sum_i z_i V_{m,i}}

\]

	Parameters

	
	zsiterable
	Mole fractions [-]

	VMsiterable
	Molar volumes of species [m^3/mol]

	Returns

	
	Vfslist
	Molar volume fractions [-]

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

Molar volumes are specified in terms of pure components only. Function
works with any phase.

Examples

Acetone and benzene example

>>> zs_to_Vfs([0.637, 0.363], [8.0234e-05, 9.543e-05])
[0.5960229712956298, 0.4039770287043703]

	
chemicals.utils.zs_to_ws(zs, MWs)

	Converts a list of mole fractions to mass fractions. Requires molecular
weights for all species.

\[w_i = \frac{z_i MW_i}{MW_{avg}}

MW_{avg} = \sum_i z_i MW_i\]

	Parameters

	
	zsiterable
	Mole fractions [-]

	MWsiterable
	Molecular weights [g/mol]

	Returns

	
	wsiterable
	Mass fractions [-]

Notes

Does not check that the sums add to one. Does not check that inputs are of
the same length.

Examples

>>> zs_to_ws([0.5, 0.5], [10, 20])
[0.3333333333333333, 0.6666666666666666]

 Support for pint Quantities (chemicals.units)

Support for pint Quantities (chemicals.units)

Basic module which wraps all chemicals functions and classes to be compatible with the
pint [https://github.com/hgrecco/pint] unit handling library.
All other object - dicts, lists, etc - are not wrapped.

>>> import chemicals
>>> chemicals.units.Antoine
<function Antoine at 0x...>

The chemicals.units module also supports star imports; the same objects exported when importing from the main library
will be imported from chemicals.units.

>>> from chemicals.units import *

>>> CAS = CAS_from_any('methanol')
>>> Tc(CAS), Pc(CAS), Vc(CAS), Zc(CAS)
(<Quantity(513.38, 'kelvin')>, <Quantity(8215850.0, 'pascal')>, <Quantity(0.00011382819, 'meter ** 3 / mole')>, <Quantity(0.219093353, 'dimensionless')>)
>>> (Tt(CAS), Tm(CAS), Tb(CAS), Pt(CAS))
(<Quantity(175.61, 'kelvin')>, <Quantity(175.15, 'kelvin')>, <Quantity(337.632383, 'kelvin')>, <Quantity(0.186349762, 'pascal')>)

>>> iapws95_rho(T=55*u.degF, P=500*u.psi)
<Quantity(1000.97992, 'kilogram / meter ** 3')>
>>> sigma_IAPWS(200*u.degR)
<Quantity(0.0897667127, 'newton / meter')>

>>> molecular_weight({'H': 12, 'C': 20, 'O': 5})
<Quantity(332.30628, 'gram / mole')>

Functions that do not return numbers are not converted into pint quantities, for example:

>>> atoms_to_Hill({'H': 5, 'C': 2, 'Br': 1})
'C2H5Br'

Functions that return dimensionless numbers are pint quantities.

>>> logP('67-56-1')
<Quantity(-0.74, 'dimensionless')>
>>> Stiel_polar_factor(Psat=169745*u.Pa, Pc=22048321.0*u.Pa, omega=0.344)
<Quantity(0.0232214674, 'dimensionless')>

It is also possible to use chemicals.units without the star import:

>>> import chemicals.units

When a function is used with inputs that should have units but they aren’t provided by the user, an error is raised.

>>> ideal_gas(298.15, 101325.)
Traceback (most recent call last):
TypeError: 298.15 has no quantity

For further information on this interface, please see the documentation of fluids.units [https://fluids.readthedocs.io/fluids.units.html] which is built in the same way.

 Vapor Pressure (chemicals.vapor_pressure)

Vapor Pressure (chemicals.vapor_pressure)

This module contains various vapor pressure estimation routines, dataframes
of fit coefficients, some compound-specific equations, some analytical fitting
routines, and sublimation pressure routines.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Fit Correlations

	Fit Correlation Derivatives

	Jacobians (for fitting)

	Vapor Pressure Estimation Correlations

	Sublimation Pressure Estimation Correlations

	Correlations for Specific Substances

	Analytical Fit Equations

	Fit Coefficients

Fit Correlations

	
chemicals.vapor_pressure.Antoine(T, A, B, C, base=10.0)

	Calculates vapor pressure of a chemical using the Antoine equation.
Parameters A, B, and C are chemical-dependent. Parameters can be
found in numerous sources; however units of the coefficients used vary.
Originally proposed by Antoine (1888) [2].

\[\log_{\text{base}} P^{\text{sat}} = A - \frac{B}{T+C}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	basefloat, optional
	Optional base of logarithm; 10 by default

	Returns

	
	Psatfloat
	Vapor pressure calculated with coefficients [Pa]

Notes

Assumes coefficients are for calculating vapor pressure in Pascal.
Coefficients should be consistent with input temperatures in Kelvin;
however, if both the given temperature and units are specific to degrees
Celcius, the result will still be correct.

Converting units in input coefficients:

	ln to log10: Divide A and B by ln(10)=2.302585 to change
parameters for a ln equation to a log10 equation.

	log10 to ln: Multiply A and B by ln(10)=2.302585 to change
parameters for a log equation to a ln equation.

	mmHg to Pa: Add log10(101325/760)= 2.1249 to A.

	kPa to Pa: Add log_{base}(1000)= 6.908 to A for log(base)

	bar to Pa: Add log_{base}(100000)= 11.5129254 to A for log(base)

	°C to K: Subtract 273.15 from C only!

Note that if C is negative and T is less than C, the predicted vapor
pressure would be high and positive at those temperatures under C; and
a singularity would occur at T == C. This implementation is corrected
to return zero for the case of T + C < 0.0, which matches the intention
of the Antoine equation.

References

	1(1,2)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	2

	Antoine, C. 1888. Tensions des Vapeurs: Nouvelle Relation Entre les
Tensions et les Tempé. Compt.Rend. 107:681-684.

	3

	Yaws, Carl L. The Yaws Handbook of Vapor Pressure: Antoine
Coefficients. 1 edition. Houston, Tex: Gulf Publishing Company, 2007.

Examples

Methane, coefficients from [1], at 100 K:

>>> Antoine(100.0, 8.7687, 395.744, -6.469)
34478.367349639906

Tetrafluoromethane, coefficients from [1], at 180 K

>>> Antoine(180, A=8.95894, B=510.595, C=-15.95)
702271.0518579542

Oxygen at 94.91 K, with coefficients from [3] in units of °C, mmHg, log10,
showing the conversion of coefficients A (mmHg to Pa) and C (°C to K)

>>> Antoine(94.91, 6.83706+2.1249, 339.2095, 268.70-273.15)
162978.88655572367

n-hexane with Antoine coefficients from the NIST webbook in units of K and
bar, calculating the vapor pressure in Pa at 200 K:

>>> Antoine(T=200, A=3.45604+5, B=1044.038, C=-53.893)
20.4329803671

	
chemicals.vapor_pressure.Wagner(T, Tc, Pc, a, b, c, d)

	Calculates vapor pressure using the Wagner equation (2.5, 5 form).

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

\[\ln P^{sat}= \ln P_c + \frac{a\tau + b \tau^{1.5} + c\tau^{2.5}
+ d\tau^5} {T_r}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	Psatfloat
	Vapor pressure at T [Pa]

Notes

Warning: Pc is often treated as adjustable constant.
This is also called the PPDS16 equation [3].

References

	1

	Wagner, W. “New Vapour Pressure Measurements for Argon and Nitrogen and
a New Method for Establishing Rational Vapour Pressure Equations.”
Cryogenics 13, no. 8 (August 1973): 470-82. doi:10.1016/0011-2275(73)90003-9

	2

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	3

	PPDS2 Temperature-Dependent Equation Forms. National Engineering
Laboratory, 2004
https://web.archive.org/web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf

Examples

Methane, coefficients from [2], at 100 K.

>>> Wagner(100., 190.551, 4599200, -6.02242, 1.26652, -0.5707, -1.366)
34415.004762637

	
chemicals.vapor_pressure.Wagner_original(T, Tc, Pc, a, b, c, d)

	Calculates vapor pressure using the Wagner equation (3, 6 form).

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

\[\ln P^{sat}= \ln P_c + \frac{a\tau + b \tau^{1.5} + c\tau^3 + d\tau^6}
{T_r}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	Psatfloat
	Vapor pressure at T [Pa]

Notes

Warning: Pc is often treated as adjustable constant.
This is also called the PPDS1 equation [3].

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	2

	McGarry, Jack. “Correlation and Prediction of the Vapor Pressures of
Pure Liquids over Large Pressure Ranges.” Industrial & Engineering
Chemistry Process Design and Development 22, no. 2 (April 1, 1983):
313-22. doi:10.1021/i200021a023.

	3

	PPDS2 Temperature-Dependent Equation Forms. National Engineering
Laboratory, 2004
https://web.archive.org/web/20050510061545/http://www.ppds.co.uk/library/pdf/PPDS_EquationForms.pdf

Examples

Methane, coefficients from [2], at 100 K.

>>> Wagner_original(100.0, 190.53, 4596420., a=-6.00435, b=1.1885,
... c=-0.834082, d=-1.22833)
34520.44601450499

	
chemicals.vapor_pressure.TRC_Antoine_extended(T, Tc, to, A, B, C, n, E, F)

	Calculates vapor pressure of a chemical using the TRC Extended Antoine
equation. Parameters are chemical dependent, and said to be from the
Thermodynamics Research Center (TRC) at Texas A&M. Coefficients for various
chemicals can be found in [1].

\[\log_{10} P^{sat} = A - \frac{B}{T + C} + 0.43429x^n + Ex^8 + Fx^{12}

\]

\[x = \max \left(\frac{T-t_o-273.15}{T_c}, 0 \right)

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature of fluid, [K]

	tofloat
	Fit temperature-transition parameter, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	nfloat
	Fit parameter, [-]

	Efloat
	Fit parameter, [-]

	Ffloat
	Fit parameter, [-]

	Returns

	
	Psatfloat
	Vapor pressure calculated with coefficients [Pa]

Notes

Assumes coefficients are for calculating vapor pressure in Pascal.
Coefficients should be consistent with input temperatures in Kelvin;

References

	1(1,2)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Tetrafluoromethane, coefficients from [1], at 180 K:

>>> TRC_Antoine_extended(T=180.0, Tc=227.51, to=-120., A=8.95894,
... B=510.595, C=-15.95, n=2.41377, E=-93.74, F=7425.9)
706317.0898414153

	
chemicals.vapor_pressure.Yaws_Psat(T, A, B, C, D, E)

	Calculates vapor pressure of a chemical using the Yaws equation for
vapor pressure.
Parameters A, B, C, D, and E are chemical-dependent. Parameters
can be found in numerous sources; however units of the coefficients used
vary.

\[\log_{10} P^{\text{sat}} = A + \frac{B}{T} + C\log_{10}(T) + DT + ET^2

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Afloat
	A parameter, [-]

	Bfloat
	B parameter, [K]

	Cfloat
	C parameter, [-]

	Dfloat
	D parameter, [1/K]

	Efloat
	E parameter, [1/K^2]

	Returns

	
	Psatfloat
	Vapor pressure calculated with coefficients [Pa]

Notes

Assumes coefficients are for calculating vapor pressure in Pascal.
Coefficients should be consistent with input temperatures in Kelvin;

Converting units in input coefficients:

	mmHg to Pa: Add log10(101325/760)= 2.1249 to A.

	kPa to Pa: Add log_{10}(1000)= 3 to A

	bar to Pa: Add log_{10}(100000)= 5 to A

References

	1

	Yaws, Carl L. Chemical Properties Handbook: Physical, Thermodynamic,
Environmental, Transport, Safety, and Health Related Properties for
Organic and Inorganic Chemicals. McGraw-Hill, 2001.

	2

	“ThermoData Engine (TDE103a V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103a/Eqns-Pure-PhaseBoundaryLG/Yaws-VaporPressure.htm.

Examples

Acetone, coefficients from [1], at 400 K and with the conversion of A
to obtain a result in Pa:

>>> Yaws_Psat(T=400.0, A=28.588 + log10(101325/760), B=-2469, C=-7.351, D=2.8025E-10, E=2.7361E-6)
708657.089106

Coefficients for benzene from [2] at 400 K; that source outputs vapor
pressure in kPa. That style of coefficients can be converted to Pa
by adding 3 to A.

>>> Yaws_Psat(T=400.0, A=39.7918+3, B=-2965.83, C=-12.073, D=0.0033269, E=1.58609e-6)
352443.191026

	
chemicals.vapor_pressure.TDE_PVExpansion(T, a1, a2, a3, a4=0.0, a5=0.0, a6=0.0, a7=0.0, a8=0.0)

	Calculates vapor pressure or sublimation pressure of a chemical using
the PVExpansion equation for vapor pressure or sublimation pressure.
Parameters a1, a2, a3, a4, a5, a6, a7, and a8
are chemical-dependent. Parameters
can be found in various sources; however units of the coefficients used
vary.

\[\log P^{\text{sat}} = a_1 + \frac{a_2}{T} + a_3\ln(T) + a_4T + a_5T^2
+ \frac{a_6}{T^2} + a_7 T^6 + \frac{a_8}{T^4}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	a5float
	Regression parameter, [-]

	a6float
	Regression parameter, [-]

	a7float
	Regression parameter, [-]

	a8float
	Regression parameter, [-]

	Returns

	
	Psatfloat
	Vapor pressure calculated with coefficients [Pa]

Notes

Coefficients in [1] produce a vapor pressure in kPa; add log(1000) to
a1 to make them produce vapor pressure in Pa.

References

	1(1,2)

	“ThermoData Engine (TDE103a V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-PhaseBoundaryLG/PVExpansion.htm

Examples

Coefficients for sublimation pressure from [1]:

>>> TDE_PVExpansion(T=273.16, a1=23.7969+log(1000), a2=-11422, a3=0.177978)
4.06220657398e-05

Fit Correlation Derivatives

	
chemicals.vapor_pressure.dAntoine_dT(T, A, B, C, base=10.0)

	Calculates the first temperature derivative of vapor pressure of a
chemical using the Antoine equation.
Parameters A, B, and C are chemical-dependent.

\[\frac{\partial P^{\text{sat}} }{\partial T} =
\frac{B \text{base}^{A - \frac{B}{C + T}} \log{\left(\text{base} \right)}}
{\left(C + T\right)^{2}}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	basefloat, optional
	Optional base of logarithm; 10 by default

	Returns

	
	dPsat_dTfloat
	First temperature derivative of vapor pressure calculated with
coefficients [Pa/K]

Examples

Methane at 100 K:

>>> dAntoine_dT(100.0, 8.7687, 395.744, -6.469)
3591.4147747481

	
chemicals.vapor_pressure.d2Antoine_dT2(T, A, B, C, base=10.0)

	Calculates the second temperature derivative of vapor pressure of a
chemical using the Antoine equation.
Parameters A, B, and C are chemical-dependent.

\[\frac{\partial^2 P^{\text{sat}} }{\partial T^2} =
\frac{B \text{base}^{A - \frac{B}{C + T}} \left(\frac{B \log{\left(
\text{base} \right)}}{C + T} - 2\right) \log{\left(\text{base}
\right)}}{\left(C + T\right)^{3}}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	basefloat, optional
	Optional base of logarithm; 10 by default

	Returns

	
	d2Psat_dT2float
	Second temperature derivative of vapor pressure calculated with
coefficients [Pa/K^2]

Examples

Methane at 100 K:

>>> d2Antoine_dT2(100.0, 8.7687, 395.744, -6.469)
297.30093799054

	
chemicals.vapor_pressure.dWagner_dT(T, Tc, Pc, a, b, c, d)

	Calculates the first temperature derivative of vapor pressure using the
Wagner equation (2.5, 5 form).

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

\[\frac{\partial P^{\text{sat}} }{\partial T} =
P_{c} \left(\frac{T_{c} \left(- \frac{a}{T_{c}} - \frac{1.5 b
\tau^{0.5}}{T_{c}} - \frac{2.5 c \tau^{1.5}}{T_{c}} - \frac{5 d
\tau^{4}}{T_{c}}\right)}{T} - \frac{T_{c} \left(a \tau + b \tau^{1.5}
+ c \tau^{2.5} + d \tau^{5}\right)}{T^{2}}\right) e^{\frac{T_{c}
\left(a \tau + b \tau^{1.5} + c \tau^{2.5} + d \tau^{5}\right)}{T}}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	dPsat_dTfloat
	First temperature derivative of vapor pressure at T [Pa/K]

Examples

Methane at 100 K.

>>> dWagner_dT(100., 190.551, 4599200, -6.02242, 1.26652, -0.5707, -1.366)
3587.2910498076

	
chemicals.vapor_pressure.d2Wagner_dT2(T, Tc, Pc, a, b, c, d)

	Calculates the second temperature derivative of vapor pressure using the
Wagner equation (2.5, 5 form).

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

\[\frac{\partial^2 P^{\text{sat}} }{\partial T^2} =
\frac{P_{c} \left(\frac{\frac{0.75 b}{\tau^{0.5}} + 3.75 c \tau^{0.5}
+ 20 d \tau^{3}}{T_{c}} + \frac{2 \left(a + 1.5 b \tau^{0.5}
+ 2.5 c \tau^{1.5} + 5 d \tau^{4}\right)}{T} + \frac{25 \left(
\frac{a}{5} + 0.3 b \tau^{0.5} + 0.5 c \tau^{1.5} + d \tau^{4}
- \frac{T_{c} \left(- a \tau - b \tau^{1.5} - c \tau^{2.5}
- d \tau^{5}\right)}{5 T}\right)^{2}}{T} - \frac{2 T_{c} \left(- a
\tau - b \tau^{1.5} - c \tau^{2.5} - d \tau^{5}\right)}{T^{2}}\right)
e^{- \frac{T_{c} \left(- a \tau - b \tau^{1.5} - c \tau^{2.5}
- d \tau^{5}\right)}{T}}}{T}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	d2Psat_dT2float
	Second temperature derivative of vapor pressure at T [Pa/K^2]

Notes

This second derivative is infinity at T == Tc.

Examples

Methane at 100 K.

>>> d2Wagner_dT2(100., 190.551, 4599200, -6.02242, 1.26652, -0.5707, -1.366)
296.7091513877

	
chemicals.vapor_pressure.dWagner_original_dT(T, Tc, Pc, a, b, c, d)

	Calculates first temperature derivative of vapor pressure using the
Wagner equation (3, 6 form).

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

\[\frac{\partial P^{\text{sat}} }{\partial T} =
P_{c} \left(\frac{T_{c} \left(- \frac{a}{T_{c}} - \frac{1.5 b
\tau^{0.5}}{T_{c}} - \frac{3 c \tau^{2}}{T_{c}} - \frac{6 d \tau^{5}}
{T_{c}}\right)}{T} - \frac{T_{c} \left(a \tau + b \tau^{1.5}
+ c \tau^{3} + d \tau^{6}\right)}{T^{2}}\right) e^{\frac{T_{c} \left(a
\tau + b \tau^{1.5} + c \tau^{3} + d \tau^{6}\right)}{T}}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	dPsat_dTfloat
	First temperature derivative of vapor pressure at T [Pa/K]

Examples

Methane at 100 K.

>>> dWagner_original_dT(100.0, 190.53, 4596420., a=-6.00435, b=1.1885,
... c=-0.834082, d=-1.22833)
3593.70783283

	
chemicals.vapor_pressure.d2Wagner_original_dT2(T, Tc, Pc, a, b, c, d)

	Calculates second temperature derivative of vapor pressure using the
Wagner equation (3, 6 form).

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

\[\frac{\partial^2 P^{\text{sat}} }{\partial T^2} =
\frac{P_{c} \left(\frac{\frac{0.75 b}{\tau^{0.5}} + 6 c \tau + 30 d
\tau^{4}}{T_{c}} + \frac{2 \left(a + 1.5 b \tau^{0.5} + 3 c \tau^{2}
+ 6 d \tau^{5}\right)}{T} + \frac{36 \left(\frac{a}{6} + 0.25 b
\tau^{0.5} + \frac{c \tau^{2}}{2} + d \tau^{5} - \frac{T_{c} \left(
- a \tau - b \tau^{1.5} - c \tau^{3} - d \tau^{6}\right)}{6 T}
\right)^{2}}{T} - \frac{2 T_{c} \left(- a \tau - b \tau^{1.5}
- c \tau^{3} - d \tau^{6}\right)}{T^{2}}\right) e^{- \frac{T_{c}
\left(- a \tau - b \tau^{1.5} - c \tau^{3} - d \tau^{6}\right)}{T}}}{T}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	d2Psat_dT2float
	Second temperature derivative of vapor pressure at T [Pa/K^2]

Notes

This second derivative is infinity at T == Tc.

Examples

Methane at 100 K.

>>> d2Wagner_original_dT2(100.0, 190.53, 4596420., a=-6.00435, b=1.1885,
... c=-0.834082, d=-1.22833)
296.87593368224

	
chemicals.vapor_pressure.dTRC_Antoine_extended_dT(T, Tc, to, A, B, C, n, E, F)

	Calculates the first temperature derivative of vapor pressure of a
chemical using the TRC Extended Antoine equation.

\[\frac{\partial P^{\text{sat}} }{\partial T} =
10^{A - \frac{B}{C + T} + \frac{E \left(T - T_{ref} - to\right)^{8}}
{T_{c}^{8}} + \frac{F \left(T - T_{ref} - to\right)^{12}}{T_{c}^{12}}
+ f \left(\frac{T - T_{ref} - to}{T_{c}}\right)^{n}}
\left(\frac{B}{\left(C + T\right)^{2}} + \frac{8 E \left(T - T_{ref}
- to\right)^{7}}{T_{c}^{8}} + \frac{12 F \left(T - T_{ref} - to
\right)^{11}}{T_{c}^{12}} + \frac{f n \left(\frac{T - T_{ref} - to}
{T_{c}}\right)^{n}}{T - T_{ref} - to}\right) \log{\left(10 \right)}

\]

\[x = \max \left(\frac{T-t_o-273.15}{T_c}, 0 \right)

\]

\[T_{ref} = 273.15 \text{ K}

\]

\[f = 0.43429

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature of fluid, [K]

	tofloat
	Fit temperature-transition parameter, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	nfloat
	Fit parameter, [-]

	Efloat
	Fit parameter, [-]

	Ffloat
	Fit parameter, [-]

	Returns

	
	dPsat_dTfloat
	First temperature derivative of vapor pressure calculated with
coefficients [Pa/K]

Examples

Tetrafluoromethane at 180 K:

>>> dTRC_Antoine_extended_dT(T=180.0, Tc=227.51, to=-120., A=8.95894,
... B=510.595, C=-15.95, n=2.41377, E=-93.74, F=7425.9)
31219.6061263

	
chemicals.vapor_pressure.d2TRC_Antoine_extended_dT2(T, Tc, to, A, B, C, n, E, F)

	Calculates the second temperature derivative of vapor pressure of a
chemical using the TRC Extended Antoine equation.

\[\frac{\partial^2 P^{\text{sat}} }{\partial T^2} =
10^{A - \frac{B}{C + T} + \frac{E \left(- T + T_{ref} + to\right)^{8}}
{T_{c}^{8}} + \frac{F \left(- T + T_{ref} + to\right)^{12}}{T_{c}^{12}}
+ f \left(- \frac{- T + T_{ref} + to}{T_{c}}\right)^{n}} \left(
- \frac{2 B}{\left(C + T\right)^{3}} + \frac{56 E \left(- T + T_{ref}
+ to\right)^{6}}{T_{c}^{8}} + \frac{132 F \left(- T + T_{ref}
+ to\right)^{10}}{T_{c}^{12}} + \frac{f n^{2} \left(- \frac{- T
+ T_{ref} + to}{T_{c}}\right)^{n}}{\left(- T + T_{ref} + to\right)^{2}}
- \frac{f n \left(- \frac{- T + T_{ref} + to}{T_{c}}\right)^{n}}
{\left(- T + T_{ref} + to\right)^{2}} + \left(- \frac{B}{\left(C
+ T\right)^{2}} + \frac{8 E \left(- T + T_{ref} + to\right)^{7}}
{T_{c}^{8}} + \frac{12 F \left(- T + T_{ref} + to\right)^{11}}
{T_{c}^{12}} + \frac{f n \left(- \frac{- T + T_{ref} + to}
{T_{c}}\right)^{n}}{- T + T_{ref} + to}\right)^{2}
\log{\left(10 \right)}\right) \log{\left(10 \right)}

\]

\[x = \max \left(\frac{T-t_o-273.15}{T_c}, 0 \right)

\]

\[T_{ref} = 273.15 \text{ K}

\]

\[f = 0.43429

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Tcfloat
	Critical temperature of fluid, [K]

	tofloat
	Fit temperature-transition parameter, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	nfloat
	Fit parameter, [-]

	Efloat
	Fit parameter, [-]

	Ffloat
	Fit parameter, [-]

	Returns

	
	d2Psat_dT2float
	Second temperature derivative of vapor pressure calculated with
coefficients [Pa/K]

Examples

Tetrafluoromethane at 180 K:

>>> d2TRC_Antoine_extended_dT2(T=180.0, Tc=227.51, to=-120., A=8.95894,
... B=510.595, C=-15.95, n=2.41377, E=-93.74, F=7425.9)
1022.550368944

	
chemicals.vapor_pressure.dYaws_Psat_dT(T, A, B, C, D, E)

	Calculates the first temperature derivative of vapor pressure of a
chemical using the Yaws equation for vapor pressure.
Parameters A, B, C, D, and E are chemical-dependent. Parameters
can be found in numerous sources; however units of the coefficients used
vary.

\[\frac{\partial P^{\text{sat}} }{\partial T} = 10^{A + \frac{B}{T}
+ \frac{C \log{\left(T \right)}}{\log{\left(10 \right)}} + D T
+ E T^{2}} \left(- \frac{B}{T^{2}} + \frac{C}{T \log{\left(10 \right)}}
+ D + 2 E T\right) \log{\left(10 \right)}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Afloat
	A parameter, [-]

	Bfloat
	B parameter, [K]

	Cfloat
	C parameter, [-]

	Dfloat
	D parameter, [1/K]

	Efloat
	E parameter, [1/K^2]

	Returns

	
	dPsat_dTfloat
	First temperature derivative of vapor pressure calculated with
coefficients [Pa/K]

Examples

Benzene:

>>> dYaws_Psat_dT(T=400.0, A=42.7918, B=-2965.83, C=-12.073, D=0.0033269, E=1.58609e-6)
8134.87548930

	
chemicals.vapor_pressure.d2Yaws_Psat_dT2(T, A, B, C, D, E)

	Calculates the second temperature derivative of vapor pressure of a
chemical using the Yaws equation for vapor pressure.
Parameters A, B, C, D, and E are chemical-dependent. Parameters
can be found in numerous sources; however units of the coefficients used
vary.

\[\frac{\partial^2 P^{\text{sat}} }{\partial T^2} = 10^{A + \frac{B}{T}
+ \frac{C \log{\left(T \right)}}{\log{\left(10 \right)}} + D T
+ E T^{2}} \left(\frac{2 B}{T^{3}} - \frac{C}{T^{2} \log{\left(10
\right)}} + 2 E + \left(- \frac{B}{T^{2}} + \frac{C}{T \log{\left(10
\right)}} + D + 2 E T\right)^{2} \log{\left(10 \right)}\right)
\log{\left(10 \right)}

\]

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Afloat
	A parameter, [-]

	Bfloat
	B parameter, [K]

	Cfloat
	C parameter, [-]

	Dfloat
	D parameter, [1/K]

	Efloat
	E parameter, [1/K^2]

	Returns

	
	d2Psat_dT2float
	Second temperature derivative of vapor pressure calculated with
coefficients [Pa/K^2]

Examples

Benzene:

>>> d2Yaws_Psat_dT2(T=400.0, A=42.7918, B=-2965.83, C=-12.073, D=0.0033269, E=1.58609e-6)
141.7181045862

Jacobians (for fitting)

	
chemicals.vapor_pressure.Wagner_fitting_jacobian(Ts, Tc, Pc, a, b, c, d)

	Calculates the jacobian of the Wagner (2.5, 5) vapor pressure equation
for use in fitting these parameters when experimental values are known.

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

	Parameters

	
	Tslist[float]
	Temperatures of fluid data points, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	jaclist[list[float, 4], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.vapor_pressure.Wagner_original_fitting_jacobian(Ts, Tc, Pc, a, b, c, d)

	Calculates the jacobian of the Wagner (3, 6) vapor pressure equation
for use in fitting these parameters when experimental values are known.

Requires critical temperature and pressure as well as four coefficients
specific to each chemical.

	Parameters

	
	Tslist[float]
	Temperatures of fluid data points, [K]

	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	a, b, c, dfloats
	Parameters for wagner equation. Specific to each chemical. [-]

	Returns

	
	jaclist[list[float, 4], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.vapor_pressure.Antoine_fitting_jacobian(Ts, A, B, C, base=10.0)

	Calculates the jacobian of the Antoine vapor pressure equation
for use in fitting these parameters when experimental values are known.

Requires three coefficients specific to each chemical.

	Parameters

	
	Tslist[float]
	Temperatures of fluid data points, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	basefloat, optional
	Optional base of logarithm; 10 by default, [-]

	Returns

	
	jaclist[list[float, 3], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.vapor_pressure.Yaws_Psat_fitting_jacobian(Ts, A, B, C, D, E)

	Compute and return the Jacobian of the property predicted by
the Yaws vapor pressure equation with respect to all the coefficients. This is
used in fitting parameters for chemicals.

	Parameters

	
	Tslist[float]
	Temperatures of the experimental data points, [K]

	Afloat
	A parameter, [-]

	Bfloat
	B parameter, [K]

	Cfloat
	C parameter, [-]

	Dfloat
	D parameter, [1/K]

	Efloat
	E parameter, [1/K^2]

	Returns

	
	jaclist[list[float, 5], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

	
chemicals.vapor_pressure.TRC_Antoine_extended_fitting_jacobian(Ts, Tc, to, A, B, C, n, E, F)

	Calculates the jacobian of the TRC Antoine extended vapor pressure
equation for use in fitting these parameters when experimental values are
known.

Requires 7 coefficients specific to each chemical.

	Parameters

	
	Tslist[float]
	Temperatures of fluid data points, [K]

	Tcfloat
	Critical temperature of fluid, [K]

	tofloat
	Fit temperature-transition parameter, [K]

	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

	nfloat
	Fit parameter, [-]

	Efloat
	Fit parameter, [-]

	Ffloat
	Fit parameter, [-]

	Returns

	
	jaclist[list[float, 7], len(Ts)]
	Matrix of derivatives of the equation with respect to the fitting
parameters, [various]

Vapor Pressure Estimation Correlations

	
chemicals.vapor_pressure.Lee_Kesler(T, Tc, Pc, omega)

	Calculates vapor pressure of a fluid at arbitrary temperatures using a
CSP relationship by [1]; requires a chemical’s critical temperature and
acentric factor.

The vapor pressure is given by:

\[\ln P^{sat}_r = f^{(0)} + \omega f^{(1)}

\]

\[f^{(0)} = 5.92714-\frac{6.09648}{T_r}-1.28862\ln T_r + 0.169347T_r^6

\]

\[f^{(1)} = 15.2518-\frac{15.6875}{T_r} - 13.4721 \ln T_r + 0.43577T_r^6

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor [-]

	Returns

	
	Psatfloat
	Vapor pressure at T [Pa]

Notes

This equation appears in [1] in expanded form.
The reduced pressure form of the equation ensures predicted vapor pressure
cannot surpass the critical pressure.

References

	1(1,2)

	Lee, Byung Ik, and Michael G. Kesler. “A Generalized Thermodynamic
Correlation Based on Three-Parameter Corresponding States.” AIChE Journal
21, no. 3 (1975): 510-527. doi:10.1002/aic.690210313.

	2

	Reid, Robert C..; Prausnitz, John M.;; Poling, Bruce E.
The Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

Example from [2]; ethylbenzene at 347.2 K.

>>> Lee_Kesler(347.2, 617.1, 36E5, 0.299)
13078.694162949312

	
chemicals.vapor_pressure.Ambrose_Walton(T, Tc, Pc, omega)

	Calculates vapor pressure of a fluid at arbitrary temperatures using a
CSP relationship by [1]; requires a chemical’s critical temperature and
acentric factor.

The vapor pressure is given by:

\[\ln P_r=f^{(0)}+\omega f^{(1)}+\omega^2f^{(2)}

\]

\[f^{(0)}=\frac{-5.97616\tau + 1.29874\tau^{1.5}- 0.60394\tau^{2.5}
-1.06841\tau^5}{T_r}

\]

\[f^{(1)}=\frac{-5.03365\tau + 1.11505\tau^{1.5}- 5.41217\tau^{2.5}
-7.46628\tau^5}{T_r}

\]

\[f^{(2)}=\frac{-0.64771\tau + 2.41539\tau^{1.5}- 4.26979\tau^{2.5}
+3.25259\tau^5}{T_r}

\]

\[\tau = 1-T_{r}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor [-]

	Returns

	
	Psatfloat
	Vapor pressure at T [Pa]

Notes

Somewhat more accurate than the Lee_Kesler formulation.

References

	1

	Ambrose, D., and J. Walton. “Vapour Pressures up to Their Critical
Temperatures of Normal Alkanes and 1-Alkanols.” Pure and Applied
Chemistry 61, no. 8 (1989): 1395-1403. doi:10.1351/pac198961081395.

	2

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Example from [2]; ethylbenzene at 347.25 K.

>>> Ambrose_Walton(347.25, 617.15, 36.09E5, 0.304)
13278.878504306222

	
chemicals.vapor_pressure.boiling_critical_relation(T, Tb, Tc, Pc)

	Calculates vapor pressure of a fluid at arbitrary temperatures using a
CSP relationship as in [1]; requires a chemical’s critical temperature
and pressure as well as boiling point.

The vapor pressure is given by:

\[\ln P^{sat}_r = h\left(1 - \frac{1}{T_r}\right)

\]

\[h = T_{br} \frac{\ln(P_c/101325)}{1-T_{br}}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tbfloat
	Boiling temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Returns

	
	Psatfloat
	Vapor pressure at T [Pa]

Notes

Units are Pa. Formulation makes intuitive sense; a logarithmic form of
interpolation.

References

	1(1,2)

	Reid, Robert C..; Prausnitz, John M.;; Poling, Bruce E.
The Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

Example as in [1] for ethylbenzene

>>> boiling_critical_relation(347.2, 409.3, 617.1, 36E5)
15209.467273093938

	
chemicals.vapor_pressure.Sanjari(T, Tc, Pc, omega)

	Calculates vapor pressure of a fluid at arbitrary temperatures using a
CSP relationship by [1]. Requires a chemical’s critical temperature,
pressure, and acentric factor. Although developed for refrigerants,
this model should have some general predictive ability.

The vapor pressure of a chemical at T is given by:

\[P^{sat} = P_c\exp(f^{(0)} + \omega f^{(1)} + \omega^2 f^{(2)})

\]

\[f^{(0)} = a_1 + \frac{a_2}{T_r} + a_3\ln T_r + a_4 T_r^{1.9}

\]

\[f^{(1)} = a_5 + \frac{a_6}{T_r} + a_7\ln T_r + a_8 T_r^{1.9}

\]

\[f^{(2)} = a_9 + \frac{a_{10}}{T_r} + a_{11}\ln T_r + a_{12} T_r^{1.9}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor [-]

	Returns

	
	Psatfloat
	Vapor pressure, [Pa]

Notes

a[1-12] are as follows:
6.83377, -5.76051, 0.90654, -1.16906,
5.32034, -28.1460, -58.0352, 23.57466,
18.19967, 16.33839, 65.6995, -35.9739.

For a claimed fluid not included in the regression, R128, the claimed AARD
was 0.428%. A re-calculation using 200 data points from 125.45 K to
343.90225 K evenly spaced by 1.09775 K as generated by NIST Webbook April
2016 produced an AARD of 0.644%. It is likely that the author’s regression
used more precision in its coefficients than was shown here. Nevertheless,
the function is reproduced as shown in [1].

For Tc=808 K, Pc=1100000 Pa, omega=1.1571, this function actually declines
after 770 K.

References

	1(1,2)

	Sanjari, Ehsan, Mehrdad Honarmand, Hamidreza Badihi, and Ali
Ghaheri. “An Accurate Generalized Model for Predict Vapor Pressure of
Refrigerants.” International Journal of Refrigeration 36, no. 4
(June 2013): 1327-32. doi:10.1016/j.ijrefrig.2013.01.007.

Examples

>>> Sanjari(347.2, 617.1, 36E5, 0.299)
13651.916109552523

	
chemicals.vapor_pressure.Edalat(T, Tc, Pc, omega)

	Calculates vapor pressure of a fluid at arbitrary temperatures using a
CSP relationship by [1]. Requires a chemical’s critical temperature,
pressure, and acentric factor. Claimed to have a higher accuracy than the
Lee-Kesler CSP relationship.

The vapor pressure of a chemical at T is given by:

\[\ln(P^{sat}/P_c) = \frac{a\tau + b\tau^{1.5} + c\tau^3 + d\tau^6}
{1-\tau}

\]

\[a = -6.1559 - 4.0855\omega

\]

\[b = 1.5737 - 1.0540\omega - 4.4365\times 10^{-3} d

\]

\[c = -0.8747 - 7.8874\omega

\]

\[d = \frac{1}{-0.4893 - 0.9912\omega + 3.1551\omega^2}

\]

\[\tau = 1 - \frac{T}{T_c}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor [-]

	Returns

	
	Psatfloat
	Vapor pressure, [Pa]

Notes

[1] found an average error of 6.06% on 94 compounds and 1106 data points.

References

	1(1,2)

	Edalat, M., R. B. Bozar-Jomehri, and G. A. Mansoori. “Generalized
Equation Predicts Vapor Pressure of Hydrocarbons.” Oil and Gas Journal;
91:5 (February 1, 1993).

Examples

>>> Edalat(347.2, 617.1, 36E5, 0.299)
13461.273080743307

Sublimation Pressure Estimation Correlations

	
chemicals.vapor_pressure.Psub_Clapeyron(T, Tt, Pt, Hsub_t)

	Calculates sublimation pressure of a solid at arbitrary temperatures
using an approximate themodynamic identity - the Clapeyron equation as
described in [1] and [2].
Requires a chemical’s triple temperature, triple pressure, and triple
enthalpy of sublimation.

The sublimation pressure of a chemical at T is given by:

\[\ln \frac{P}{P_{tp}} = -\frac{\Delta H_{sub}}{R}
\left(\frac{1}{T}-\frac{1}{T_{tp}} \right)

\]

	Parameters

	
	Tfloat
	Temperature of solid [K]

	Ttfloat
	Triple temperature of solid [K]

	Ptfloat
	Truple pressure of solid [Pa]

	Hsub_tfloat
	Enthalpy of fusion at the triple point of the chemical, [J/mol]

	Returns

	
	Psubfloat
	Sublimation pressure, [Pa]

Notes

Does not seem to capture the decrease in sublimation pressure quickly
enough.

References

	1

	Goodman, B. T., W. V. Wilding, J. L. Oscarson, and R. L. Rowley.
“Use of the DIPPR Database for the Development of QSPR Correlations:
Solid Vapor Pressure and Heat of Sublimation of Organic Compounds.”
International Journal of Thermophysics 25, no. 2 (March 1, 2004):
337-50. https://doi.org/10.1023/B:IJOT.0000028471.77933.80.

	2

	Feistel, Rainer, and Wolfgang Wagner. “Sublimation Pressure and
Sublimation Enthalpy of H2O Ice Ih between 0 and 273.16K.” Geochimica et
Cosmochimica Acta 71, no. 1 (January 1, 2007): 36-45.
https://doi.org/10.1016/j.gca.2006.08.034.

Examples

>>> Psub_Clapeyron(250, Tt=273.15, Pt=611.0, Hsub_t=51100.0)
76.06457150831804
>>> Psub_Clapeyron(300, Tt=273.15, Pt=611.0, Hsub_t=51100.0)
4577.282832876156

Correlations for Specific Substances

	
chemicals.vapor_pressure.Psat_IAPWS(T)

	Calculates vapor pressure of water using the IAPWS explicit equation.

\[P^{sat} = 10^6 \left[\frac{2C}{-B + \sqrt{B^2 - 4AC}} \right]^4

\]

\[A = \nu^2 + n_1 \nu + n_2

\]

\[B = n_3 \nu^2 + n_4\nu + n_5

\]

\[C = n_6\nu^2 + n_7\nu + n_8

\]

\[\nu = T + \frac{n_9}{T - n_{10}}

\]

	Parameters

	
	Tfloat
	Temperature of water, [K]

	Returns

	
	Psatfloat
	Vapor pressure at T [Pa]

Notes

This formulation is quite efficient, and can also be solved backward.
The range of validity of this equation is 273.15 K < T < 647.096 K, the
IAPWS critical point.

Extrapolation to lower temperatures is very poor. The function continues to
decrease until a pressure of 5.7 mPa is reached at 159.77353993926621 K;
under that pressure the vapor pressure increases, which is obviously wrong.

References

	1

	Kretzschmar, Hans-Joachim, and Wolfgang Wagner. International Steam
Tables: Properties of Water and Steam Based on the Industrial
Formulation IAPWS-IF97. Springer, 2019.

Examples

>>> Psat_IAPWS(300.)
3536.58941301301

	
chemicals.vapor_pressure.dPsat_IAPWS_dT(T)

	Calculates the first temperature dervative of vapor pressure of water
using the IAPWS explicit equation. This was derived with SymPy, using the
CSE method.

	Parameters

	
	Tfloat
	Temperature of water, [K]

	Returns

	
	dPsat_dTfloat
	Temperature dervative of vapor pressure at T [Pa/K]

Notes

The derivative of this is useful when solving for water dew point.

References

	1

	Kretzschmar, Hans-Joachim, and Wolfgang Wagner. International Steam
Tables: Properties of Water and Steam Based on the Industrial
Formulation IAPWS-IF97. Springer, 2019.

Examples

>>> dPsat_IAPWS_dT(300.)
207.88388134164282

	
chemicals.vapor_pressure.Tsat_IAPWS(P)

	Calculates the saturation temperature of water using the IAPWS explicit
equation.

\[T_s = \frac{n_{10} + D - \left[(n_{10}+D)^2 - 4(n_9 + n_{10}D) \right]^{0.5}}{2}

\]

\[E = \beta^2 + n_3 \beta + n_6

\]

\[F = n_1 \beta^2 + n_4\beta + n_7

\]

\[G = n_2\beta^2 + n_5\beta + n_8

\]

\[\beta = \left(P_{sat} \right)^{0.25}

\]

	Parameters

	
	Psatfloat
	Vapor pressure at T [Pa]

	Returns

	
	Tfloat
	Temperature of water along the saturation curve at Psat, [K]

Notes

The range of validity of this equation is 273.15 K < T < 647.096 K, the
IAPWS critical point.

The coefficients n1 to n10 are (0.11670521452767E4, -0.72421316703206E6,
-0.17073846940092E2, 0.12020824702470E5, -0.32325550322333E7, 0.14915108613530E2,
-0.48232657361591E4, 0.40511340542057E6, -0.23855557567849, 0.65017534844798E3)

References

	1

	Kretzschmar, Hans-Joachim, and Wolfgang Wagner. International Steam
Tables: Properties of Water and Steam Based on the Industrial
Formulation IAPWS-IF97. Springer, 2019.

Examples

>>> Tsat_IAPWS(1E5)
372.75591861133773

Analytical Fit Equations

	
chemicals.vapor_pressure.Antoine_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2, base=10.0)

	Calculates the antoine coefficients A, B, and C from a known
vapor pressure and its first and second temperature derivative.

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Psatfloat
	Vapor pressure at specified T [Pa]

	dPsat_dTfloat
	First temperature derivative of vapor pressure at specified T [Pa/K]

	d2Psat_dT2float
	Second temperature derivative of vapor pressure at specified T [Pa/K^2]

	Basefloat, optional
	Base of logarithm; 10 by default

	Returns

	
	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

	Cfloat
	Antoine C parameter, [K]

Notes

Coefficients are for calculating vapor pressure in Pascal. This is
primarily useful for interconverting vapor pressure models, not fitting
experimental data.

Derived with SymPy as follows:

>>> from sympy import *
>>> base, A, B, C, T = symbols('base, A, B, C, T')
>>> v = base**(A - B/(T + C))
>>> d1, d2 = diff(v, T), diff(v, T, 2)
>>> vk, d1k, d2k = symbols('vk, d1k, d2k')
>>> solve([Eq(v, vk), Eq(d1, d1k), Eq(d2, d2k)], [A, B, C])

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Recalculate some coefficients from a calcualted value and its derivative:

>>> T = 178.01
>>> A, B, C = (24.0989474955895, 4346.793091137991, -18.96968471040141)
>>> Psat = Antoine(T, A, B, C, base=exp(1))
>>> dPsat_dT, d2Psat_dT2 = (0.006781441203850251, 0.0010801244983894853) # precomputed
>>> Antoine_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2, base=exp(1))
(24.098947495155, 4346.793090994, -18.969684713118)

	
chemicals.vapor_pressure.Antoine_AB_coeffs_from_point(T, Psat, dPsat_dT, base=10.0)

	Calculates the antoine coefficients A, B, with C set to zero to
improve low-temperature or high-temperature extrapolation, from a known
vapor pressure and its first temperature derivative.

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Psatfloat
	Vapor pressure at specified T [Pa]

	dPsat_dTfloat
	First temperature derivative of vapor pressure at specified T [Pa/K]

	Basefloat, optional
	Base of logarithm; 10 by default

	Returns

	
	Afloat
	Antoine A parameter, [-]

	Bfloat
	Antoine B parameter, [K]

Notes

Coefficients are for calculating vapor pressure in Pascal. This is
primarily useful for interconverting vapor pressure models, not fitting
experimental data.

Derived with SymPy as follows:

>>> from sympy import *
>>> base, A, B, T = symbols('base, A, B, T')
>>> v = base**(A - B/T)
>>> d1, d2 = diff(v, T), diff(v, T, 2)
>>> vk, d1k = symbols('vk, d1k')
>>> solve([Eq(v, vk), Eq(d1, d1k)], [A, B])

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

Recalculate some coefficients from a calcualted value and its derivative:

>>> T = 178.01
>>> A, B = (27.358925161569008, 5445.569591293226)
>>> Psat = Antoine(T, A, B, C=0, base=exp(1))
>>> dPsat_dT = B*exp(1)**(A - B/T)*log(exp(1))/T**2
>>> Antoine_AB_coeffs_from_point(T, Psat, dPsat_dT, base=exp(1))
(27.35892516156901, 5445.569591293226)

	
chemicals.vapor_pressure.DIPPR101_ABC_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2)

	Calculates the first three DIPPR101 coefficients A, B, and C
from a known vapor pressure and its first and second temperature derivative.

If the second derivative is infinity as is the case in some vapor pressure
models at the critical point, only the A and C coefficients are fit,
using the first derivative an the actual value of vapor pressure.

	Parameters

	
	Tfloat
	Temperature of fluid, [K]

	Psatfloat
	Vapor pressure at specified T [Pa]

	dPsat_dTfloat
	First temperature derivative of vapor pressure at specified T [Pa/K]

	d2Psat_dT2float
	Second temperature derivative of vapor pressure at specified T [Pa/K^2]

	Returns

	
	Afloat
	DIPPR101 A parameter (same as Antoine A), [-]

	Bfloat
	DIPPR101 B parameter (same as Antoine B), [K]

	C: float
	DIPPR101 C parameter (NOT same as Antoine C, multiplied by log(T)),
[-]

Notes

Coefficients are for calculating vapor pressure in Pascal. This is
primarily useful for interconverting vapor pressure models, not fitting
experimental data.

Derived with SymPy as follows:

>>> from sympy import *
>>> base, A, B, C, T = symbols('base, A, B, C, T')
>>> v = exp(A + B/T + C*log(T))
>>> d1, d2 = diff(v, T), diff(v, T, 2)
>>> vk, d1k, d2k = symbols('vk, d1k, d2k')
>>> solve([Eq(v, vk), Eq(d1, d1k), Eq(d2, d2k)], [A, B, C])

Examples

Calculate the coefficients:

>>> T = 178.01
>>> Psat, dPsat_dT, d2Psat_dT2 = (0.03946094565666715, 0.006781441203850251, 0.0010801244983894853)
>>> DIPPR101_ABC_coeffs_from_point(T, Psat, dPsat_dT, d2Psat_dT2)
(72.47169926642, -6744.620564969, -7.2976291987890)

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.vapor_pressure.Psat_data_WagnerMcGarry

	Coefficients for the Wagner 3,6 original model equation documented in
Wagner_original with data for 245 chemicals, from [1].

	
chemicals.vapor_pressure.Psat_data_WagnerPoling

	Coefficients for the Wagner 2.5, 5 model equation documented in
Wagner in [2], with data for 104 chemicals.

	
chemicals.vapor_pressure.Psat_data_AntoinePoling

	Standard Antoine equation coefficients, as documented in the function
Antoine and with data for 325 fluids from [2].
Coefficients were altered to be in units of Pa and Celcius.

	
chemicals.vapor_pressure.Psat_data_AntoineExtended

	Data for 97 chemicals in [2] for the TRC extended Antoine model
TRC_Antoine_extended.

	
chemicals.vapor_pressure.Psat_data_Perrys2_8

	A collection of 341 coefficient sets for thermo.dippr.EQ101 from
the DIPPR database published openly in [4].

	
chemicals.vapor_pressure.Psat_data_VDI_PPDS_3

	Coefficients for the Wagner equation Wagner, published
openly in [3].

	
chemicals.vapor_pressure.Psat_data_Alcock_elements

	Coefficients for the DIPPR 101 equation chemicals.dippr.EQ101,
published in [5] and converted to provide base SI units (and use the
natural logarithm).

	1

	McGarry, Jack. “Correlation and Prediction of the Vapor Pressures of
Pure Liquids over Large Pressure Ranges.” Industrial & Engineering
Chemistry Process Design and Development 22, no. 2 (April 1, 1983):
313-22. doi:10.1021/i200021a023.

	2(1,2,3)

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

	3

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

	4

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.

	5

	Alcock, C. B., V. P. Itkin, and M. K. Horrigan. “Vapour Pressure
Equations for the Metallic Elements: 298-2500K.” Canadian Metallurgical
Quarterly 23, no. 3 (July 1, 1984): 309-13.
https://doi.org/10.1179/cmq.1984.23.3.309.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.vapor_pressure.Psat_data_WagnerMcGarry
Out[2]:
 Name A ... Tc Tmin
CAS ...
50-00-0 formaldehyde -7.29343 ... 408.00 184.0
56-23-5 carbon tetrachloride -7.07139 ... 556.40 250.0
60-29-7 diethylether -7.29916 ... 466.74 250.0
62-53-3 aniline -7.65517 ... 699.00 376.0
64-17-5 ethanol -8.51838 ... 513.92 293.0
...
7732-18-5 water -7.76451 ... 647.35 275.0
7782-41-4 fluorine -6.18224 ... 144.31 64.0
7782-44-7 oxygen -6.28275 ... 154.70 54.0
16747-38-9 2,3,3,4-tetramethylpentane -7.65000 ... 607.60 332.0
16747-50-5 l-methyl-l-ethylcyclopentane -7.09092 ... 592.00 316.0

[245 rows x 8 columns]

In [3]: chemicals.vapor_pressure.Psat_data_WagnerPoling
Out[3]:
 Name ... Tmax
CAS ...
60-29-7 diethyl ether ... 466.74
64-17-5 ethanol ... 513.92
64-18-6 methanoic acid ... 588.00
64-19-7 ethanoic acid ... 592.71
67-56-1 methanol ... 512.64
...
7727-37-9 nitrogen ... 126.20
7783-81-5 uranium hexafluoride ... 503.35
13838-16-9 2-chloro-1,1,2-trifluoroethyl difluoromethyl e... ... 475.03
26171-83-5 1,2-butandiol ... 506.40
26675-46-7 1-chloro-2,2,2-trifluoroethyl difluoromethyl e... ... 467.80

[104 rows x 9 columns]

In [4]: chemicals.vapor_pressure.Psat_data_AntoinePoling
Out[4]:
 Chemical A ... Tmin Tmax
CAS ...
56-23-5 tetrachloromethane 9.10445 ... 259.00 373.76
60-29-7 diethyl ether 9.10962 ... 229.71 328.31
62-53-3 benzeneamine 9.40870 ... 349.86 484.81
64-17-5 ethanol 10.33675 ... 276.50 369.54
64-19-7 ethanoic acid 9.54456 ... 297.58 414.97
...
14762-55-1 helium-3 6.39750 ... 1.12 4.41
16747-38-9 2,3,3,4-tetramethylpentane 8.99105 ... 307.81 443.27
20291-95-6 2,2,5-trimethylheptane 9.00345 ... 318.00 452.00
800000-51-5 hydrogen, normal 7.94928 ... 13.33 22.94
800000-54-8 deuterium, normal 8.25315 ... 17.57 26.23

[325 rows x 6 columns]

In [5]: chemicals.vapor_pressure.Psat_data_AntoineExtended
Out[5]:
 Chemical A ... Tmin Tmax
CAS ...
62-53-3 benzeneamine 9.40870 ... 488.15 673.15
74-85-1 ethene 8.91382 ... 188.15 273.15
74-89-5 methanamine 9.21300 ... 288.15 423.15
75-04-7 ethanamine 8.88560 ... 308.15 443.15
75-10-5 difluoromethane 9.29712 ... 238.15 338.15
...
1067-08-9 3-ethyl-3-methylpentane 8.98950 ... 408.15 543.15
1511-62-2 bromodifluoromethane 8.40030 ... 273.15 403.15
1640-89-7 ethylcyclopentane 9.00408 ... 408.15 569.52
1717-00-6 1,1-dichloro-1-fluoroethane 9.03117 ... 333.15 473.15
2837-89-0 1-chloro-1,2,2,2-tetrafluoroethane 8.98581 ... 283.15 383.15

[97 rows x 11 columns]

In [6]: chemicals.vapor_pressure.Psat_data_Perrys2_8
Out[6]:
 Chemical C1 C2 ... C5 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 101.510 -4917.20 ... 1.0 181.15 408.00
55-21-0 Benzamide 85.474 -11932.00 ... 6.0 403.00 824.00
56-23-5 Carbon tetrachloride 78.441 -6128.10 ... 2.0 250.33 556.35
57-55-6 1,2-Propylene glycol 212.800 -15420.00 ... 2.0 213.15 626.00
60-29-7 Diethyl ether 136.900 -6954.30 ... 1.0 156.85 466.70
...
10028-15-6 Ozone 40.067 -2204.80 ... 6.0 80.15 261.00
10035-10-6 Hydrogen bromide 29.315 -2424.50 ... 6.0 185.15 363.15
10102-43-9 Nitric oxide 72.974 -2650.00 ... 6.0 109.50 180.15
13511-13-2 Propenylcyclohexene 64.268 -7298.90 ... 6.0 199.00 636.00
132259-10-0 Air 21.662 -692.39 ... 1.0 59.15 132.45

[340 rows x 8 columns]

In [7]: chemicals.vapor_pressure.Psat_data_VDI_PPDS_3
Out[7]:
 Chemical Tm Tc ... B C D
CAS ...
50-00-0 Formaldehyde 181.15 408.05 ... 1.28290 -0.50464 -4.29089
56-23-5 Carbon tetrachloride 250.25 556.35 ... 1.96174 -2.05900 -3.26771
56-81-5 Glycerol 291.45 850.05 ... -0.33345 -5.98569 -1.33011
60-29-7 Diethyl ether 156.75 466.63 ... 2.15613 -3.02766 -2.37858
62-53-3 Aniline 267.15 699.05 ... 1.96206 -3.65571 -2.00622
...
10097-32-2 Bromine 265.85 584.15 ... 1.50339 -0.64097 -3.62166
10102-43-9 Nitric oxide 112.15 180.15 ... 0.85755 -3.11447 -8.98765
10102-44-0 Nitrogen dioxide 261.85 431.15 ... 2.37620 0.67820 -2.53997
10544-72-6 Dinitrogentetroxide 261.85 431.10 ... 3.10196 0.59704 -5.33648
132259-10-0 Air 63.05 132.53 ... -0.21537 0.93623 -3.02641

[275 rows x 8 columns]

In [8]: chemicals.vapor_pressure.Psat_data_Alcock_elements
Out[8]:
 name A B ... E Tmin Tmax
CAS ...
7439-93-2 lithium 30.888526 -19157.507974 ... -3.0 453.6500 1000.0
7440-23-5 sodium 30.867803 -12972.764414 ... -3.0 370.9440 700.0
7440-09-7 potassium 30.483272 -10806.031841 ... -3.0 336.6500 600.0
7440-17-7 Rubidium 30.674386 -9843.551273 ... -3.0 312.4500 550.0
7440-46-2 Caesium 30.480969 -9353.100648 ... -3.0 301.6500 550.0
7429-90-5 Aluminium 35.882834 -39019.606986 ... -3.0 933.4730 1800.0
7440-55-3 gallium 19.870657 -31842.449251 ... -3.0 302.9146 1600.0
7440-74-6 Indium 34.365430 -28938.889449 ... -3.0 429.7500 1500.0
7440-28-0 Thallium 31.392793 -21605.155928 ... -3.0 577.1500 1100.0
7440-31-5 Tin 17.786817 -34785.153000 ... -3.0 505.0780 1850.0
7439-92-1 Lead 31.171744 -23239.991344 ... -3.0 600.6120 1200.0
7440-65-5 Yttrium 43.175121 -51151.927841 ... -3.0 1795.1500 2300.0
7439-91-0 Lanthanum 26.548154 -50603.912589 ... -3.0 1193.1500 2450.0
7440-32-6 Titanium 49.219406 -58091.919311 ... -3.0 1943.1500 2400.0
7440-67-7 Zirconium 15.173383 -66231.557615 ... -3.0 2127.1500 2500.0
7440-06-4 Platinum 60.472140 -71198.233660 ... -3.0 2041.3500 2500.0
7440-50-8 Copper 37.335765 -40127.150416 ... -3.0 1357.7700 1850.0
7440-57-5 Gold 35.238110 -43514.253087 ... -3.0 1337.3300 2050.0
7440-45-1 Cerium 25.394558 -48994.405609 ... -3.0 1072.1500 2450.0
7440-10-0 Praseodymium 38.965995 -43042.223143 ... -3.0 1204.1500 2200.0
7440-00-8 Neodymium 40.068933 -39717.290269 ... -3.0 1289.1500 2000.0
7440-54-2 Gadolinium 35.947306 -47214.507332 ... -3.0 1586.1500 2250.0
7440-27-9 Terbium 38.703500 -46171.436285 ... -3.0 1632.1500 2200.0
7439-94-3 Lutetium 54.932120 -54202.853089 ... -3.0 1936.1500 2350.0
7440-29-1 Thorium 148.700293 -85151.899324 ... -3.0 2023.1500 2500.0
7440-13-3 Protactinium 35.081534 -78331.642279 ... -3.0 1845.1500 2500.0
7439-99-8 Neptunium 48.979938 -55303.488764 ... -3.0 917.1500 2500.0
7440-07-5 Plutonium 41.441274 -40495.564030 ... -3.0 913.1500 2450.0
7440-51-9 Curium 56.511693 -49353.608883 ... -3.0 1618.1500 2200.0
7440-41-7 Beryllium 24.848846 -36221.966098 ... -3.0 1560.1500 1800.0
7440-39-3 Barium 20.752547 -18796.002114 ... -3.0 1000.1500 1200.0
7440-20-2 Scandium 24.869569 -40712.007029 ... -3.0 1814.1500 2000.0
7440-62-2 Vanadium 27.480701 -57589.955761 ... -3.0 2183.1500 2500.0
7439-89-6 Iron 26.140596 -45070.800610 ... -3.0 1811.1500 2100.0
7440-48-4 Cobalt 26.465261 -47382.596044 ... -3.0 1768.1500 2150.0
7440-02-0 Nickel 26.875121 -47813.179456 ... -3.0 1728.1500 2150.0
7440-05-3 Palladium 24.019915 -41213.970580 ... -3.0 1827.9500 2100.0
7440-22-4 Silver 24.770558 -31837.844081 ... -3.0 1234.9300 1600.0
7440-66-6 Zinc 23.909391 -14474.049895 ... -3.0 692.6770 750.0
7440-43-9 Cadmium 23.596240 -12415.538821 ... -3.0 594.2190 650.0
7439-97-6 Mercury 23.306114 -7345.246447 ... -3.0 298.0000 400.0
7440-52-0 Erbium 22.320607 -33111.173637 ... -3.0 1802.1500 1900.0
7440-61-1 Uranium 59.270190 -66259.188636 ... -3.0 1408.1500 2500.0

[43 rows x 8 columns]

 Support for Numpy Arrays (chemicals.vectorized)

Support for Numpy Arrays (chemicals.vectorized)

Basic module which wraps all chemicals functions with numpy’s np.vectorize
function.

All other object - dicts, classes, etc - are not wrapped. Supports star
imports; so the same objects exported when importing from the main library
will be imported from here.

>>> from chemicals.vectorized import *
>>> Antoine(np.linspace(100, 200, 5), A=8.95894, B=510.595, C=-15.95)
array([7.65674361e+02, 1.89116754e+04, 1.41237759e+05, 5.60609191e+05,
 1.53010431e+06])

Inputs do not need to be numpy arrays; they can be any iterable:

>>> import chemicals.vectorized
>>> chemicals.vectorized.Tc(['108-88-3', '7732-18-5'])
array([591.75 , 647.096])

Warning

This module does not replace the functions in the chemicals module; it
copies all the functions into the chemicals.vectorized module and makes
them vectorized there.

For example by importing chemicals.vectorized,
chemicals.Antoine won’t become vectorized,
but chemicals.vectorized.Antoine will become available and is vectorized.

Warning

np.vectorize does not use NumPy to accelerate any computations;
it is a convenience wrapper. If you are working on a problem large enough for
speed to be an issue and Numba is compatible with your version of Python,
an interface to that library is available at chemicals.numba which does
accelerate NumPy array computations and is normally faster than using numpy
directly.

 Virial Coefficients (chemicals.virial)

Virial Coefficients (chemicals.virial)

This module contains four estimation methods for second B virial coefficients,
two utility covnersions for when only B is considered, and two methods to
calculate Z from higher order virial expansions.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Utilities

	Second Virial Correlations

	Third Virial Correlations

	Cross-Parameters

	Second Virial Correlations Dense Implementations

	Third Virial Correlations Dense Implementations

Utilities

	
chemicals.virial.B_to_Z(B, T, P)

	Calculates the compressibility factor of a gas, given its
second virial coefficient.

\[Z = \frac{PV}{RT} = 1 + \frac{BP}{RT}

\]

	Parameters

	
	Bfloat
	Second virial coefficient, [m^3/mol]

	Tfloat
	Temperature, [K]

	Pfloat
	Pressure [Pa]

	Returns

	
	Zfloat
	Compressibility factor, [-]

Notes

Other forms of the virial coefficient exist.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> B_to_Z(-0.0015, 300, 1E5)
0.939863822478637

	
chemicals.virial.B_from_Z(Z, T, P)

	Calculates the second virial coefficient of a pure species, given the
compressibility factor of the gas.

\[B = \frac{RT(Z-1)}{P}

\]

	Parameters

	
	Zfloat
	Compressibility factor, [-]

	Tfloat
	Temperature, [K]

	Pfloat
	Pressure [Pa]

	Returns

	
	Bfloat
	Second virial coefficient, [m^3/mol]

Notes

Other forms of the virial coefficient exist.

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> B_from_Z(0.94, 300, 1E5)
-0.0014966032712675846

	
chemicals.virial.Z_from_virial_density_form(T, P, *args)

	Calculates the compressibility factor of a gas given its temperature,
pressure, and molar density-form virial coefficients. Any number of
coefficients is supported.

\[Z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3}
+ \frac{E}{V^4} \dots

\]

	Parameters

	
	Tfloat
	Temperature, [K]

	Pfloat
	Pressure, [Pa]

	B to Zfloat, optional
	Virial coefficients, [various]

	Returns

	
	Zfloat
	Compressibility factor at T, P, and with given virial coefficients, [-]

Notes

For use with B or with B and C or with B and C and D, optimized equations
are used to obtain the compressibility factor directly.
If more coefficients are provided, uses numpy’s roots function to solve
this equation. This takes substantially longer as the solution is
numerical.

If no virial coefficients are given, returns 1, as per the ideal gas law.

The units of each virial coefficient are as follows, where for B, n=1, and
C, n=2, and so on.

\[\left(\frac{\text{m}^3}{\text{mol}}\right)^n

\]

References

	1

	Prausnitz, John M., Rudiger N. Lichtenthaler, and Edmundo Gomes de
Azevedo. Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd
edition. Upper Saddle River, N.J: Prentice Hall, 1998.

	2

	Walas, Stanley M. Phase Equilibria in Chemical Engineering.
Butterworth-Heinemann, 1985.

Examples

>>> Z_from_virial_density_form(300, 122057.233762653, 1E-4, 1E-5, 1E-6, 1E-7)
1.28434940526

	
chemicals.virial.Z_from_virial_pressure_form(P, *args)

	Calculates the compressibility factor of a gas given its pressure, and
pressure-form virial coefficients. Any number of coefficients is supported.

\[Z = \frac{Pv}{RT} = 1 + B'P + C'P^2 + D'P^3 + E'P^4 \dots

\]

	Parameters

	
	Pfloat
	Pressure, [Pa]

	B to Zfloat, optional
	Pressure form Virial coefficients, [various]

	Returns

	
	Zfloat
	Compressibility factor at P, and with given virial coefficients, [-]

Notes

Note that although this function does not require a temperature input, it
is still dependent on it because the coefficients themselves normally are
regressed in terms of temperature.

The use of this form is less common than the density form. Its coefficients
are normally indicated with the “’” suffix.

If no virial coefficients are given, returns 1, as per the ideal gas law.

The units of each virial coefficient are as follows, where for B, n=1, and
C, n=2, and so on.

\[\left(\frac{1}{\text{Pa}}\right)^n

\]

References

	1

	Prausnitz, John M., Rudiger N. Lichtenthaler, and Edmundo Gomes de
Azevedo. Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd
edition. Upper Saddle River, N.J: Prentice Hall, 1998.

	2

	Walas, Stanley M. Phase Equilibria in Chemical Engineering.
Butterworth-Heinemann, 1985.

Examples

>>> Z_from_virial_pressure_form(102919.99946855308, 4.032286555169439e-09, 1.6197059494442215e-13, 6.483855042486911e-19)
1.00283753944

	
chemicals.virial.BVirial_mixture(zs, Bijs)

	Calculate the B second virial coefficient from a matrix of
virial cross-coefficients. The diagonal is virial coefficients of the
pure components.

\[B = \sum_i \sum_j y_i y_j B(T)

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Bijslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05], [-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> BVirial_mixture(zs=zs, Bijs=Bijs)
-3.19884e-05

	
chemicals.virial.dBVirial_mixture_dzs(zs, Bijs, dB_dzs=None)

	Calculate first mole fraction derivative of the B second virial
coefficient from a matrix of virial cross-coefficients.

\[\frac{\partial B}{\partial x_i} = \sum_j z_j(B_{i,j} + B_{j,i})

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Bijslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dzslist[float], optional
	Array for first mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

	Returns

	
	dB_dzslist[float]
	First mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05], [-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> dBVirial_mixture_dzs(zs=zs, Bijs=Bijs)
[-3.4089e-05, -7.2301e-05, -0.00012621]

	
chemicals.virial.d2BVirial_mixture_dzizjs(zs, Bijs, d2B_dzizjs=None)

	Calculate second mole fraction derivative of the B second virial
coefficient from a matrix of virial cross-coefficients.

\[\frac{\partial^2 B}{\partial x_i \partial x_j} = B_{i,j} + B_{j,i}

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Bijslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	d2B_dzizjslist[list[float]], optional
	Array for First mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

	Returns

	
	d2B_dzizjslist[list[float]]
	First mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05], [-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> d2BVirial_mixture_dzizjs(zs=zs, Bijs=Bijs)
[[-1.248e-05, -4.023e-05, -7.89e-05], [-4.023e-05, -8.782e-05, -0.0001292], [-7.89e-05, -0.0001292, -0.00024]]

	
chemicals.virial.d3BVirial_mixture_dzizjzks(zs, Bijs, d3B_dzizjzks=None)

	Calculate third mole fraction derivative of the B third virial
coefficient from a matrix of virial cross-coefficients.

\[\frac{\partial^3 B}{\partial x_i \partial x_j \partial x_k} = 0

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Bijslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	d3B_dzizjzkslist[list[list[float]]]
	Array for third mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

	Returns

	
	d3B_dzizjzkslist[list[list[float]]]
	Third mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

Examples

>>> Bijs = [[-6.24e-06, -2.013e-05, -3.9e-05], [-2.01e-05, -4.391e-05, -6.46e-05], [-3.99e-05, -6.46e-05, -0.00012]]
>>> zs = [.5, .3, .2]
>>> d3BVirial_mixture_dzizjzks(zs=zs, Bijs=Bijs)
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]

	
chemicals.virial.CVirial_mixture_Orentlicher_Prausnitz(zs, Cijs)

	Calculate the C third virial coefficient from a matrix of
virial cross-coefficients. The diagonal is virial coefficients of the
pure components.

\[C = \sum_i \sum_j \sum_k y_i y_j y_k C_{ijk}(T)

\]

\[C_{ijk} = \left(C_{ij}C_{jk}C_{ik}\right)^{1/3}

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	Returns

	
	Cfloat
	Third virial coefficient in density form [m^6/mol^2]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> CVirial_mixture_Orentlicher_Prausnitz(zs, Cijs)
2.0790440095e-09

	
chemicals.virial.dCVirial_mixture_dT_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs)

	Calculate the first temperature derivative of the C third virial
coefficient from matrices of
virial cross-coefficients and their first temperature derivatives.

\[\frac{\partial C}{\partial T} = \sum_i \sum_j \sum_k
\frac{zi zj zk \sqrt[3]{\operatorname{Cij}{\left(T \right)} \operatorname{Cik}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)}} \left(\frac{\operatorname{Cij}{\left(T \right)}
\operatorname{Cik}{\left(T \right)} \frac{d}{d T} \operatorname{Cjk}{\left(T \right)}}{3}
+ \frac{\operatorname{Cij}{\left(T \right)} \operatorname{Cjk}{\left(T \right)} \frac{d}{d T}
\operatorname{Cik}{\left(T \right)}}{3} + \frac{\operatorname{Cik}{\left(T \right)} \operatorname{Cjk}{\left(T \right)}
\frac{d}{d T} \operatorname{Cij}{\left(T \right)}}{3}\right)}{\operatorname{Cij}{\left(T \right)}
\operatorname{Cik}{\left(T \right)} \operatorname{Cjk}{\left(T \right)}}

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	dCij_dTslist[list[float]]
	First temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K]

	Returns

	
	dC_dTfloat
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> zs = [.5, .3, .2]
>>> dCVirial_mixture_dT_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs)
-7.2751517e-12

	
chemicals.virial.d2CVirial_mixture_dT2_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s)

	Calculate the second temperature derivative of the C third virial
coefficient from matrices of
virial cross-coefficients and their first and second temperature derivatives.

\[\frac{\partial^2 C}{\partial T^2} = \sum_i \sum_j \sum_k z_i z_j z_k
\frac{\sqrt[3]{\operatorname{Cij}{\left(T \right)} \operatorname{Cik}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)}} \left(\frac{\left(\operatorname{Cij}{\left(T \right)}
\operatorname{Cik}{\left(T \right)} \frac{d}{d T} \operatorname{Cjk}{\left(T \right)}
+ \operatorname{Cij}{\left(T \right)} \operatorname{Cjk}{\left(T \right)} \frac{d}{d T}
\operatorname{Cik}{\left(T \right)} + \operatorname{Cik}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)} \frac{d}{d T} \operatorname{Cij}{\left(T \right)}\right)^{2}}
{\operatorname{Cij}{\left(T \right)} \operatorname{Cik}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)}} - \frac{3 \left(\operatorname{Cij}{\left(T \right)}
\operatorname{Cik}{\left(T \right)} \frac{d}{d T} \operatorname{Cjk}{\left(T \right)}
+ \operatorname{Cij}{\left(T \right)} \operatorname{Cjk}{\left(T \right)} \frac{d}{d T}
\operatorname{Cik}{\left(T \right)} + \operatorname{Cik}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)} \frac{d}{d T} \operatorname{Cij}{\left(T \right)}\right)
\frac{d}{d T} \operatorname{Cjk}{\left(T \right)}}{\operatorname{Cjk}{\left(T \right)}}
- \frac{3 \left(\operatorname{Cij}{\left(T \right)} \operatorname{Cik}{\left(T \right)}
\frac{d}{d T} \operatorname{Cjk}{\left(T \right)} + \operatorname{Cij}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)} \frac{d}{d T} \operatorname{Cik}{\left(T \right)}
+ \operatorname{Cik}{\left(T \right)} \operatorname{Cjk}{\left(T \right)} \frac{d}{d T}
\operatorname{Cij}{\left(T \right)}\right) \frac{d}{d T} \operatorname{Cik}{\left(T \right)}}
{\operatorname{Cik}{\left(T \right)}} - \frac{3 \left(\operatorname{Cij}{\left(T \right)}
\operatorname{Cik}{\left(T \right)} \frac{d}{d T} \operatorname{Cjk}{\left(T \right)}
+ \operatorname{Cij}{\left(T \right)} \operatorname{Cjk}{\left(T \right)} \frac{d}{d T}
\operatorname{Cik}{\left(T \right)} + \operatorname{Cik}{\left(T \right)}
\operatorname{Cjk}{\left(T \right)} \frac{d}{d T} \operatorname{Cij}{\left(T \right)}\right)
\frac{d}{d T} \operatorname{Cij}{\left(T \right)}}{\operatorname{Cij}{\left(T \right)}}
+ 3 \operatorname{Cij}{\left(T \right)} \operatorname{Cik}{\left(T \right)} \frac{d^{2}}{d T^{2}}
\operatorname{Cjk}{\left(T \right)} + 3 \operatorname{Cij}{\left(T \right)} \operatorname{Cjk}{\left(T \right)}
\frac{d^{2}}{d T^{2}} \operatorname{Cik}{\left(T \right)} + 6 \operatorname{Cij}{\left(T \right)} \frac{d}{d T}
\operatorname{Cik}{\left(T \right)} \frac{d}{d T} \operatorname{Cjk}{\left(T \right)}
+ 3 \operatorname{Cik}{\left(T \right)} \operatorname{Cjk}{\left(T \right)}
\frac{d^{2}}{d T^{2}} \operatorname{Cij}{\left(T \right)} + 6 \operatorname{Cik}{\left(T \right)}
\frac{d}{d T} \operatorname{Cij}{\left(T \right)} \frac{d}{d T} \operatorname{Cjk}{\left(T \right)}
+ 6 \operatorname{Cjk}{\left(T \right)} \frac{d}{d T} \operatorname{Cij}{\left(T \right)}
\frac{d}{d T} \operatorname{Cik}{\left(T \right)}\right)}{9 \operatorname{Cij}{\left(T \right)}
\operatorname{Cik}{\left(T \right)} \operatorname{Cjk}{\left(T \right)}}

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	dCij_dTslist[list[float]]
	First temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K]

	d2Cij_dT2slist[list[float]]
	Second temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K^2]

	Returns

	
	d2C_dT2float
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> d2Cij_dT2s = [[2.6469e-14, 5.0512e-14, 1.1509e-13], [5.0512e-14, 9.3272e-14, 1.7836e-13], [1.1509e-13, 1.7836e-13, -1.4906e-13]]
>>> zs = [.5, .3, .2]
>>> d2CVirial_mixture_dT2_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s)
6.7237107787e-14

	
chemicals.virial.d3CVirial_mixture_dT3_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s, d3Cij_dT3s)

	Calculate the third temperature derivative of the C third virial
coefficient from matrices of
virial cross-coefficients and their first, second, and third temperature
derivatives.

The expression is quite lengthy and not shown here [1].

\[\frac{\partial^3 C}{\partial T^3}

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	dCij_dTslist[list[float]]
	First temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K]

	d2Cij_dT2slist[list[float]]
	Second temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K^2]

	d3Cij_dT3slist[list[float]]
	Third temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K^2^2]

	Returns

	
	d3C_dT3float
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

References

	1

	Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
New York: McGraw-Hill Professional, 2000.

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> d2Cij_dT2s = [[2.6469e-14, 5.0512e-14, 1.1509e-13], [5.0512e-14, 9.3272e-14, 1.7836e-13], [1.1509e-13, 1.7836e-13, -1.4906e-13]]
>>> d3Cij_dT3s = [[-4.2300e-16, -7.9727e-16, -1.6962e-15], [-7.9727e-16, -1.3826e-15, -1.4525e-15], [-1.6962e-15, -1.4525e-15, 1.9786e-14]]
>>> zs = [.5, .3, .2]
>>> d3CVirial_mixture_dT3_Orentlicher_Prausnitz(zs, Cijs, dCij_dTs, d2Cij_dT2s, d3Cij_dT3s)
-3.7358368e-16

	
chemicals.virial.dCVirial_mixture_Orentlicher_Prausnitz_dzs(zs, Cijs, dCs=None)

	Calculate the first mole fraction derivatives of the C third virial
coefficient from a matrix of
virial cross-coefficients.

\[\frac{\partial C}{\partial z_m} =
\sum_{\substack{0 \leq i \leq nc\\0 \leq j \leq nc\\0 \leq k \leq nc}}
\sqrt[3]{{Cs}_{i,j} {Cs}_{i,k} {Cs}_{j,k}} \left(\delta_{i m} {zs}_{j}
{zs}_{k} + \delta_{j m} {zs}_{i} {zs}_{k} + \delta_{k m} {zs}_{i}
{zs}_{j}\right)

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	dCslist[float], optional
	First derivatives of C with respect to mole fraction, [m^6/mol^2]

	Returns

	
	dC_dzslist[float]
	First derivatives of C with respect to mole fraction, [m^6/mol^2]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> i, j, k, m, n, o = symbols("i, j, k, m, n, o", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],[k,0,nc])
>>> diff(C_expr, zs[m])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*KroneckerDelta(i, m)*zs[j]*zs[k] + (Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*KroneckerDelta(j, m)*zs[i]*zs[k] + (Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*KroneckerDelta(k, m)*zs[i]*zs[j], (i, 0, nc), (j, 0, nc), (k, 0, nc))

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> dCVirial_mixture_Orentlicher_Prausnitz_dzs(zs, Cijs)
[5.44450470e-09, 6.54968776e-09, 7.74986672e-09]

	
chemicals.virial.d2CVirial_mixture_Orentlicher_Prausnitz_dzizjs(zs, Cijs, d2Cs=None)

	Calculate the second mole fraction derivatives of the C third virial
coefficient from a matrix of
virial cross-coefficients.

\[\frac{\partial^2 C}{\partial z_m \partial z_n} =
\sum_{\substack{0 \leq i \leq nc\\0 \leq j \leq nc\\0 \leq k \leq nc}}
\sqrt[3]{{Cs}_{i,j} {Cs}_{i,k} {Cs}_{j,k}} \left(\delta_{i m}
\delta_{j n} {zs}_{k} + \delta_{i m} \delta_{k n} {zs}_{j}
+ \delta_{i n} \delta_{j m} {zs}_{k} + \delta_{i n} \delta_{k m}
{zs}_{j} + \delta_{j m} \delta_{k n} {zs}_{i}
+ \delta_{j n} \delta_{k m} {zs}_{i}\right)

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	d2Cslist[list[float]], optional
	Second derivatives of C with respect to mole fraction, [m^6/mol^2]

	Returns

	
	d2Cslist[list[float]]
	Second derivatives of C with respect to mole fraction, [m^6/mol^2]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> i, j, k, m, n, o = symbols("i, j, k, m, n, o", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],[k,0,nc])
>>> diff(C_expr, zs[m], zs[n])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(KroneckerDelta(i, m)*KroneckerDelta(j, n)*zs[k] + KroneckerDelta(i, m)*KroneckerDelta(k, n)*zs[j] + KroneckerDelta(i, n)*KroneckerDelta(j, m)*zs[k] + KroneckerDelta(i, n)*KroneckerDelta(k, m)*zs[j] + KroneckerDelta(j, m)*KroneckerDelta(k, n)*zs[i] + KroneckerDelta(j, n)*KroneckerDelta(k, m)*zs[i]), (i, 0, nc), (j, 0, nc), (k, 0, nc))

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> d2CVirial_mixture_Orentlicher_Prausnitz_dzizjs(zs, Cijs)
[[9.6827886655e-09, 1.1449146725e-08, 1.3064355337e-08], [1.1449146725e-08, 1.38557674294e-08, 1.60903596751e-08], [1.3064355337e-08, 1.60903596751e-08, 2.0702239403e-08]]

	
chemicals.virial.d3CVirial_mixture_Orentlicher_Prausnitz_dzizjzks(zs, Cijs, d3Cs=None)

	Calculate the third mole fraction derivatives of the C third virial
coefficient from a matrix of
virial cross-coefficients.

\[\frac{\partial^3 C}{\partial z_m \partial z_n \partial z_o} =
\sum_{\substack{0 \leq i \leq nc\\0 \leq j \leq nc\\0 \leq k \leq nc}}
\sqrt[3]{{Cs}_{i,j} {Cs}_{i,k} {Cs}_{j,k}} \left(\delta_{i m} \delta_{j n}
\delta_{k o} + \delta_{i m} \delta_{j o} \delta_{k n} + \delta_{i n}
\delta_{j m} \delta_{k o} + \delta_{i n} \delta_{j o} \delta_{k m}
+ \delta_{i o} \delta_{j m} \delta_{k n} + \delta_{i o} \delta_{j n}
\delta_{k m}\right)

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	d3Cslist[list[list[float]]], optional
	Third derivatives of C with respect to mole fraction, [m^6/mol^2]

	Returns

	
	d3Cslist[list[list[float]]]
	Third derivatives of C with respect to mole fraction, [m^6/mol^2]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> i, j, k, m, n, o = symbols("i, j, k, m, n, o", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],[k,0,nc])
>>> diff(C_expr, zs[m], zs[n], zs[o])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(KroneckerDelta(i, m)*KroneckerDelta(j, n)*KroneckerDelta(k, o) + KroneckerDelta(i, m)*KroneckerDelta(j, o)*KroneckerDelta(k, n) + KroneckerDelta(i, n)*KroneckerDelta(j, m)*KroneckerDelta(k, o) + KroneckerDelta(i, n)*KroneckerDelta(j, o)*KroneckerDelta(k, m) + KroneckerDelta(i, o)*KroneckerDelta(j, m)*KroneckerDelta(k, n) + KroneckerDelta(i, o)*KroneckerDelta(j, n)*KroneckerDelta(k, m)), (i, 0, nc), (j, 0, nc), (k, 0, nc))

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> zs = [.5, .3, .2]
>>> d3CVirial_mixture_Orentlicher_Prausnitz_dzizjzks(zs, Cijs)
[[[8.760000000e-09, 1.0187346981e-08, 1.12329228549e-08], [1.01873469818e-08, 1.21223973593e-08, 1.35937701316e-08], [1.12329228549e-08, 1.35937701316e-08, 1.68488143533e-08]], [[1.01873469818e-08, 1.21223973593e-08, 1.35937701316e-08], [1.2122397359e-08, 1.47600000000e-08, 1.68328437491e-08], [1.35937701316e-08, 1.68328437491e-08, 2.12181074230e-08]], [[1.12329228549e-08, 1.35937701316e-08, 1.68488143533e-08], [1.35937701316e-08, 1.68328437491e-08, 2.12181074230e-08], [1.68488143533e-08, 2.12181074230e-08, 2.9562000000e-08]]]

	
chemicals.virial.d2CVirial_mixture_Orentlicher_Prausnitz_dTdzs(zs, Cijs, dCij_dTs, d2C_dTdzs=None)

	Calculate the first mole fraction derivatives of the C third virial
coefficient from a matrix of
virial cross-coefficients.

\[\frac{\partial^2 C}{\partial T \partial z_m}

\]

	Parameters

	
	zslist[float]
	Mole fractions of each species, [-]

	Cijslist[list[float]]
	Third virial binary interaction coefficients in density form [m^6/mol^2]

	dCij_dTslist[list[float]]
	First temperature derivative of third virial binary interaction
coefficients in density form [m^6/mol^2/K]

	d2C_dTdzslist[float], optional
	Array for second derivatives of C with respect to mole fraction and
temperature, [m^6/mol^2/K]

	Returns

	
	d2C_dTdzslist[float]
	Second derivatives of C with respect to mole fraction and temperature,
[m^6/mol^2/K]

Notes

This equation can be derived with SymPy, as follows

>>> from sympy import *
>>> from sympy import *
>>> i, j, k, m, n, o, T = symbols("i, j, k, m, n, o, T", cls=Idx)
>>> zs = IndexedBase('zs')
>>> Cs = IndexedBase('Cs')
>>> dC_dTs = IndexedBase('dC_dTs')
>>> nc = symbols('nc')
>>> C_expr = Sum(zs[i]*zs[j]*zs[k]/3*cbrt(Cs[i,j]*Cs[i,k]*Cs[j,k])/(Cs[i,j]*Cs[i,k]*Cs[j,k])*(Cs[i,j]*Cs[i,k]*dC_dTs[j,k] + Cs[i,j]*dC_dTs[i,k]*Cs[j,k] + dC_dTs[i,j]*Cs[i,k]*Cs[j,k]),[i,0,nc],[j,0,nc],[k,0,nc])
>>> diff(C_expr, zs[m])
Sum((Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(Cs[i, j]*Cs[i, k]*dC_dTs[j, k] + Cs[i, j]*Cs[j, k]*dC_dTs[i, k] + Cs[i, k]*Cs[j, k]*dC_dTs[i, j])*KroneckerDelta(i, m)*zs[j]*zs[k]/(3*Cs[i, j]*Cs[i, k]*Cs[j, k]) + (Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(Cs[i, j]*Cs[i, k]*dC_dTs[j, k] + Cs[i, j]*Cs[j, k]*dC_dTs[i, k] + Cs[i, k]*Cs[j, k]*dC_dTs[i, j])*KroneckerDelta(j, m)*zs[i]*zs[k]/(3*Cs[i, j]*Cs[i, k]*Cs[j, k]) + (Cs[i, j]*Cs[i, k]*Cs[j, k])**(1/3)*(Cs[i, j]*Cs[i, k]*dC_dTs[j, k] + Cs[i, j]*Cs[j, k]*dC_dTs[i, k] + Cs[i, k]*Cs[j, k]*dC_dTs[i, j])*KroneckerDelta(k, m)*zs[i]*zs[j]/(3*Cs[i, j]*Cs[i, k]*Cs[j, k]), (i, 0, nc), (j, 0, nc), (k, 0, nc))

Examples

>>> Cijs = [[1.46e-09, 1.831e-09, 2.12e-09], [1.831e-09, 2.46e-09, 2.996e-09], [2.12e-09, 2.996e-09, 4.927e-09]]
>>> dCij_dTs = [[-2.212e-12, -4.137e-12, -1.079e-11], [-4.137e-12, -7.669e-12, -1.809e-11], [-1.079e-11, -1.809e-11, -2.010e-11]]
>>> zs = [.5, .3, .2]
>>> d2CVirial_mixture_Orentlicher_Prausnitz_dTdzs(zs, Cijs, dCij_dTs)
[-1.5740994103e-11, -2.27267309501e-11, -3.56846953115e-11]

	
chemicals.virial.dV_dzs_virial(B, C, V, dB_dzs, dC_dzs, dV_dzs=None)

	Calculates first mole fraction derivative of volume for the virial
equation of state.

\[\frac{\partial V}{\partial z_i} = \frac{V(V\frac{\partial B}{\partial z_i} + \frac{\partial C}{\partial z_i})}{2BV + 3C + V^2}

\]

	Parameters

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	Cfloat
	Third virial coefficient in density form [m^6/mol^2]

	Vfloat
	Molar volume from virial equation, [m^3/mol]

	dB_dzslist[float]
	First mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

	dC_dzslist[float]
	First derivatives of C with respect to mole fraction, [m^6/mol^2]

	dV_dzslist[float], optional
	Array for first derivatives of molar volume with respect to mole fraction, [m^3/mol]

	Returns

	
	dV_dzslist[float]
	First derivatives of molar volume with respect to mole fraction, [m^3/mol]

Notes

This expression was derived with SymPy as follows:

>>> from sympy import *
>>> Z, R, T, P, z1 = symbols('Z, R, T, P, z1')
>>> B, C, V = symbols('B, C, V', cls=Function)
>>> base =Eq(P*V(z1)/(R*T), 1 + B(z1)/V(z1) + C(z1)/V(z1)**2)
>>> P_sln = solve(base, P)[0]
>>> solve(diff(P_sln, z1), Derivative(V(z1), z1))
[(V(z1)*Derivative(B(z1), z1) + Derivative(C(z1), z1))*V(z1)/(2*B(z1)*V(z1) + 3*C(z1) + V(z1)**2)]

Examples

>>> dV_dzs_virial(B=-5.130920247359858e-05, C=2.6627784284381213e-09, V=0.024892080086430797, dB_dzs=[-4.457911131778849e-05, -9.174964457681726e-05, -0.0001594258679841028], dC_dzs=[6.270599057032657e-09, 7.766612052069565e-09, 9.503031492910165e-09])
[-4.4510120473455416e-05, -9.181495962913208e-05, -0.00015970040988493522]

	
chemicals.virial.d2V_dzizjs_virial(B, C, V, dB_dzs, dC_dzs, dV_dzs, d2B_dzizjs, d2C_dzizjs, d2V_dzizjs=None)

	Calculates second mole fraction derivative of volume for the virial
equation of state.

\[\frac{\partial^2 V}{\partial z_i \partial z_j}

\]

	Parameters

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	Cfloat
	Third virial coefficient in density form [m^6/mol^2]

	Vfloat
	Molar volume from virial equation, [m^3/mol]

	dB_dzslist[float]
	First mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

	dC_dzslist[float]
	First derivatives of C with respect to mole fraction, [m^6/mol^2]

	dV_dzslist[float]
	First derivatives of molar volume with respect to mole fraction, [m^3/mol]

	d2B_dzizjslist[list[float]]
	Second mole fraction derivatives of second virial coefficient in
density form [m^3/mol]

	d2C_dzizjslist[list[float]]
	Second derivatives of C with respect to mole fraction, [m^6/mol^2]

	d2V_dzizjslist[list[float]], optional
	Array for second derivatives of molar volume with respect to mole
fraction, [m^3/mol]

	Returns

	
	d2V_dzizjslist[list[float]]
	Second derivatives of molar volume with respect to mole
fraction, [m^3/mol]

Notes

This expression was derived with SymPy as follows:

>>> from sympy import *
>>> Z, R, T, P, z1 = symbols('Z, R, T, P, z1')
>>> B, C, V = symbols('B, C, V', cls=Function)
>>> base =Eq(P*V(z1)/(R*T), 1 + B(z1)/V(z1) + C(z1)/V(z1)**2)
>>> P_sln = solve(base, P)[0]
>>> solve(diff(P_sln, z1), Derivative(V(z1), z1))
[(V(z1)*Derivative(B(z1), z1) + Derivative(C(z1), z1))*V(z1)/(2*B(z1)*V(z1) + 3*C(z1) + V(z1)**2)]

Examples

>>> d2C_dzizjs = [[1.0287075724127612e-08, 1.2388277824773021e-08, 1.4298813522844275e-08], [1.2388277824773021e-08, 1.514162073913238e-08, 1.8282527232061114e-08], [1.4298813522844275e-08, 1.8282527232061114e-08, 2.3350122217403063e-08]]
>>> d2B_dzizjs = [[-1.0639357784985337e-05, -3.966321845899801e-05, -7.53987684376414e-05], [-3.966321845899801e-05, -8.286257232134107e-05, -0.00014128571574782375], [-7.53987684376414e-05, -0.00014128571574782375, -0.00024567752140887547]]
>>> dB_dzs = [-4.457911131778849e-05, -9.174964457681726e-05, -0.0001594258679841028]
>>> dC_dzs = [6.270599057032657e-09, 7.766612052069565e-09, 9.503031492910165e-09]
>>> dV_dzs = [-4.4510120473455416e-05, -9.181495962913208e-05, -0.00015970040988493522]
>>> d2V_dzizjs_virial(B=-5.130920247359858e-05, C=2.6627784284381213e-09, V=0.024892080086430797, dB_dzs=dB_dzs, dC_dzs=dC_dzs, dV_dzs=dV_dzs, d2B_dzizjs=d2B_dzizjs, d2C_dzizjs=d2C_dzizjs)
[[-1.04268917389e-05, -3.9654694588e-05, -7.570310078e-05], [-3.9654694588e-05, -8.3270116767e-05, -0.0001423083584], [-7.5703100789e-05, -0.000142308358, -0.00024779788]]

Second Virial Correlations

	
chemicals.virial.BVirial_Pitzer_Curl(T, Tc, Pc, omega, order=0)

	Calculates the second virial coefficient using the model in [1].
Designed for simple calculations.

\[B_r=B^{(0)}+\omega B^{(1)}

\]

\[B^{(0)}=0.1445-0.33/T_r-0.1385/T_r^2-0.0121/T_r^3

\]

\[B^{(1)} = 0.073+0.46/T_r-0.5/T_r^2 -0.097/T_r^3 - 0.0073/T_r^8

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of B itself; for 1/2/3,
the first/second/third derivative of B with respect to temperature; and
for -1/-2, the first/second indefinite integral of B with respect to
temperature. No other integrals or derivatives are implemented, and an
exception will be raised if any other order is given.

	Returns

	
	Bfloat
	Second virial coefficient in density form or its integral/derivative if
specified, [m^3/mol or m^3/mol/K^order]

Notes

Analytical models for derivatives and integrals are available for orders
-2, -1, 1, 2, and 3, all obtained with SymPy.

For first temperature derivative of B:

\[\frac{d B^{(0)}}{dT} = \frac{33 Tc}{100 T^{2}} + \frac{277 Tc^{2}}{1000 T^{3}} + \frac{363 Tc^{3}}{10000 T^{4}}

\]

\[\frac{d B^{(1)}}{dT} = - \frac{23 Tc}{50 T^{2}} + \frac{Tc^{2}}{T^{3}} + \frac{291 Tc^{3}}{1000 T^{4}} + \frac{73 Tc^{8}}{1250 T^{9}}

\]

For the second temperature derivative of B:

\[\frac{d^2 B^{(0)}}{dT^2} = - \frac{3 Tc}{5000 T^{3}} \left(1100 + \frac{1385 Tc}{T} + \frac{242 Tc^{2}}{T^{2}}\right)

\]

\[\frac{d^2 B^{(1)}}{dT^2} = \frac{Tc}{T^{3}} \left(\frac{23}{25} - \frac{3 Tc}{T} - \frac{291 Tc^{2}}{250 T^{2}} - \frac{657 Tc^{7}}{1250 T^{7}}\right)

\]

For the third temperature derivative of B:

\[\frac{d^3 B^{(0)}}{dT^3} = \frac{3 Tc}{500 T^{4}} \left(330 + \frac{554 Tc}{T} + \frac{121 Tc^{2}}{T^{2}}\right)

\]

\[\frac{d^3 B^{(1)}}{dT^3} = \frac{3 Tc}{T^{4}} \left(- \frac{23}{25} + \frac{4 Tc}{T} + \frac{97 Tc^{2}}{50 T^{2}} + \frac{219 Tc^{7}}{125 T^{7}}\right)

\]

For the first indefinite integral of B:

\[\int{B^{(0)}} dT = \frac{289 T}{2000} - \frac{33 Tc}{100} \ln{\left (T \right)} + \frac{1}{20000 T^{2}} \left(2770 T Tc^{2} + 121 Tc^{3}\right)

\]

\[\int{B^{(1)}} dT = \frac{73 T}{1000} + \frac{23 Tc}{50} \ln{\left (T \right)} + \frac{1}{70000 T^{7}} \left(35000 T^{6} Tc^{2} + 3395 T^{5} Tc^{3} + 73 Tc^{8}\right)

\]

For the second indefinite integral of B:

\[\int\int B^{(0)} dT dT = \frac{289 T^{2}}{4000} - \frac{33 T}{100} Tc \ln{\left (T \right)} + \frac{33 T}{100} Tc + \frac{277 Tc^{2}}{2000} \ln{\left (T \right)} - \frac{121 Tc^{3}}{20000 T}

\]

\[\int\int B^{(1)} dT dT = \frac{73 T^{2}}{2000} + \frac{23 T}{50} Tc \ln{\left (T \right)} - \frac{23 T}{50} Tc + \frac{Tc^{2}}{2} \ln{\left (T \right)} - \frac{1}{420000 T^{6}} \left(20370 T^{5} Tc^{3} + 73 Tc^{8}\right)

\]

References

	1

	Pitzer, Kenneth S., and R. F. Curl. “The Volumetric and
Thermodynamic Properties of Fluids. III. Empirical Equation for the
Second Virial Coefficient1.” Journal of the American Chemical Society
79, no. 10 (May 1, 1957): 2369-70. doi:10.1021/ja01567a007.

Examples

Example matching that in BVirial_Abbott, for isobutane.

>>> BVirial_Pitzer_Curl(510., 425.2, 38E5, 0.193)
-0.00020845362479301725

	
chemicals.virial.BVirial_Abbott(T, Tc, Pc, omega, order=0)

	Calculates the second virial coefficient using the model in [1].
Simple fit to the Lee-Kesler equation.

\[B_r=B^{(0)}+\omega B^{(1)}

\]

\[B^{(0)}=0.083+\frac{0.422}{T_r^{1.6}}

\]

\[B^{(1)}=0.139-\frac{0.172}{T_r^{4.2}}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of B itself; for 1/2/3,
the first/second/third derivative of B with respect to temperature; and
for -1/-2, the first/second indefinite integral of B with respect to
temperature. No other integrals or derivatives are implemented, and an
exception will be raised if any other order is given.

	Returns

	
	Bfloat
	Second virial coefficient in density form or its integral/derivative if
specified, [m^3/mol or m^3/mol/K^order]

Notes

Analytical models for derivatives and integrals are available for orders
-2, -1, 1, 2, and 3, all obtained with SymPy.

For first temperature derivative of B:

\[\frac{d B^{(0)}}{dT} = \frac{0.6752}{T \left(\frac{T}{Tc}\right)^{1.6}}

\]

\[\frac{d B^{(1)}}{dT} = \frac{0.7224}{T \left(\frac{T}{Tc}\right)^{4.2}}

\]

For the second temperature derivative of B:

\[\frac{d^2 B^{(0)}}{dT^2} = - \frac{1.75552}{T^{2} \left(\frac{T}{Tc}\right)^{1.6}}

\]

\[\frac{d^2 B^{(1)}}{dT^2} = - \frac{3.75648}{T^{2} \left(\frac{T}{Tc}\right)^{4.2}}

\]

For the third temperature derivative of B:

\[\frac{d^3 B^{(0)}}{dT^3} = \frac{6.319872}{T^{3} \left(\frac{T}{Tc}\right)^{1.6}}

\]

\[\frac{d^3 B^{(1)}}{dT^3} = \frac{23.290176}{T^{3} \left(\frac{T}{Tc}\right)^{4.2}}

\]

For the first indefinite integral of B:

\[\int{B^{(0)}} dT = 0.083 T + \frac{\frac{211}{300} Tc}{\left(\frac{T}{Tc}\right)^{0.6}}

\]

\[\int{B^{(1)}} dT = 0.139 T + \frac{0.05375 Tc}{\left(\frac{T}{Tc}\right)^{3.2}}

\]

For the second indefinite integral of B:

\[\int\int B^{(0)} dT dT = 0.0415 T^{2} + \frac{211}{120} Tc^{2} \left(\frac{T}{Tc}\right)^{0.4}

\]

\[\int\int B^{(1)} dT dT = 0.0695 T^{2} - \frac{\frac{43}{1760} Tc^{2}}{\left(\frac{T}{Tc}\right)^{2.2}}

\]

References

	1(1,2)

	Smith, H. C. Van Ness Joseph M. Introduction to Chemical Engineering
Thermodynamics 4E 1987.

Examples

Example is from [1], p. 93, and matches the result exactly, for isobutane.

>>> BVirial_Abbott(510., 425.2, 38E5, 0.193)
-0.000205701850095

	
chemicals.virial.BVirial_Tsonopoulos(T, Tc, Pc, omega, order=0)

	Calculates the second virial coefficient using the model in [1].

\[B_r=B^{(0)}+\omega B^{(1)}

\]

\[B^{(0)}= 0.1445-0.330/T_r - 0.1385/T_r^2 - 0.0121/T_r^3 - 0.000607/T_r^8

\]

\[B^{(1)} = 0.0637+0.331/T_r^2-0.423/T_r^3 -0.423/T_r^3 - 0.008/T_r^8

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	orderint, optional
	Order of the calculation. 0 for the calculation of B itself; for 1/2/3,
the first/second/third derivative of B with respect to temperature; and
for -1/-2, the first/second indefinite integral of B with respect to
temperature. No other integrals or derivatives are implemented, and an
exception will be raised if any other order is given.

	Returns

	
	Bfloat
	Second virial coefficient in density form or its integral/derivative if
specified, [m^3/mol or m^3/mol/K^order]

Notes

A more complete expression is also available, in
BVirial_Tsonopoulos_extended.

Analytical models for derivatives and integrals are available for orders
-2, -1, 1, 2, and 3, all obtained with SymPy.

For first temperature derivative of B:

\[\frac{d B^{(0)}}{dT} = \frac{33 Tc}{100 T^{2}} + \frac{277 Tc^{2}}{1000 T^{3}} + \frac{363 Tc^{3}}{10000 T^{4}} + \frac{607 Tc^{8}}{125000 T^{9}}

\]

\[\frac{d B^{(1)}}{dT} = - \frac{331 Tc^{2}}{500 T^{3}} + \frac{1269 Tc^{3}}{1000 T^{4}} + \frac{8 Tc^{8}}{125 T^{9}}

\]

For the second temperature derivative of B:

\[\frac{d^2 B^{(0)}}{dT^2} = - \frac{3 Tc}{125000 T^{3}} \left(27500 + \frac{34625 Tc}{T} + \frac{6050 Tc^{2}}{T^{2}} + \frac{1821 Tc^{7}}{T^{7}}\right)

\]

\[\frac{d^2 B^{(1)}}{dT^2} = \frac{3 Tc^{2}}{500 T^{4}} \left(331 - \frac{846 Tc}{T} - \frac{96 Tc^{6}}{T^{6}}\right)

\]

For the third temperature derivative of B:

\[\frac{d^3 B^{(0)}}{dT^3} = \frac{3 Tc}{12500 T^{4}} \left(8250 + \frac{13850 Tc}{T} + \frac{3025 Tc^{2}}{T^{2}} + \frac{1821 Tc^{7}}{T^{7}}\right)

\]

\[\frac{d^3 B^{(1)}}{dT^3} = \frac{3 Tc^{2}}{250 T^{5}} \left(-662 + \frac{2115 Tc}{T} + \frac{480 Tc^{6}}{T^{6}}\right)

\]

For the first indefinite integral of B:

\[\int{B^{(0)}} dT = \frac{289 T}{2000} - \frac{33 Tc}{100} \ln{\left (T \right)} + \frac{1}{7000000 T^{7}} \left(969500 T^{6} Tc^{2} + 42350 T^{5} Tc^{3} + 607 Tc^{8}\right)

\]

\[\int{B^{(1)}} dT = \frac{637 T}{10000} - \frac{1}{70000 T^{7}} \left(23170 T^{6} Tc^{2} - 14805 T^{5} Tc^{3} - 80 Tc^{8}\right)

\]

For the second indefinite integral of B:

\[\int\int B^{(0)} dT dT = \frac{289 T^{2}}{4000} - \frac{33 T}{100} Tc \ln{\left (T \right)} + \frac{33 T}{100} Tc + \frac{277 Tc^{2}}{2000} \ln{\left (T \right)} - \frac{1}{42000000 T^{6}} \left(254100 T^{5} Tc^{3} + 607 Tc^{8}\right)

\]

\[\int\int B^{(1)} dT dT = \frac{637 T^{2}}{20000} - \frac{331 Tc^{2}}{1000} \ln{\left (T \right)} - \frac{1}{210000 T^{6}} \left(44415 T^{5} Tc^{3} + 40 Tc^{8}\right)

\]

References

	1

	Tsonopoulos, Constantine. “An Empirical Correlation of Second Virial
Coefficients.” AIChE Journal 20, no. 2 (March 1, 1974): 263-72.
doi:10.1002/aic.690200209.

Examples

Example matching that in BVirial_Abbott, for isobutane.

>>> BVirial_Tsonopoulos(510., 425.2, 38E5, 0.193)
-0.0002093529540

	
chemicals.virial.BVirial_Tsonopoulos_extended(T, Tc, Pc, omega, a=0, b=0, species_type='', dipole=0, order=0)

	Calculates the second virial coefficient using the
comprehensive model in [1]. See the notes for the calculation of a and
b.

\[\frac{BP_c}{RT_c} = B^{(0)} + \omega B^{(1)} + a B^{(2)} + b B^{(3)}

\]

\[B^{(0)}=0.1445-0.33/T_r-0.1385/T_r^2-0.0121/T_r^3

\]

\[B^{(1)} = 0.0637+0.331/T_r^2-0.423/T_r^3 -0.423/T_r^3 - 0.008/T_r^8

\]

\[B^{(2)} = 1/T_r^6

\]

\[B^{(3)} = -1/T_r^8

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	afloat, optional
	Fit parameter, calculated based on species_type if a is not given and
species_type matches on of the supported chemical classes.

	bfloat, optional
	Fit parameter, calculated based on species_type if a is not given and
species_type matches on of the supported chemical classes.

	species_typestr, optional
	One of .

	dipolefloat
	dipole moment, optional, [Debye]

	orderint, optional
	Order of the calculation. 0 for the calculation of B itself; for 1/2/3,
the first/second/third derivative of B with respect to temperature; and
for -1/-2, the first/second indefinite integral of B with respect to
temperature. No other integrals or derivatives are implemented, and an
exception will be raised if any other order is given.

	Returns

	
	Bfloat
	Second virial coefficient in density form or its integral/derivative if
specified, [m^3/mol or m^3/mol/K^order]

Notes

Analytical models for derivatives and integrals are available for orders
-2, -1, 1, 2, and 3, all obtained with SymPy.

To calculate a or b, the following rules are used:

For ‘simple’ or ‘normal’ fluids:

\[a = 0

\]

\[b = 0

\]

For ‘ketone’, ‘aldehyde’, ‘alkyl nitrile’, ‘ether’, ‘carboxylic acid’,
or ‘ester’ types of chemicals:

\[a = -2.14\times 10^{-4} \mu_r - 4.308 \times 10^{-21} (\mu_r)^8

\]

\[b = 0

\]

For ‘alkyl halide’, ‘mercaptan’, ‘sulfide’, or ‘disulfide’ types of
chemicals:

\[a = -2.188\times 10^{-4} (\mu_r)^4 - 7.831 \times 10^{-21} (\mu_r)^8

\]

\[b = 0

\]

For ‘alkanol’ types of chemicals (except methanol):

\[a = 0.0878

\]

\[b = 0.00908 + 0.0006957 \mu_r

\]

For methanol:

\[a = 0.0878

\]

\[b = 0.0525

\]

For water:

\[a = -0.0109

\]

\[b = 0

\]

If required, the form of dipole moment used in the calculation of some
types of a and b values is as follows:

\[\mu_r = 100000\frac{\mu^2(Pc/101325.0)}{Tc^2}

\]

For first temperature derivative of B:

\[\frac{d B^{(0)}}{dT} = \frac{33 Tc}{100 T^{2}} + \frac{277 Tc^{2}}{1000 T^{3}} + \frac{363 Tc^{3}}{10000 T^{4}} + \frac{607 Tc^{8}}{125000 T^{9}}

\]

\[\frac{d B^{(1)}}{dT} = - \frac{331 Tc^{2}}{500 T^{3}} + \frac{1269 Tc^{3}}{1000 T^{4}} + \frac{8 Tc^{8}}{125 T^{9}}

\]

\[\frac{d B^{(2)}}{dT} = - \frac{6 Tc^{6}}{T^{7}}

\]

\[\frac{d B^{(3)}}{dT} = \frac{8 Tc^{8}}{T^{9}}

\]

For the second temperature derivative of B:

\[\frac{d^2 B^{(0)}}{dT^2} = - \frac{3 Tc}{125000 T^{3}} \left(27500 + \frac{34625 Tc}{T} + \frac{6050 Tc^{2}}{T^{2}} + \frac{1821 Tc^{7}}{T^{7}}\right)

\]

\[\frac{d^2 B^{(1)}}{dT^2} = \frac{3 Tc^{2}}{500 T^{4}} \left(331 - \frac{846 Tc}{T} - \frac{96 Tc^{6}}{T^{6}}\right)

\]

\[\frac{d^2 B^{(2)}}{dT^2} = \frac{42 Tc^{6}}{T^{8}}

\]

\[\frac{d^2 B^{(3)}}{dT^2} = - \frac{72 Tc^{8}}{T^{10}}

\]

For the third temperature derivative of B:

\[\frac{d^3 B^{(0)}}{dT^3} = \frac{3 Tc}{12500 T^{4}} \left(8250 + \frac{13850 Tc}{T} + \frac{3025 Tc^{2}}{T^{2}} + \frac{1821 Tc^{7}}{T^{7}}\right)

\]

\[\frac{d^3 B^{(1)}}{dT^3} = \frac{3 Tc^{2}}{250 T^{5}} \left(-662 + \frac{2115 Tc}{T} + \frac{480 Tc^{6}}{T^{6}}\right)

\]

\[\frac{d^3 B^{(2)}}{dT^3} = - \frac{336 Tc^{6}}{T^{9}}

\]

\[\frac{d^3 B^{(3)}}{dT^3} = \frac{720 Tc^{8}}{T^{11}}

\]

For the first indefinite integral of B:

\[\int{B^{(0)}} dT = \frac{289 T}{2000} - \frac{33 Tc}{100} \ln{\left (T \right)} + \frac{1}{7000000 T^{7}} \left(969500 T^{6} Tc^{2} + 42350 T^{5} Tc^{3} + 607 Tc^{8}\right)

\]

\[\int{B^{(1)}} dT = \frac{637 T}{10000} - \frac{1}{70000 T^{7}} \left(23170 T^{6} Tc^{2} - 14805 T^{5} Tc^{3} - 80 Tc^{8}\right)

\]

\[\int{B^{(2)}} dT = - \frac{Tc^{6}}{5 T^{5}}

\]

\[\int{B^{(3)}} dT = \frac{Tc^{8}}{7 T^{7}}

\]

For the second indefinite integral of B:

\[\int\int B^{(0)} dT dT = \frac{289 T^{2}}{4000} - \frac{33 T}{100} Tc \ln{\left (T \right)} + \frac{33 T}{100} Tc + \frac{277 Tc^{2}}{2000} \ln{\left (T \right)} - \frac{1}{42000000 T^{6}} \left(254100 T^{5} Tc^{3} + 607 Tc^{8}\right)

\]

\[\int\int B^{(1)} dT dT = \frac{637 T^{2}}{20000} - \frac{331 Tc^{2}}{1000} \ln{\left (T \right)} - \frac{1}{210000 T^{6}} \left(44415 T^{5} Tc^{3} + 40 Tc^{8}\right)

\]

\[\int\int B^{(2)} dT dT = \frac{Tc^{6}}{20 T^{4}}

\]

\[\int\int B^{(3)} dT dT = - \frac{Tc^{8}}{42 T^{6}}

\]

References

	1

	Tsonopoulos, C., and J. L. Heidman. “From the Virial to the Cubic
Equation of State.” Fluid Phase Equilibria 57, no. 3 (1990): 261-76.
doi:10.1016/0378-3812(90)85126-U

	2

	Tsonopoulos, Constantine, and John H. Dymond. “Second Virial
Coefficients of Normal Alkanes, Linear 1-Alkanols (and Water), Alkyl
Ethers, and Their Mixtures.” Fluid Phase Equilibria, International
Workshop on Vapour-Liquid Equilibria and Related Properties in Binary
and Ternary Mixtures of Ethers, Alkanes and Alkanols, 133, no. 1-2
(June 1997): 11-34. doi:10.1016/S0378-3812(97)00058-7.

Examples

Example from Perry’s Handbook, 8E, p2-499. Matches to a decimal place.

>>> BVirial_Tsonopoulos_extended(430., 405.65, 11.28E6, 0.252608, a=0, b=0, species_type='ketone', dipole=1.469)
-9.679718337596e-05

New implementations, returning the derivatives as well

	
chemicals.virial.BVirial_Pitzer_Curl_fast(T, Tc, Pc, omega)

	Implementation of BVirial_Pitzer_Curl in the interface
which calculates virial coefficients and their derivatives at the
same time.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

Examples

>>> BVirial_Pitzer_Curl_fast(510., 425.2, 38E5, 0.193)
(-0.000208453624, 1.065377516e-06, -5.7957101e-09, 4.513533043e-11)

	
chemicals.virial.BVirial_Abbott_fast(T, Tc, Pc, omega)

	Implementation of BVirial_Abbott in the interface
which calculates virial coefficients and their derivatives at the
same time.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

Examples

>>> BVirial_Abbott_fast(510., 425.2, 38E5, 0.193)
(-0.0002057018500, 1.039249294e-06, -5.902233639e-09, 4.78222764e-11)

	
chemicals.virial.BVirial_Tsonopoulos_fast(T, Tc, Pc, omega)

	Implementation of BVirial_Tsonopoulos in the interface
which calculates virial coefficients and their derivatives at the
same time.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

Examples

>>> BVirial_Tsonopoulos_fast(510., 425.2, 38E5, 0.193)
(-0.0002093529540, 9.95742355e-07, -5.54234465e-09, 4.57035160e-11)

	
chemicals.virial.BVirial_Tsonopoulos_extended_fast(T, Tc, Pc, omega, a=0.0, b=0.0)

	Implementation of BVirial_Tsonopoulos_extended in the interface
which calculates virial coefficients and their derivatives at the
same time.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	afloat, optional
	Fit parameter [-]

	bfloat, optional
	Fit parameter [-]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

Examples

>>> BVirial_Tsonopoulos_extended_fast(510., 425.2, 38E5, 0.193)
(-0.0002093529540, 9.9574235e-07, -5.54234465e-09, 4.5703516e-11)

	
chemicals.virial.BVirial_Oconnell_Prausnitz(T, Tc, Pc, omega)

	Calculates the second virial coefficient using the model in [1].

\[B_r=B^{(0)}+\omega B^{(1)}

\]

\[B^{(0)}=c0 + \frac{c1}{T_r} + \frac{c2}{T_r^2} + \frac{c3}{T_r^3}

\]

\[B^{(1)}=d0 + \frac{d1}{T_r^2} + \frac{d2}{T_r^3} + \frac{d3}{T_r^8}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

Notes

The coefficients are as follows:

c0 = 0.1445
c1 = -0.330
c2 = -0.1385
c3 = -0.0121

d0 = 0.073
d1 = 0.46
d2 = -0.50
d3 = -0.097
d4 = -0.0073

References

	1

	O`Connell, J. P., and J. M. Prausnitz. “Empirical Correlation of
Second Virial Coefficients for Vapor-Liquid Equilibrium Calculations.”
Industrial & Engineering Chemistry Process Design and Development 6,
no. 2 (April 1, 1967): 245-50. https://doi.org/10.1021/i260022a016.

Examples

>>> BVirial_Oconnell_Prausnitz(510., 425.2, 38E5, 0.193)
(-0.000203193781, 1.036185972e-06, -6.53679132e-09, 6.59478287e-11)

	
chemicals.virial.BVirial_Xiang(T, Tc, Pc, Vc, omega)

	Calculates the second virial coefficient using the model in [1].

\[B = \frac{\left(-b_0T_r^{-3/4}\exp(b_1T_r^{-3}) + b_2T_r^{-1/2})
 \right)}V_c

\]

\[b_0 = b_{00} + b_{01}\omega + b_{02}\theta

\]

\[b_1 = b_{10} + b_{11}\omega + b_{12}\theta

\]

\[b_2 = b_{20} + b_{21}\omega + b_{22}\theta

\]

\[\theta = (Z_c - 0.29)^2

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	Vcfloat
	Critical volume of the fluid [m^3/mol]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

References

	1

	Xiang, H. W. “The New Simple Extended Corresponding-States
Principle: Vapor Pressure and Second Virial Coefficient.” Chemical
Engineering Science 57, no. 8 (April 2002): 1439049.
https://doi.org/10.1016/S0009-2509(02)00017-9.

Examples

>>> BVirial_Xiang(388.26, 647.1, 22050000.0, 5.543076e-05, 0.344)
(-0.0004799570, 4.6778266e-06, -7.0157656e-08, 1.4137862e-09)

	
chemicals.virial.BVirial_Meng(T, Tc, Pc, Vc, omega, a=0.0)

	Calculates the second virial coefficient using the model in [1].

\[B = \frac{RT_c}{P_c}\left(f_0 + \omega f_1 + f_2\right)

\]

\[f_0 = c_0 + c_1/T_r + c_2/T_r^2 + c_3/T_r^3 + c_4/T_r^8

\]

\[f_1 = d_0 + d_1/T_r + d_2/T_r^2 + d_3/T_r^3 + d_4/T_r^8

\]

\[f_2 = \frac{a}{T_r^6}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	Vcfloat
	Critical volume of the fluid [m^3/mol]

	omegafloat
	Acentric factor for fluid, [-]

	afloat
	Polar parameter that can be estimated by chemicals.virial.Meng_virial_a

	Returns

	
	Bfloat
	Second virial coefficient in density form [m^3/mol]

	dB_dTfloat
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2float
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3float
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

References

	1

	Meng, Long, Yuan-Yuan Duan, and Lei Li. “Correlations for Second and
Third Virial Coefficients of Pure Fluids.” Fluid Phase Equilibria 226
(December 10, 2004): 109-20. https://doi.org/10.1016/j.fluid.2004.09.023.

Examples

>>> BVirial_Meng(388.26, 647.1, 22050000.0, 5.543076e-05, 0.344)
(-0.00032436028, 2.47004e-06, -3.132e-08, 5.8e-10)

	
chemicals.virial.Meng_virial_a(Tc, Pc, dipole=0.0, haloalkane=False)

	Calculate the a parameter which is used in the Meng
B second virial coefficient for polar components. There are two
correlations implemented - one for haloalkanes, and another for other
polar molecules. If the dipole moment is not provided, a value of 0.0
will be returned.

If the compound is a haloalkane

\[a = -1.1524\times 10^{-6}{\mu}_r^2 + 7.2238\times 10^{-11}{\mu}_r^4
- 1.8701\times 10^{-15}{\mu}_r^6

\]

Otherwise

\[a = -3.0309\times 10^{-6}{\mu}_r^2 + 9.503\times 10^{-11}{\mu}_r^4
- 1.2469\times 10^{-15}{\mu}_r^6

\]

	Parameters

	
	Tcfloat
	Critical temperature, [K]

	Pcfloat
	Critical pressure, [Pa]

	dipolefloat
	Dipole moment, [debye]

	haloalkanebool
	Whether or not the compound is a haloalkane, [-]

	Returns

	
	afloat
	Coefficient [-]

References

	1

	Meng, Long, Yuan-Yuan Duan, and Lei Li. “Correlations for Second and
Third Virial Coefficients of Pure Fluids.” Fluid Phase Equilibria 226
(December 10, 2004): 109-20. https://doi.org/10.1016/j.fluid.2004.09.023.

Examples

Ethanol

>>> Meng_virial_a(514.0, 6137000.0, 1.44, haloalkane=False)
-0.00637841

R-41 Fluoromethane

>>> Meng_virial_a(317.4, 5870000.0, 1.85, haloalkane=True)
-0.04493829

Third Virial Correlations

	
chemicals.virial.CVirial_Orbey_Vera(T, Tc, Pc, omega)

	Calculates the third virial coefficient using the model in [1].

\[C = (RT_c/P_c)^2 (fC_{Tr}^{(0)} + \omega fC_{Tr}^{(1)})

\]

\[fC_{Tr}^{(0)} = 0.01407 + 0.02432T_r^{-2.8} - 0.00313T_r^{-10.5}

\]

\[fC_{Tr}^{(1)} = -0.02676 + 0.01770T_r^{-2.8} + 0.040T_r^{-3} - 0.003T_r^{-6} - 0.00228T_r^{-10.5}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Cfloat
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTfloat
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2float
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3float
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

References

	1

	Orbey, Hasan, and J. H. Vera. “Correlation for the Third Virial
Coefficient Using Tc, Pc and ω as Parameters.” AIChE Journal 29, no. 1
(January 1, 1983): 107-13. https://doi.org/10.1002/aic.690290115.

Examples

n-octane

>>> CVirial_Orbey_Vera(T=300, Tc=568.7, Pc=2490000.0, omega=0.394)
(-1.1107124e-05, 4.1326808e-07, -1.6041435e-08, 6.7035158e-10)

	
chemicals.virial.CVirial_Liu_Xiang(T, Tc, Pc, Vc, omega)

	Calculates the third virial coefficient using the model in [1].

\[C = V_c^2 (f_{T_r}^{(0)} + \omega f_{T_r}^{(1)} + \theta f_{T_r}^{(2)})

\]

\[f_{T_r}^{(0)} = a_{00} + a_{10}T_r^{-3} + a_{20}T_r^{-6} + a_{30}T_r^{-11}

\]

\[f_{T_r}^{(1)} = a_{01} + a_{11}T_r^{-3} + a_{21}T_r^{-6} + a_{31}T_r^{-11}

\]

\[f_{T_r}^{(2)} = a_{02} + a_{12}T_r^{-3} + a_{22}T_r^{-6} + a_{32}T_r^{-11}

\]

\[\theta = (Z_c - 0.29)^2

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	Vcfloat
	Critical volume of the fluid [m^3/mol]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Cfloat
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTfloat
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2float
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3float
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

References

	1

	Liu, D. X., and H. W. Xiang. “Corresponding-States Correlation and
Prediction of Third Virial Coefficients for a Wide Range of Substances.”
International Journal of Thermophysics 24, no. 6 (November 1, 2003):
1667-80. https://doi.org/10.1023/B:IJOT.0000004098.98614.38.

Examples

Water at Tr = 0.6

>>> CVirial_Liu_Xiang(388.26, 647.1, 22050000.0, 5.543076923076923e-05, 0.344)
(-1.4779977e-07, 4.9949901e-09, -1.652899e-10, 5.720067e-12)

Cross-Parameters

	
chemicals.virial.Tarakad_Danner_virial_CSP_kijs(Vcs)

	Calculates a binary interaction parameter for the calculation of Bij
binary virial coefficient as shown in [1] and [2].

This equation for kij is:

\[k_{ij} = 1 - \frac{8\sqrt{v_{ci}v_{cj}}}{(V_{ci}^{1/3} +V_{ci}^{1/3})^3}

\]

The equation this kij is used in is

\[T_{cij} = \sqrt{T_{ci}T_{cj}}(1-k_{ij})

\]

	Parameters

	
	Vcslist[float]
	Critical volumes for each species, [m^3/mol]

	Returns

	
	kijslist[list[float]]
	Binary interaction parameters, [-]

References

	1

	Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved
Corresponding States Method for Polar Fluids: Correlation of Second
Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95.
https://doi.org/10.1002/aic.690230510.

	2

	Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross
Virial Coefficients of Nonpolar Binary Mixtures.” Fluid Phase Equilibria
238 (December 1, 2005): 229-38.
https://doi.org/10.1016/j.fluid.2005.10.007.

Examples

>>> Tarakad_Danner_virial_CSP_kijs(Vcs=[0.000168, 0.000316])
[[0.0, 0.01646332091], [0.0164633209, 0.0]]

	
chemicals.virial.Tarakad_Danner_virial_CSP_Tcijs(Tcs, kijs)

	Calculates the corresponding states critical temperature for the
calculation of Bij
binary virial coefficient as shown in [1] and [2].

\[T_{cij} = \sqrt{T_{ci}T_{cj}}(1-k_{ij})

\]

	Parameters

	
	Tcslist[float]
	Critical temperatures for each species, [K]

	kijslist[list[float]]
	Binary interaction parameters, [-]

	Returns

	
	Tcijslist[list[float]]
	CSP Critical temperatures for each pair of species, [K]

References

	1

	Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved
Corresponding States Method for Polar Fluids: Correlation of Second
Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95.
https://doi.org/10.1002/aic.690230510.

	2

	Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross
Virial Coefficients of Nonpolar Binary Mixtures.” Fluid Phase Equilibria
238 (December 1, 2005): 229-38.
https://doi.org/10.1016/j.fluid.2005.10.007.

Examples

>>> kijs = Tarakad_Danner_virial_CSP_kijs(Vcs=[0.000168, 0.000316])
>>> Tarakad_Danner_virial_CSP_Tcijs(Tcs=[514.0, 591.75], kijs=kijs)
[[514.0, 542.42694], [542.42694, 591.75000]]

	
chemicals.virial.Tarakad_Danner_virial_CSP_Pcijs(Tcs, Pcs, Vcs, Tcijs)

	Calculates the corresponding states critical pressure for the
calculation of Bij
binary virial coefficient as shown in [1] and [2].

\[P_{cij} = \frac{4T_{cij} \left(
 \frac{P_{ci}V_{ci}}{T_{ci}} + \frac{P_{cj}V_{cj}}{T_{cj}}
 \right)
 }{(V_{ci}^{1/3} +V_{ci}^{1/3})^3}

\]

	Parameters

	
	Tcslist[float]
	Critical temperatures for each species, [K]

	Pcslist[float]
	Critical pressures for each species, [Pa]

	Vcslist[float]
	Critical volumes for each species, [m^3/mol]

	Tcijslist[list[float]]
	CSP Critical temperatures for each pair of species, [K]

	Returns

	
	Pcijslist[list[float]]
	CSP Critical pressures for each pair of species, [Pa]

References

	1

	Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved
Corresponding States Method for Polar Fluids: Correlation of Second
Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95.
https://doi.org/10.1002/aic.690230510.

	2

	Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross
Virial Coefficients of Nonpolar Binary Mixtures.” Fluid Phase Equilibria
238 (December 1, 2005): 229-38.
https://doi.org/10.1016/j.fluid.2005.10.007.

Examples

>>> kijs = Tarakad_Danner_virial_CSP_kijs(Vcs=[0.000168, 0.000316])
>>> Tcijs = Tarakad_Danner_virial_CSP_Tcijs(Tcs=[514.0, 591.75], kijs=kijs)
>>> Tarakad_Danner_virial_CSP_Pcijs(Tcs=[514.0, 591.75], Pcs=[6137000.0, 4108000.0], Vcs=[0.000168, 0.000316], Tcijs=Tcijs)
[[6136999.9, 4861936.4], [4861936.4, 4107999.9]]

	
chemicals.virial.Tarakad_Danner_virial_CSP_omegaijs(omegas)

	Calculates the corresponding states acentric factor for the
calculation of Bij
binary virial coefficient as shown in [1] and [2].

\[\omega_{ij} = 0.5(\omega_i + \omega_j)

\]

	Parameters

	
	omegaslist[float]
	Acentric factor for each species, [-]

	Returns

	
	omegaijslist[list[float]]
	CSP acentric factors for each pair of species, [-]

References

	1

	Tarakad, Ramanathan R., and Ronald P. Danner. “An Improved
Corresponding States Method for Polar Fluids: Correlation of Second
Virial Coefficients.” AIChE Journal 23, no. 5 (1977): 685-95.
https://doi.org/10.1002/aic.690230510.

	2

	Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross
Virial Coefficients of Nonpolar Binary Mixtures.” Fluid Phase Equilibria
238 (December 1, 2005): 229-38.
https://doi.org/10.1016/j.fluid.2005.10.007.

Examples

>>> Tarakad_Danner_virial_CSP_omegaijs([0.635, 0.257])
[[0.635, 0.446], [0.446, 0.257]]

	
chemicals.virial.Lee_Kesler_virial_CSP_Vcijs(Vcs)

	Calculates the corresponding states critical volumes for the
calculation of Vcijs
binary virial coefficient as shown in [1] and [2].

\[V_{cij} = \frac{1}{8}\left(V_{c,i}^{1/3} + V_{c,j}^{1/3}
 \right)^3

\]

	Parameters

	
	Vcslist[float]
	Critical volume of the fluids [m^3/mol]

	Returns

	
	Vcijslist[list[float]]
	CSP critical volumes for each pair of species, [m^3/mol]

Notes

[1] cites this as Lee-Kesler rules.

References

	1(1,2)

	Estela-Uribe, J. F., and J. Jaramillo. “Generalised Virial Equation
of State for Natural Gas Systems.” Fluid Phase Equilibria 231, no. 1
(April 1, 2005): 84-98. https://doi.org/10.1016/j.fluid.2005.01.005.

	2

	Lee, Byung Ik, and Michael G. Kesler. “A Generalized Thermodynamic
Correlation Based on Three-Parameter Corresponding States.” AIChE
Journal 21, no. 3 (1975): 510-27. https://doi.org/10.1002/aic.690210313.

Examples

>>> Lee_Kesler_virial_CSP_Vcijs(Vcs=[0.000168, 0.000316])
[[0.000168, 0.00023426], [0.000234265, 0.000316]]

	
chemicals.virial.Meng_Duan_2005_virial_CSP_kijs(CASs, atomss)

	Calculates a binary interaction parameter for the calculation of Bij
binary virial coefficient as shown in [1]. This implements a correlation
of alkane-alkane, CO2-alkane, and N2-alkane.

The equation this kij is used in is

\[T_{cij} = \sqrt{T_{ci}T_{cj}}(1-k_{ij})

\]

	Parameters

	
	CASslist[str]
	CAS registration numbers for each component, [-]

	atomsslist[dict]
	Breakdown of each component into its elements and their counts, as a
dict, [-]

	Returns

	
	kijslist[list[float]]
	Binary interaction parameters, [-]

References

	1

	Meng, Long, and Yuan-Yuan Duan. “Prediction of the Second Cross
Virial Coefficients of Nonpolar Binary Mixtures.” Fluid Phase Equilibria
238 (December 1, 2005): 229-38.
https://doi.org/10.1016/j.fluid.2005.10.007.

Examples

>>> CASs = ['74-82-8', '74-84-0', '124-38-9', '7727-37-9', '7439-89-6']
>>> atomss = [{'C': 1, 'H': 4}, {'C': 2, 'H': 6}, {'C': 1, 'O': 2}, {'N': 2}, {'Fe': 1}]
>>> kijs = Meng_Duan_2005_virial_CSP_kijs(CASs=CASs, atomss=atomss)

Second Virial Correlations Dense Implementations

	
chemicals.virial.BVirial_Xiang_vec(T, Tcs, Pcs, Vcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the Xiang B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	Vcslist[float]
	Critical volume of the fluids [m^3/mol]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Xiang_mat(T, Tcs, Pcs, Vcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Xiang B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	Vcslist[list[float]]
	Critical volume of the fluids [m^3/mol]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Pitzer_Curl_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the Pitzer-Curl B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Pitzer_Curl_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Pitzer-Curl B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Abbott_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the Abbott B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Abbott_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Abbott B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Tsonopoulos_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the Tsonopoulos B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Tsonopoulos_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Tsonopoulos B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Meng_vec(T, Tcs, Pcs, Vcs, omegas, ais, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the Meng B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	Vcslist[float]
	Critical volume of the fluids [m^3/mol]

	omegaslist[float]
	Acentric factor for fluids, [-]

	aislist[float]
	Polar parameters that can be estimated by chemicals.virial.Meng_virial_a

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Meng_mat(T, Tcs, Pcs, Vcs, omegas, ais, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Meng B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	Vcslist[list[float]]
	Critical volume of the fluids [m^3/mol]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	aislist[float]
	Polar parameters that can be estimated as the average of the pure
component values predicted by chemicals.virial.Meng_virial_a

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Oconnell_Prausnitz_vec(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the O’connell Prausnitz B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Oconnell_Prausnitz_mat(T, Tcs, Pcs, omegas, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Oconnell_Prausnitz B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Tsonopoulos_extended_vec(T, Tcs, Pcs, omegas, ais, bs, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a vectorized calculation of the Tsonopoulos (extended) B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	omegaslist[float]
	Acentric factor for fluids, [-]

	aislist[float]
	Fit parameters, [-]

	bslist[float]
	Fit parameters, [-]

	Bslist[float], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[float]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[float]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[float]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[float]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	
chemicals.virial.BVirial_Tsonopoulos_extended_mat(T, Tcs, Pcs, omegas, ais, bs, Bs=None, dB_dTs=None, d2B_dT2s=None, d3B_dT3s=None)

	Perform a matrix calculation of the Tsonopoulos (extended) B virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	aislist[list[float]]
	Fit parameters, [-]

	bslist[list[float]]
	Fit parameters, [-]

	Bslist[list[float]], optional
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]], optional
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]], optional
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]], optional
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

	Returns

	
	Bslist[list[float]]
	Second virial coefficient in density form [m^3/mol]

	dB_dTslist[list[float]]
	First temperature derivative of second virial coefficient in density
form [m^3/mol/K]

	d2B_dT2slist[list[float]]
	Second temperature derivative of second virial coefficient in density
form [m^3/mol/K^2]

	d3B_dT3slist[list[float]]
	Third temperature derivative of second virial coefficient in density
form [m^3/mol/K^3]

Third Virial Correlations Dense Implementations

	
chemicals.virial.CVirial_Liu_Xiang_vec(T, Tcs, Pcs, Vcs, omegas, Cs=None, dC_dTs=None, d2C_dT2s=None, d3C_dT3s=None)

	Perform a vectorized calculation of the Xiang C virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	Vcslist[float]
	Critical volume of the fluids [m^3/mol]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Cslist[float], optional
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[float], optional
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[float], optional
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[float], optional
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	Returns

	
	Cslist[float]
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[float]
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[float]
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[float]
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	
chemicals.virial.CVirial_Orbey_Vera_vec(T, Tcs, Pcs, omegas, Cs=None, dC_dTs=None, d2C_dT2s=None, d3C_dT3s=None)

	Perform a vectorized calculation of the Orbey-Vera C virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[float]
	Critical temperature of fluids [K]

	Pcslist[float]
	Critical pressure of the fluids [Pa]

	omegaslist[float]
	Acentric factor for fluids, [-]

	Cslist[float], optional
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[float], optional
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[float], optional
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[float], optional
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	Returns

	
	Cslist[float]
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[float]
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[float]
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[float]
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	
chemicals.virial.CVirial_Liu_Xiang_mat(T, Tcs, Pcs, Vcs, omegas, Cs=None, dC_dTs=None, d2C_dT2s=None, d3C_dT3s=None)

	Perform a matrix calculation of the Xiang C virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	Vcslist[list[float]]
	Critical volume of the fluids [m^3/mol]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Cslist[list[float]], optional
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[list[float]], optional
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[list[float]], optional
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[list[float]], optional
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	Returns

	
	Cslist[list[float]]
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[list[float]]
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[list[float]]
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[list[float]]
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	
chemicals.virial.CVirial_Orbey_Vera_mat(T, Tcs, Pcs, omegas, Cs=None, dC_dTs=None, d2C_dT2s=None, d3C_dT3s=None)

	Perform a matrix calculation of the Orbey-Vera C virial coefficient model
and its first three temperature derivatives.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcslist[list[float]]
	Critical temperature of fluids [K]

	Pcslist[list[float]]
	Critical pressure of the fluids [Pa]

	omegaslist[list[float]]
	Acentric factor for fluids, [-]

	Cslist[list[float]], optional
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[list[float]], optional
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[list[float]], optional
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[list[float]], optional
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

	Returns

	
	Cslist[list[float]]
	Third virial coefficient in density form [m^6/mol^2]

	dC_dTslist[list[float]]
	First temperature derivative of third virial coefficient in density
form [m^6/mol^2/K]

	d2C_dT2slist[list[float]]
	Second temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^2]

	d3C_dT3slist[list[float]]
	Third temperature derivative of third virial coefficient in density
form [m^6/mol^2/K^3]

 Viscosity (chemicals.viscosity)

Viscosity (chemicals.viscosity)

This module contains various viscosity estimation routines, dataframes
of fit coefficients, and mixing rules.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Pure Low Pressure Liquid Correlations

	Pure High Pressure Liquid Correlations

	Liquid Mixing Rules

	Pure Low Pressure Gas Correlations

	Pure High Pressure Gas Correlations

	Gas Mixing Rules

	Correlations for Specific Substances

	Petroleum Correlations

	Fit Correlations

	Conversion functions

	Fit Coefficients

Pure Low Pressure Liquid Correlations

	
chemicals.viscosity.Letsou_Stiel(T, MW, Tc, Pc, omega)

	Calculates the viscosity of a liquid using an emperical model
developed in [1]. However. the fitting parameters for tabulated values
in the original article are found in ChemSep.

\[\xi = \frac{2173.424 T_c^{1/6}}{\sqrt{MW} P_c^{2/3}}

\]

\[\xi^{(0)} = (1.5174 - 2.135T_r + 0.75T_r^2)\cdot 10^{-5}

\]

\[\xi^{(1)} = (4.2552 - 7.674 T_r + 3.4 T_r^2)\cdot 10^{-5}

\]

\[\mu = (\xi^{(0)} + \omega \xi^{(1)})/\xi

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	MWfloat
	Molwcular weight of fluid [g/mol]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor of compound

	Returns

	
	mu_lfloat
	Viscosity of liquid, [Pa*s]

Notes

The form of this equation is a polynomial fit to tabulated data.
The fitting was performed by the DIPPR. This is DIPPR Procedure 8G: Method
for the viscosity of pure, nonhydrocarbon liquids at high temperatures
internal units are SI standard. [1]’s units were different.
DIPPR test value for ethanol is used.

Average error 34%. Range of applicability is 0.76 < Tr < 0.98.

References

	1(1,2)

	Letsou, Athena, and Leonard I. Stiel. “Viscosity of Saturated
Nonpolar Liquids at Elevated Pressures.” AIChE Journal 19, no. 2 (1973):
409-11. doi:10.1002/aic.690190241.

Examples

>>> Letsou_Stiel(400., 46.07, 516.25, 6.383E6, 0.6371)
0.0002036150875308

	
chemicals.viscosity.Przedziecki_Sridhar(T, Tm, Tc, Pc, Vc, Vm, omega, MW)

	Calculates the viscosity of a liquid using an emperical formula
developed in [1].

\[\mu=\frac{V_o}{E(V-V_o)}

\]

\[E=-1.12+\frac{V_c}{12.94+0.10MW-0.23P_c+0.0424T_{m}-11.58(T_{m}/T_c)}

\]

\[V_o = 0.0085\omega T_c-2.02+\frac{V_{m}}{0.342(T_m/T_c)+0.894}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	Tmfloat
	Melting point of fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	Vcfloat
	Critical volume of the fluid [m^3/mol]

	Vmfloat
	Molar volume of the fluid at temperature [K]

	omegafloat
	Acentric factor of compound

	MWfloat
	Molwcular weight of fluid [g/mol]

	Returns

	
	mu_lfloat
	Viscosity of liquid, [Pa*s]

Notes

A test by Reid (1983) is used, but only mostly correct.
This function is not recommended.
Internal units are bar and mL/mol.

References

	1

	Przedziecki, J. W., and T. Sridhar. “Prediction of Liquid
Viscosities.” AIChE Journal 31, no. 2 (February 1, 1985): 333-35.
doi:10.1002/aic.690310225.

Examples

>>> Przedziecki_Sridhar(383., 178., 591.8, 41E5, 316E-6, 95E-6, .263, 92.14)
0.00021981479956033846

Pure High Pressure Liquid Correlations

	
chemicals.viscosity.Lucas(T, P, Tc, Pc, omega, Psat, mu_l)

	Adjustes for pressure the viscosity of a liquid using an emperical
formula developed in [1], but as discussed in [2] as the original source
is in German.

\[\frac{\mu}{\mu_{sat}}=\frac{1+D(\Delta P_r/2.118)^A}{1+C\omega \Delta P_r}

\]

\[\Delta P_r = \frac{P-P^{sat}}{P_c}

\]

\[A=0.9991-\frac{4.674\times 10^{-4}}{1.0523T_r^{-0.03877}-1.0513}

\]

\[D = \frac{0.3257}{(1.0039-T_r^{2.573})^{0.2906}}-0.2086

\]

\[C = -0.07921+2.1616T_r-13.4040T_r^2+44.1706T_r^3-84.8291T_r^4+
96.1209T_r^5-59.8127T_r^6+15.6719T_r^7

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Pfloat
	Pressure of fluid [Pa]

	Tc: float
	Critical point of fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	omegafloat
	Acentric factor of compound

	Psatfloat
	Saturation pressure of the fluid [Pa]

	mu_lfloat
	Viscosity of liquid at 1 atm or saturation, [Pa*s]

	Returns

	
	mu_l_densefloat
	Viscosity of liquid, [Pa*s]

Notes

This equation is entirely dimensionless; all dimensions cancel.
The example is from Reid (1987); all results agree.
Above several thousand bar, this equation does not represent true behavior.
If Psat is larger than P, the fluid may not be liquid; dPr is set to 0.

References

	1

	Lucas, Klaus. “Ein Einfaches Verfahren Zur Berechnung Der
Viskositat von Gasen Und Gasgemischen.” Chemie Ingenieur Technik 46, no. 4
(February 1, 1974): 157-157. doi:10.1002/cite.330460413.

	2

	Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E.
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.

Examples

>>> Lucas(300., 500E5, 572.2, 34.7E5, 0.236, 0, 0.00068) # methylcyclohexane
0.0010683738499316494

Liquid Mixing Rules

No specific correlations are implemented but
chemicals.utils.mixing_logarithmic with weight fractions is the
recommended form.

Pure Low Pressure Gas Correlations

	
chemicals.viscosity.Yoon_Thodos(T, Tc, Pc, MW)

	Calculates the viscosity of a gas using an emperical formula
developed in [1].

\[\eta \xi \times 10^8 = 46.10 T_r^{0.618} - 20.40 \exp(-0.449T_r) + 1
9.40\exp(-4.058T_r)+1

\]

\[\xi = 2173.424 T_c^{1/6} MW^{-1/2} P_c^{-2/3}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	MWfloat
	Molwcular weight of fluid [g/mol]

	Returns

	
	mu_gfloat
	Viscosity of gas, [Pa*s]

Notes

This equation has been tested. The equation uses SI units only internally.
The constant 2173.424 is an adjustment factor for units.
Average deviation within 3% for most compounds.
Greatest accuracy with dipole moments close to 0.
Hydrogen and helium have different coefficients, not implemented.
This is DIPPR Procedure 8B: Method for the Viscosity of Pure,
non hydrocarbon, nonpolar gases at low pressures

References

	1

	Yoon, Poong, and George Thodos. “Viscosity of Nonpolar Gaseous
Mixtures at Normal Pressures.” AIChE Journal 16, no. 2 (1970): 300-304.
doi:10.1002/aic.690160225.

Examples

>>> Yoon_Thodos(300., 556.35, 4.5596E6, 153.8)
1.019488572777e-05

	
chemicals.viscosity.Stiel_Thodos(T, Tc, Pc, MW)

	Calculates the viscosity of a gas using an emperical formula
developed in [1].

if \(T_r > 1.5\):

\[\mu_g = 17.78\times 10^{-5} (4.58T_r - 1.67)^{0.625}/\xi

\]

else:

\[\mu_g = 34\times 10^{-5} T_r^{0.94}/\xi

\]

\[\xi = \frac{T_c^{(1/6)}}{\sqrt{MW} P_c^{2/3}}

\]

	Parameters

	
	Tfloat
	Temperature of the fluid [K]

	Tcfloat
	Critical temperature of the fluid [K]

	Pcfloat
	Critical pressure of the fluid [Pa]

	MWfloat
	Molwcular weight of fluid [g/mol]

	Returns

	
	mu_gfloat
	Viscosity of gas, [Pa*s]

Notes

Claimed applicability from 0.2 to 5 atm.
Developed with data from 52 nonpolar, and 53 polar gases.
internal units are poise and atm.
Seems to give reasonable results.

References

	1

	Stiel, Leonard I., and George Thodos. “The Viscosity of Nonpolar
Gases at Normal Pressures.” AIChE Journal 7, no. 4 (1961): 611-15.
doi:10.1002/aic.690070416.

Examples

>>> Stiel_Thodos(300., 556.35, 4.5596E6, 153.8) #CCl4
1.040892622360e-05

	
chemicals.viscosity.Lucas_gas(T, Tc, Pc, Zc, MW, dipole=0.0, CASRN=None)

	Estimate the viscosity of a gas using an emperical
formula developed in several sources, but as discussed in [1] as the
original sources are in German or merely personal communications with the
authors of [1].

\[\eta = \left[0.807T_r^{0.618}-0.357\exp(-0.449T_r) + 0.340\exp(-4.058
T_r) + 0.018\right]F_p^\circ F_Q^\circ /\xi

\]

\[F_p^\circ=1, 0 \le \mu_{r}

 Density/Volume (chemicals.volume)

Density/Volume (chemicals.volume)

This module contains various volume/density estimation routines, dataframes
of fit coefficients, and mixing rules.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the GitHub issue tracker [https://github.com/CalebBell/chemicals/].

	Pure Low Pressure Liquid Correlations

	Pure High Pressure Liquid Correlations

	Liquid Mixing Rules

	Gas Correlations

	Pure Solid Correlations

	Pure Component Liquid Fit Correlations

	Pure Component Solid Fit Correlations

	Fit Coefficients

Pure Low Pressure Liquid Correlations

	
chemicals.volume.Rackett(T, Tc, Pc, Zc)

	Calculates saturation liquid volume, using Rackett CSP method and
critical properties.

The molar volume of a liquid is given by:

\[V_s = \frac{RT_c}{P_c}{Z_c}^{[1+(1-{T/T_c})^{2/7}]}

\]

Units are all currently in m^3/mol - this can be changed to kg/m^3

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	Zcfloat
	Critical compressibility of fluid, [-]

	Returns

	
	Vsfloat
	Saturation liquid volume, [m^3/mol]

Notes

According to Reid et. al, underpredicts volume for compounds with Zc < 0.22

References

	1

	Rackett, Harold G. “Equation of State for Saturated Liquids.”
Journal of Chemical & Engineering Data 15, no. 4 (1970): 514-517.
doi:10.1021/je60047a012

Examples

Propane, example from the API Handbook

>>> from chemicals.utils import Vm_to_rho
>>> Vm_to_rho(Rackett(272.03889, 369.83, 4248000.0, 0.2763), 44.09562)
531.3221411755724

	
chemicals.volume.COSTALD(T, Tc, Vc, omega)

	Calculate saturation liquid density using the COSTALD CSP method.

A popular and accurate estimation method. If possible, fit parameters are
used; alternatively critical properties work well.

The density of a liquid is given by:

\[V_s=V^*V^{(0)}[1-\omega_{SRK}V^{(\delta)}]

\]

\[V^{(0)}=1-1.52816(1-T_r)^{1/3}+1.43907(1-T_r)^{2/3}
- 0.81446(1-T_r)+0.190454(1-T_r)^{4/3}

\]

\[V^{(\delta)}=\frac{-0.296123+0.386914T_r-0.0427258T_r^2-0.0480645T_r^3}
{T_r-1.00001}

\]

Units are that of critical or fit constant volume.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Vcfloat
	Critical volume of fluid [m^3/mol].
This parameter is alternatively a fit parameter

	omegafloat
	(ideally SRK) Acentric factor for fluid, [-]
This parameter is alternatively a fit parameter.

	Returns

	
	Vsfloat
	Saturation liquid volume

Notes

196 constants are fit to this function in [1].
Range: 0.25 < Tr < 0.95, often said to be to 1.0

This function has been checked with the API handbook example problem.

References

	1

	Hankinson, Risdon W., and George H. Thomson. “A New Correlation for
Saturated Densities of Liquids and Their Mixtures.” AIChE Journal
25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412

Examples

Propane, from an example in the API Handbook:

>>> from chemicals.utils import Vm_to_rho
>>> Vm_to_rho(COSTALD(272.03889, 369.83333, 0.20008161E-3, 0.1532), 44.097)
530.3009967969844

	
chemicals.volume.Yen_Woods_saturation(T, Tc, Vc, Zc)

	Calculates saturation liquid volume, using the Yen and Woods [1] CSP
method and a chemical’s critical properties.

The molar volume of a liquid is given by:

\[Vc/Vs = 1 + A(1-T_r)^{1/3} + B(1-T_r)^{2/3} + D(1-T_r)^{4/3}

\]

\[D = 0.93-B

\]

\[A = 17.4425 - 214.578Z_c + 989.625Z_c^2 - 1522.06Z_c^3

\]

\[B = -3.28257 + 13.6377Z_c + 107.4844Z_c^2-384.211Z_c^3
\text{ if } Zc \le 0.26

\]

\[B = 60.2091 - 402.063Z_c + 501.0 Z_c^2 + 641.0 Z_c^3
\text{ if } Zc \ge 0.26

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Vcfloat
	Critical volume of fluid [m^3/mol]

	Zcfloat
	Critical compressibility of fluid, [-]

	Returns

	
	Vsfloat
	Saturation liquid volume, [m^3/mol]

Notes

Original equation was in terms of density, but it is converted here.

No example has been found, nor are there points in the article. However,
it is believed correct. For compressed liquids with the Yen-Woods method,
see the YenWoods_compressed function.

References

	1

	Yen, Lewis C., and S. S. Woods. “A Generalized Equation for Computer
Calculation of Liquid Densities.” AIChE Journal 12, no. 1 (1966):
95-99. doi:10.1002/aic.690120119

Examples

>>> Yen_Woods_saturation(300, 647.14, 55.45E-6, 0.245)
1.769533076529574e-05

	
chemicals.volume.Yamada_Gunn(T, Tc, Pc, omega)

	Calculates saturation liquid volume, using Yamada and Gunn CSP method
and a chemical’s critical properties and acentric factor.

The molar volume of a liquid is given by:

\[V_s = \frac{RT_c}{P_c}{(0.29056-0.08775\omega)}^{[1+(1-{T/T_c})^{2/7}]}

\]

Units are in m^3/mol.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Vsfloat
	saturation liquid volume, [m^3/mol]

Notes

This equation is an improvement on the Rackett equation.
This is often presented as the Rackett equation.
The acentric factor is used here, instead of the critical compressibility
A variant using a reference fluid also exists

References

	1

	Gunn, R. D., and Tomoyoshi Yamada. “A Corresponding States
Correlation of Saturated Liquid Volumes.” AIChE Journal 17, no. 6
(1971): 1341-45. doi:10.1002/aic.690170613

	2

	Yamada, Tomoyoshi, and Robert D. Gunn. “Saturated Liquid Molar
Volumes. Rackett Equation.” Journal of Chemical & Engineering Data 18,
no. 2 (1973): 234-36. doi:10.1021/je60057a006

Examples

>>> Yamada_Gunn(300, 647.14, 22048320.0, 0.245)
2.188284384699659e-05

	
chemicals.volume.Townsend_Hales(T, Tc, Vc, omega)

	Calculates saturation liquid density, using the Townsend and Hales
CSP method as modified from the original Riedel equation. Uses
chemical critical volume and temperature, as well as acentric factor

The density of a liquid is given by:

\[Vs = V_c/\left(1+0.85(1-T_r)+(1.692+0.986\omega)(1-T_r)^{1/3}\right)

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Vcfloat
	Critical volume of fluid [m^3/mol]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Vsfloat
	Saturation liquid volume, [m^3/mol]

Notes

The requirement for critical volume and acentric factor requires all data.

References

	1

	Hales, J. L, and R Townsend. “Liquid Densities from 293 to 490 K of
Nine Aromatic Hydrocarbons.” The Journal of Chemical Thermodynamics
4, no. 5 (1972): 763-72. doi:10.1016/0021-9614(72)90050-X

Examples

>>> Townsend_Hales(300, 647.14, 55.95E-6, 0.3449)
1.8007361992619923e-05

	
chemicals.volume.Bhirud_normal(T, Tc, Pc, omega)

	Calculates saturation liquid density using the Bhirud [1] CSP method.
Uses Critical temperature and pressure and acentric factor.

The density of a liquid is given by:

\[\ln \frac{P_c}{\rho RT} = \ln U^{(0)} + \omega\ln U^{(1)}

\]

\[\ln U^{(0)} = 1.396 44 - 24.076T_r+ 102.615T_r^2
-255.719T_r^3+355.805T_r^4-256.671T_r^5 + 75.1088T_r^6

\]

\[\ln U^{(1)} = 13.4412 - 135.7437 T_r + 533.380T_r^2-
1091.453T_r^3+1231.43T_r^4 - 728.227T_r^5 + 176.737T_r^6

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	Acentric factor for fluid, [-]

	Returns

	
	Vmfloat
	Saturated liquid molar volume, [mol/m^3]

Notes

Claimed inadequate by others.

An interpolation table for ln U values are used from Tr = 0.98 - 1.000.
Has terrible behavior at low reduced temperatures.

References

	1

	Bhirud, Vasant L. “Saturated Liquid Densities of Normal Fluids.”
AIChE Journal 24, no. 6 (November 1, 1978): 1127-31.
doi:10.1002/aic.690240630

Examples

Pentane

>>> Bhirud_normal(280.0, 469.7, 33.7E5, 0.252)
0.00011249657842514176

	
chemicals.volume.Campbell_Thodos(T, Tb, Tc, Pc, MW, dipole=0.0, has_hydroxyl=False)

	Calculate saturation liquid density using the Campbell-Thodos [1]
CSP method.

An old and uncommon estimation method.

\[V_s = \frac{RT_c}{P_c}{Z_{RA}}^{[1+(1-T_r)^{2/7}]}

\]

\[Z_{RA} = \alpha + \beta(1-T_r)

\]

\[\alpha = 0.3883-0.0179s

\]

\[s = T_{br} \frac{\ln P_c}{(1-T_{br})}

\]

\[\beta = 0.00318s-0.0211+0.625\Lambda^{1.35}

\]

\[\Lambda = \frac{P_c^{1/3}} { MW^{1/2} T_c^{5/6}}

\]

For polar compounds:

\[\theta = P_c \mu^2/T_c^2

\]

\[\alpha = 0.3883 - 0.0179s - 130540\theta^{2.41}

\]

\[\beta = 0.00318s - 0.0211 + 0.625\Lambda^{1.35} + 9.74\times
10^6 \theta^{3.38}

\]

Polar Combounds with hydroxyl groups (water, alcohols)

\[\alpha = \left[0.690T_{br} -0.3342 + \frac{5.79\times 10^{-10}}
{T_{br}^{32.75}}\right] P_c^{0.145}

\]

\[\beta = 0.00318s - 0.0211 + 0.625 \Lambda^{1.35} + 5.90\Theta^{0.835}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tbfloat
	Boiling temperature of the fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	MWfloat
	Molecular weight of the fluid [g/mol]

	dipolefloat, optional
	Dipole moment of the fluid [debye]

	has_hydroxylbool, optional
	Swith to use the hydroxyl variant for polar fluids

	Returns

	
	Vsfloat
	Saturation liquid volume, [m^3/mol]

Notes

If a dipole is provided, the polar chemical method is used.
The paper is an excellent read.
Pc is internally converted to atm.

References

	1(1,2)

	Campbell, Scott W., and George Thodos. “Prediction of Saturated
Liquid Densities and Critical Volumes for Polar and Nonpolar
Substances.” Journal of Chemical & Engineering Data 30, no. 1
(January 1, 1985): 102-11. doi:10.1021/je00039a032.

Examples

Ammonia, from [1].

>>> Campbell_Thodos(T=405.45, Tb=239.82, Tc=405.45, Pc=111.7*101325, MW=17.03, dipole=1.47)
7.347366126245e-05

	
chemicals.volume.SNM0(T, Tc, Vc, omega, delta_SRK=None)

	Calculates saturated liquid density using the Mchaweh, Moshfeghian
model [1]. Designed for simple calculations.

\[V_s = V_c/(1+1.169\tau^{1/3}+1.818\tau^{2/3}-2.658\tau+2.161\tau^{4/3}

\]

\[\tau = 1-\frac{(T/T_c)}{\alpha_{SRK}}

\]

\[\alpha_{SRK} = [1 + m(1-\sqrt{T/T_C}]^2

\]

\[m = 0.480+1.574\omega-0.176\omega^2

\]

If the fit parameter delta_SRK is provided, the following is used:

\[V_s = V_C/(1+1.169\tau^{1/3}+1.818\tau^{2/3}-2.658\tau+2.161\tau^{4/3})
/\left[1+\delta_{SRK}(\alpha_{SRK}-1)^{1/3}\right]

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	Vcfloat
	Critical volume of fluid [m^3/mol]

	omegafloat
	Acentric factor for fluid, [-]

	delta_SRKfloat, optional
	Fitting parameter [-]

	Returns

	
	Vsfloat
	Saturation liquid volume, [m^3/mol]

Notes

73 fit parameters have been gathered from the article.

References

	1

	Mchaweh, A., A. Alsaygh, Kh. Nasrifar, and M. Moshfeghian.
“A Simplified Method for Calculating Saturated Liquid Densities.”
Fluid Phase Equilibria 224, no. 2 (October 1, 2004): 157-67.
doi:10.1016/j.fluid.2004.06.054

Examples

Argon, without the fit parameter and with it. Tabulated result in Perry’s
is 3.4613e-05. The fit increases the error on this occasion.

>>> SNM0(121, 150.8, 7.49e-05, -0.004)
3.440225640273e-05
>>> SNM0(121, 150.8, 7.49e-05, -0.004, -0.03259620)
3.493288100008e-05

Pure High Pressure Liquid Correlations

	
chemicals.volume.COSTALD_compressed(T, P, Psat, Tc, Pc, omega, Vs)

	Calculates compressed-liquid volume, using the COSTALD [1] CSP
method and a chemical’s critical properties.

The molar volume of a liquid is given by:

\[V = V_s\left(1 - C \ln \frac{B + P}{B + P^{sat}}\right)

\]

\[\frac{B}{P_c} = -1 + a\tau^{1/3} + b\tau^{2/3} + d\tau + e\tau^{4/3}

\]

\[e = \exp(f + g\omega_{SRK} + h \omega_{SRK}^2)

\]

\[C = j + k \omega_{SRK}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Pfloat
	Pressure of fluid [Pa]

	Psatfloat
	Saturation pressure of the fluid [Pa]

	Tcfloat
	Critical temperature of fluid [K]

	Pcfloat
	Critical pressure of fluid [Pa]

	omegafloat
	(ideally SRK) Acentric factor for fluid, [-]
This parameter is alternatively a fit parameter.

	Vsfloat
	Saturation liquid volume, [m^3/mol]

	Returns

	
	V_densefloat
	High-pressure liquid volume, [m^3/mol]

Notes

Original equation was in terms of density, but it is converted here.

The example is from DIPPR, and exactly correct.
This is DIPPR Procedure 4C: Method for Estimating the Density of Pure
Organic Liquids under Pressure.

References

	1

	Thomson, G. H., K. R. Brobst, and R. W. Hankinson. “An Improved
Correlation for Densities of Compressed Liquids and Liquid Mixtures.”
AIChE Journal 28, no. 4 (July 1, 1982): 671-76. doi:10.1002/aic.690280420

Examples

>>> COSTALD_compressed(303., 9.8E7, 85857.9, 466.7, 3640000.0, 0.281, 0.000105047)
9.287482879788505e-05

Liquid Mixing Rules

	
chemicals.volume.Amgat(xs, Vms)

	Calculate mixture liquid density using the Amgat mixing rule.
Highly inacurate, but easy to use. Assumes idea liquids with
no excess volume. Average molecular weight should be used with it to obtain
density.

\[V_{mix} = \sum_i x_i V_i

\]

or in terms of density:

\[\rho_{mix} = \sum\frac{x_i}{\rho_i}\]

	Parameters

	
	xsarray
	Mole fractions of each component, []

	Vmsarray
	Molar volumes of each fluids at conditions [m^3/mol]

	Returns

	
	Vmfloat
	Mixture liquid volume [m^3/mol]

Notes

Units are that of the given volumes.
It has been suggested to use this equation with weight fractions,
but the results have been less accurate.

Examples

>>> Amgat([0.5, 0.5], [4.057e-05, 5.861e-05])
4.9590000000000005e-05

	
chemicals.volume.Rackett_mixture(T, xs, MWs, Tcs, Pcs, Zrs)

	Calculate mixture liquid density using the Rackett-derived mixing rule
as shown in [2].

\[V_m = \sum_i\frac{x_i T_{ci}}{MW_i P_{ci}} Z_{R,m}^{(1 + (1 - T_r)^{2/7})} R \sum_i x_i MW_i

\]

	Parameters

	
	Tfloat
	Temperature of liquid [K]

	xs: list
	Mole fractions of each component, []

	MWslist
	Molecular weights of each component [g/mol]

	Tcslist
	Critical temperatures of each component [K]

	Pcslist
	Critical pressures of each component [Pa]

	Zrslist
	Rackett parameters of each component []

	Returns

	
	Vmfloat
	Mixture liquid volume [m^3/mol]

Notes

Model for pure compounds in [1] forms the basis for this model, shown in
[2]. Molecular weights are used as weighing by such has been found to
provide higher accuracy in [2]. The model can also be used without
molecular weights, but results are somewhat different.

As with the Rackett model, critical compressibilities may be used if
Rackett parameters have not been regressed.

Critical mixture temperature, and compressibility are all obtained with
simple mixing rules.

References

	1

	Rackett, Harold G. “Equation of State for Saturated Liquids.”
Journal of Chemical & Engineering Data 15, no. 4 (1970): 514-517.
doi:10.1021/je60047a012

	2(1,2,3,4)

	Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.

Examples

Calculation in [2] for methanol and water mixture. Result matches example.

>>> Rackett_mixture(T=298., xs=[0.4576, 0.5424], MWs=[32.04, 18.01], Tcs=[512.58, 647.29], Pcs=[8.096E6, 2.209E7], Zrs=[0.2332, 0.2374])
2.6252894930056885e-05

	
chemicals.volume.COSTALD_mixture(xs, T, Tcs, Vcs, omegas)

	Calculate mixture liquid density using the COSTALD CSP method.

A popular and accurate estimation method. If possible, fit parameters are
used; alternatively critical properties work well.

The mixing rules giving parameters for the pure component COSTALD
equation are:

\[T_{cm} = \frac{\sum_i\sum_j x_i x_j (V_{ij}T_{cij})}{V_m}

\]

\[V_m = 0.25\left[\sum x_i V_i + 3(\sum x_i V_i^{2/3})(\sum_i x_i V_i^{1/3})\right]

\]

\[V_{ij}T_{cij} = (V_iT_{ci}V_{j}T_{cj})^{0.5}

\]

\[\omega = \sum_i z_i \omega_i

\]

	Parameters

	
	xs: list
	Mole fractions of each component

	Tfloat
	Temperature of fluid [K]

	Tcslist
	Critical temperature of fluids [K]

	Vcslist
	Critical volumes of fluids [m^3/mol].
This parameter is alternatively a fit parameter

	omegaslist
	(ideally SRK) Acentric factor of all fluids, [-]
This parameter is alternatively a fit parameter.

	Returns

	
	Vsfloat
	Saturation liquid mixture volume

Notes

Range: 0.25 < Tr < 0.95, often said to be to 1.0
No example has been found.
Units are that of critical or fit constant volume.

References

	1

	Hankinson, Risdon W., and George H. Thomson. “A New Correlation for
Saturated Densities of Liquids and Their Mixtures.” AIChE Journal
25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412

Examples

>>> COSTALD_mixture([0.4576, 0.5424], 298., [512.58, 647.29], [0.000117, 5.6e-05], [0.559,0.344])
2.7065887732713534e-05

Gas Correlations

Gas volumes are predicted with one of:

	An equation of state

	A virial coefficient model

	The ideal gas law

Equations of state do much more than predict volume however. An implementation
of many of them can be found in thermo [https://github.com/CalebBell/thermo].

Virial functions are implemented in chemicals.virial.

	
chemicals.volume.ideal_gas(T, P)

	Calculates ideal gas molar volume.
The molar volume of an ideal gas is given by:

\[V = \frac{RT}{P}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Pfloat
	Pressure of fluid [Pa]

	Returns

	
	Vfloat
	Gas volume, [m^3/mol]

Examples

>>> ideal_gas(298.15, 101325.)
0.024465403697038125

Pure Solid Correlations

Solid density does not depend on pressure significantly, and unless operating
in the geochemical or astronomical domain is normally neglected.

	
chemicals.volume.Goodman(T, Tt, Vml)

	Calculates solid density at T using the simple relationship
by a member of the DIPPR.

The molar volume of a solid is given by:

\[\frac{1}{V_m} = \left(1.28 - 0.16 \frac{T}{T_t}\right)
\frac{1}{{Vm}_L(T_t)}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Ttfloat
	Triple temperature of fluid [K]

	Vmlfloat
	Liquid molar volume of the organic liquid at the triple point,
[m^3/mol]

	Returns

	
	Vmsfloat
	Solid molar volume, [m^3/mol]

Notes

Works to the next solid transition temperature or to approximately 0.3Tt.

References

	1

	Goodman, Benjamin T., W. Vincent Wilding, John L. Oscarson, and
Richard L. Rowley. “A Note on the Relationship between Organic Solid
Density and Liquid Density at the Triple Point.” Journal of Chemical &
Engineering Data 49, no. 6 (2004): 1512-14. doi:10.1021/je034220e.

Examples

Decane at 200 K:

>>> Goodman(200, 243.225, 0.00023585)
0.0002053665090860923

Pure Component Liquid Fit Correlations

	
chemicals.volume.Rackett_fit(T, Tc, rhoc, b, n, MW=None)

	Calculates saturation liquid volume, using the Rackett equation form
and a known or estimated critical temperature and density as well
as fit parameters b and n.

The density of a liquid is given by:

\[\rho_{sat} = \rho_c b^{-\left(1 - \frac{T}{T_c}\right)^n}

\]

The density is then converted to a specific volume by taking its inverse.

Note that the units of this equation in some sources are kg/m^3, g/mL in others,
and m^3/mol in others. If the units for the coefficients are in molar units,
do NOT provide MW or an incorrect value will be returned. If the units
are mass units and MW is not provided, the output will have the same
units as rhoc.

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	rhocfloat
	Critical density of fluid, often a fit parameter only [kg/m^3]

	bfloat
	Fit parameter, [-]

	nfloat
	Fit parameter, [-]

	MWfloat, optional
	Molecular weight, [g/mol]

	Returns

	
	Vsfloat
	Saturation liquid volume, [m^3/mol if MW given; m^3/kg otherwise]

References

	1

	Frenkel, Michael, Robert D. Chirico, Vladimir Diky, Xinjian Yan,
Qian Dong, and Chris Muzny. “ThermoData Engine (TDE): Software
Implementation of the Dynamic Data Evaluation Concept.” Journal of
Chemical Information and Modeling 45, no. 4 (July 1, 2005): 816-38.
https://doi.org/10.1021/ci050067b.

	2

	Yaws, Carl L. “Liquid Density of the Elements: A Comprehensive
Tabulation for All the Important Elements from Ag to Zr.” Chemical
Engineering 114, no. 12 (2007): 44-47.

Examples

Input sample from NIST (naphthalene) (m^3/kg):

>>> Rackett_fit(T=400.0, Tc=748.402, rhoc=314.629, b=0.257033, n=0.280338)
0.00106174320755

Parameters in Yaws form (butane) (note the 1000 multiplier on rhoc, called A
in Yaws) (m^3/kg):

>>> Rackett_fit(T=298.15, Tc=425.18, rhoc=0.2283*1000, b=0.2724, n=0.2863)
0.00174520519958

Same Yaws point, with MW provided:

>>> Rackett_fit(T=298.15, Tc=425.18, rhoc=0.2283*1000, b=0.2724, n=0.2863, MW=58.123)
0.00010143656181

	
chemicals.volume.volume_VDI_PPDS(T, Tc, rhoc, a, b, c, d, MW=None)

	Calculates saturation liquid volume, using the critical properties
and fitted coefficients from [1]. This is also known as the PPDS equation
10 or PPDS10.

\[\rho_{mass} = \rho_{c} + a\tau^{0.35} + b \tau^{2/3} + c\tau + d\tau^{4/3}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	rhocfloat
	Critical density of fluid [kg/m^3]

	a,b,c,dfloat
	Fitted coefficients [-]

	MWfloat, optional
	Molecular weight of chemical [g/mol]

	Returns

	
	Vsfloat
	Saturation liquid molar volume or density, [m^3/mol if MW given; kg/m^3 otherwise]

References

	1

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

Examples

Calculate density of nitrogen in kg/m3 at 300 K:

>>> volume_VDI_PPDS(300, 126.19, 313, 470.922, 493.251, -560.469, 389.611)
313.0

Calculate molar volume of nitrogen in m3/mol at 300 K:

>>> volume_VDI_PPDS(300, 126.19, 313, 470.922, 493.251, -560.469, 389.611, 28.01)
8.9488817891e-05

	
chemicals.volume.TDE_VDNS_rho(T, Tc, rhoc, a1, a2, a3, a4, MW=None)

	Calculates saturation liquid volume, using the critical properties
and fitted coefficients in the TDE VDNW form from [1].

\[\rho_{mass} = \rho_{c} + a\tau^{0.35} + b \tau + c\tau^2 + d\tau^3

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	rhocfloat
	Critical density of fluid [kg/m^3]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	a3float
	Regression parameter, [-]

	a4float
	Regression parameter, [-]

	MWfloat, optional
	Molecular weight of chemical [g/mol]

	Returns

	
	Vsfloat
	Saturation liquid molar volume or density,
[m^3/mol if MW given; kg/m^3 otherwise]

References

	1

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/Help/TDE103b/Eqns-Pure-DensityLG/VDNSExpansion.htm.

Examples

>>> TDE_VDNS_rho(T=400.0, Tc=772.999, rhoc=320.037, a1=795.092, a2=-169.132, a3=448.929, a4=-102.931)
947.4906064903

	
chemicals.volume.PPDS17(T, Tc, a0, a1, a2, MW=None)

	Calculates saturation liquid volume, using the critical temperature
and fitted coefficients in the PPDS17 form in [1].

\[\rho_{mass} = \frac{1}{a_0(a_1 + a_2\tau)^{\left(1 + \tau^{2/7} \right)}}

\]

	Parameters

	
	Tfloat
	Temperature of fluid [K]

	Tcfloat
	Critical temperature of fluid [K]

	a0float
	Regression parameter, [-]

	a1float
	Regression parameter, [-]

	a2float
	Regression parameter, [-]

	MWfloat, optional
	Molecular weight of chemical [g/mol]

	Returns

	
	Vsfloat
	Saturation liquid molar volume or density,
[m^3/mol if MW given; kg/m^3 otherwise]

References

	1(1,2)

	“ThermoData Engine (TDE103b V10.1) User`s Guide.”
https://trc.nist.gov/TDE/TDE_Help/Eqns-Pure-DensityLG/PPDS17.htm.

Examples

Coefficients for the liquid density of benzene from [1] at 300 K:

>>> PPDS17(300, 562.05, a0=0.0115508, a1=0.281004, a2=-0.00635447)
871.520087707

Pure Component Solid Fit Correlations

	
chemicals.volume.CRC_inorganic(T, rho0, k, Tm, MW=None)

	Calculates liquid density of a molten element or salt at temperature
above the melting point. Some coefficients are given nearly up to the
boiling point.

The mass density of the inorganic liquid is given by:

\[\rho = \rho_{0} - k(T-T_m)

\]

	Parameters

	
	Tfloat
	Temperature of the liquid, [K]

	rho0float
	Mass density of the liquid at Tm, [kg/m^3]

	kfloat
	Linear temperature dependence of the mass density, [kg/m^3/K]

	Tmfloat
	The normal melting point, used in the correlation [K]

	MWfloat, optional
	Molecular weight of chemical [g/mol]

	Returns

	
	rhofloat
	Mass density of molten metal or salt, [m^3/mol if MW given; kg/m^3 otherwise]

Notes

[1] has units of g/mL. While the individual densities could have been
converted to molar units, the temperature coefficient could only be
converted by refitting to calculated data. To maintain compatibility with
the form of the equations, this was not performed.

This linear form is useful only in small temperature ranges.
Coefficients for one compound could be used to predict the temperature
dependence of density of a similar compound.

References

	1

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics, 95E. [Boca Raton, FL]: CRC press, 2014.

Examples

>>> CRC_inorganic(300, 2370.0, 2.687, 239.08)
2206.30796

Fit Coefficients

All of these coefficients are lazy-loaded, so they must be accessed as an
attribute of this module.

	
chemicals.volume.rho_data_COSTALD

	Coefficients for the COSTALD method from [3]; 192 fluids have
coefficients published.

	
chemicals.volume.rho_data_SNM0

	Coefficients for the SNM0 method for 73 fluids from [2].

	
chemicals.volume.rho_data_Perry_8E_105_l

	Coefficients for chemicals.dippr.EQ105 from [1] for 344 fluids. Note
this is in terms of molar density; to obtain molar volume, invert the result!

	
chemicals.volume.rho_data_VDI_PPDS_2

	Coefficients in [5] developed by the PPDS using chemicals.dippr.EQ116
but in terms of mass density [kg/m^3]; Valid up to the critical temperature,
and extrapolates to very low temperatures well.

	
chemicals.volume.rho_data_CRC_inorg_l

	Single-temperature coefficient linear model in terms of mass density
for the density of inorganic liquids. Data is available for 177 fluids
normally valid over a
narrow range above the melting point, from [4]; described in
CRC_inorganic.

	
chemicals.volume.rho_data_CRC_inorg_l_const

	Constant inorganic liquid molar volumes published in [4].

	
chemicals.volume.rho_data_CRC_inorg_s_const

	Constant solid densities molar volumes published in [4].

	
chemicals.volume.rho_data_CRC_virial

	Coefficients for a tempereture polynomial (T in Kelvin) for the second B
virial coefficient published in [4]. The form of the equation is
\(B = (a_1 + t(a_2 + t(a_3 + t(a_4 + a_5 t)))) \times 10^{-6}\) with
\(t = \frac{298.15}{T} - 1\) and then B will be in units of m^3/mol.

	1

	Green, Don, and Robert Perry. Perry’s Chemical Engineers’ Handbook,
8E. McGraw-Hill Professional, 2007.

	2

	Mchaweh, A., A. Alsaygh, Kh. Nasrifar, and M. Moshfeghian.
“A Simplified Method for Calculating Saturated Liquid Densities.”
Fluid Phase Equilibria 224, no. 2 (October 1, 2004): 157-67.
doi:10.1016/j.fluid.2004.06.054

	3

	Hankinson, Risdon W., and George H. Thomson. “A New Correlation for
Saturated Densities of Liquids and Their Mixtures.” AIChE Journal
25, no. 4 (1979): 653-663. doi:10.1002/aic.690250412

	4(1,2,3,4)

	Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.

	5

	Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
Berlin; New York:: Springer, 2010.

The structure of each dataframe is shown below:

In [1]: import chemicals

In [2]: chemicals.volume.rho_data_COSTALD
Out[2]:
 Chemical omega_SRK Vchar Z_RA
CAS
60-29-7 ethyl ether 0.2800 0.000281 0.2632
64-17-5 ethyl alcohol 0.6378 0.000175 0.2502
67-56-1 methyl alcohol 0.5536 0.000120 0.2334
67-63-0 isopropyl alcohol 0.6637 0.000231 0.2493
67-64-1 acetone 0.3149 0.000208 0.2477
...
14752-75-1 heptadecylbenzene 0.9404 0.001146 NaN
30453-31-7 ethyl n-propyl disulfide 0.3876 0.000440 0.2662
33672-51-4 propyl isopropyl disulfide 0.4059 0.000502 0.2680
53966-36-2 ethyl isopropyl disulfide 0.3556 0.000439 0.2711
61828-04-4 tricosylbenzene 1.1399 0.001995 NaN

[192 rows x 4 columns]

In [3]: chemicals.volume.rho_data_SNM0
Out[3]:
 Chemical delta_SRK
CAS
56-23-5 Tetrachlouromethane, R-10 -0.013152
60-29-7 Ethylether 0.001062
64-19-7 Acetic acid -0.010347
65-85-0 Benzoic acid 0.026866
67-56-1 Methanol 0.007195
...
7727-37-9 Nitrogen -0.007946
7782-39-0 Deuterium -0.053345
7782-41-4 Flourine -0.030398
7782-44-7 Oxygen -0.027049
7782-50-5 Chlorine 0.013010

[73 rows x 2 columns]

In [4]: chemicals.volume.rho_data_Perry_8E_105_l
Out[4]:
 Chemical C1 C2 ... C4 Tmin Tmax
CAS ...
50-00-0 Formaldehyde 1941.50 0.22309 ... 0.28571 181.15 408.00
55-21-0 Benzamide 737.10 0.25487 ... 0.28571 403.00 824.00
56-23-5 Carbon tetrachloride 998.35 0.27400 ... 0.28700 250.33 556.35
57-55-6 1,2-Propylene glycol 1092.30 0.26106 ... 0.20459 213.15 626.00
60-29-7 Diethyl ether 955.40 0.26847 ... 0.28140 156.85 466.70
...
10028-15-6 Ozone 3359.20 0.29884 ... 0.28523 80.15 261.00
10035-10-6 Hydrogen bromide 2832.00 0.28320 ... 0.28571 185.15 363.15
10102-43-9 Nitric oxide 5246.00 0.30440 ... 0.24200 109.50 180.15
13511-13-2 Propenylcyclohexene 612.55 0.26769 ... 0.28571 199.00 636.00
132259-10-0 Air 2896.30 0.26733 ... 0.27341 59.15 132.45

[344 rows x 7 columns]

In [5]: chemicals.volume.rho_data_VDI_PPDS_2
Out[5]:
 Chemical MW ... C D
CAS ...
50-00-0 Formaldehyde 30.03 ... 245.3425 43.9601
56-23-5 Carbon tetrachloride 153.82 ... 535.7568 -28.0071
56-81-5 Glycerol 92.09 ... 1429.7634 -527.7710
60-29-7 Diethyl ether 74.12 ... -489.2726 486.7458
62-53-3 Aniline 93.13 ... 242.0930 0.7157
...
10097-32-2 Bromine 159.82 ... 676.7593 15.3973
10102-43-9 Nitric oxide 30.01 ... 2252.1437 -1031.3210
10102-44-0 Nitrogen dioxide 46.01 ... 2233.6217 -968.0655
10544-72-6 Dinitrogentetroxide 92.01 ... 604.1720 -135.9384
132259-10-0 Air 28.96 ... -841.3265 495.5129

[272 rows x 8 columns]

In [6]: chemicals.volume.rho_data_CRC_inorg_l
Out[6]:
 Chemical MW rho k Tm Tmax
CAS
497-19-8 Sodium carbonate 105.989 1972.0 0.448 1129.15 1277.15
584-09-8 Rubidium carbonate 230.945 2840.0 0.640 1110.15 1280.15
7429-90-5 Aluminum 26.982 2377.0 0.311 933.47 1190.15
7429-91-6 Dysprosium 162.500 8370.0 1.430 1685.15 1813.15
7439-88-5 Iridium 192.217 19000.0 0.000 2719.15 2739.15
...
13572-98-0 Gadolinium(III) iodide 537.960 4120.0 0.908 1203.15 1305.15
13709-38-1 Lanthanum fluoride 195.900 4589.0 0.682 1766.15 2450.15
13709-59-6 Thorium(IV) fluoride 308.032 6058.0 0.759 1383.15 1651.15
13718-50-8 Barium iodide 391.136 4260.0 0.977 984.15 1248.15
13813-22-4 Lanthanum iodide 519.619 4290.0 1.110 1051.15 1180.15

[177 rows x 6 columns]

In [7]: chemicals.volume.rho_data_CRC_inorg_l_const
Out[7]:
 Chemical Vm
CAS
74-90-8 Hydrogen cyanide 0.000039
75-15-0 Carbon disulfide 0.000060
96-10-6 Chlorodiethylaluminum 0.000126
109-63-7 Boron trifluoride etherate 0.000126
289-22-5 Cyclopentasilane 0.000156
...
19624-22-7 Pentaborane(9) 0.000105
20398-06-5 Thallium(I) ethanolate 0.000071
23777-80-2 Hexaborane(10) 0.000112
27218-16-2 Chlorine perchlorate 0.000075
52988-75-7 3-Silylpentasilane 0.000217

[116 rows x 2 columns]

In [8]: chemicals.volume.rho_data_CRC_inorg_s_const
Out[8]:
 Chemical Vm
CAS
62-54-4 Calcium acetate 0.000105
62-76-0 Sodium oxalate 0.000057
75-20-7 Calcium carbide 0.000029
127-08-2 Potassium acetate 0.000063
127-09-3 Sodium acetate 0.000054
...
75926-28-2 Selenium sulfide [Se4S4] 0.000135
84359-31-9 Chromium(III) phosphate hexahydrate 0.000120
92141-86-1 Cesium metaborate 0.000047
133578-89-9 Vanadyl selenite hydrate 0.000060
133863-98-6 Molybdenum(VI) metaphosphate 0.000174

[1872 rows x 2 columns]

In [9]: chemicals.volume.rho_data_CRC_virial
Out[9]:
 Chemical a1 a2 a3 a4 a5
CAS
56-23-5 Tetrachloromethane -1600.0 -4059.0 -4653.0 0.0 0.0
60-29-7 Diethyl ether -1226.0 -4458.0 -7746.0 -10005.0 0.0
64-17-5 Ethanol -4475.0 -29719.0 -56716.0 0.0 0.0
67-56-1 Methanol -1752.0 -4694.0 0.0 0.0 0.0
67-63-0 2-Propanol -3165.0 -16092.0 -24197.0 0.0 0.0
...
7783-81-5 Uranium(VI) fluoride -1204.0 -2690.0 -2144.0 0.0 0.0
7783-82-6 Tungsten(VI) fluoride -719.0 -1143.0 0.0 0.0 0.0
7803-51-2 Phosphine -146.0 -733.0 1022.0 -1220.0 0.0
10024-97-2 Nitrous oxide -130.0 -307.0 -248.0 0.0 0.0
10102-43-9 Nitric oxide -12.0 -119.0 89.0 -73.0 0.0

[105 rows x 6 columns]

 Developer’s Guide and Roadmap

Developer’s Guide and Roadmap

The chemicals project has the following core ideas as its goals:

	
	Efficient
	
	Functions do only the work required.

	Caching various values, precomputing others.

	Using various macros and automated expressions to run code with Numba at its optimal speed.

	Not using Numpy/SciPy most of the time, allowing PyPy or Numba to speed code up when speed is important.

	
	Capable of vectorized computation
	
	Wrapped with numpy’s np.vectorize.

	Wrapped with numba’s ufunc machinery.

	
	Comprehensive
	
	Most correlations taught at the undergrad level included.

	
	Capable of handling units
	
	Pint interface

	All docstrings/code in base SI units

This is a hobby project primarily by Caleb Bell. Contributors are welcome! Chemicals properties is huge big field.

Scope and Future Features

The library has a focus on pure-component properties. Lots of data files are included and there is ample room for more files. However, it is not feasible to add data on an individual chemical alone - a compilation of data which includes that chemicals must be found instead.

The following properties have been looked at a little but may have too much data fit on PyPi. If you are interested in implementing one of them it may take multiple data packages uploaded to PyPi alongside chemicals:

	IR, NMR, MS, and UV-Vis spectra. Files are typically 4-40 KB. A collection of ~2000 UV files from NIST takes 6 MB space, so the space issue would not be ran into right away. Some databases like NIST and NMRShiftDB [https://nmrshiftdb.nmr.uni-koeln.de/nmrshiftdb/media-type/html/user/anon/page/default.psml/js_pane/P-Home] are open.

Contributing

Chemicals has a lot of infrastructure that makes it attractive to add code to the project. Adding functionality to chemicals may also make your work more visible to more people.

Adding new functionality is possible without compromising load speed, RAM usage or maintainability. If you have a chemical property you are interested in adding, a utility function, or a new data source, please feel free to open a PR and we can make any changes needed. There is no template - just do your best.

In an ideal world, new contributions would come with unit tests, docstrings, an addition to the tutorial if relevant.

Running Tests

From the root directory of the project you downloaded with git clone https://github.com/CalebBell/chemicals.git, run the following command:

python3 -m pytest .

This will run all of the tests. Additionally pytest can be used to run the doctests:

python3 -m pytest --doctest-modules .

The test suite can take some time to run; tests are marked with various markers to allow a fast subset of tests to run.

python3 -m pytest -m "not slow" .

This should only take a few seconds, and show red output if a test is broken. To keep the main test suite fast, pytest allows a flag which shows how long each test takes.

python3 -m pytest -m "not slow" --durations=100

If a test you added appears in this list, consider splitting it into a fast portion and a slow portion.

Docstrings

The docstrings follow Pep8, most of the numpydoc standard,
More information about numpydoc can be found here [https://numpydoc.readthedocs.io/en/latest/format.html]

In addition to being documentation, the docstrings in chemicals serve the following purposes:

	Contain LaTeX math formulas for implemented formulas. This makes it easy for the reader and authors to follow code. This is especially important when the code can be optimized by hand significantly, and end up not looking like the math formulas.

	Contain doctests for every public method. These examples often make debugging really easy since they can just be copy-pasted into Jupyter or an IDE/debugger.

	Contain type information for each variable, which is automatically parsed by the unit handling framework around pint.

	Contain the units of each argument, which is used by the unit handling framework around pint.

	Contain docstrings for every argument - these are checked by the unit tests programatically to avoid forgetting to add a description, which the author did often before the checker was added.

No automated style tool is ran on the docstrings at present, but the following command
was used once to format the docstrings with the tool docformatter [https://github.com/myint/docformatter]

python3 -m docformatter --wrap-summaries=80 --wrap-descriptions=80 --in-place --recursive .

This does not quite match numpydoc’s recommended 75 character limit.

Doctest

As anyone who has used doctest before knows, floating-point calculations have trivially different results across platforms. An example cause of this is that most compilers have different sin/cos implementations which are not identical. However, docstrings are checked bit-for-bit, so consistent output is important. Python is better than most languages at maintaining the same results between versions but it is still an issue.

The docstrings are not considered sufficiently consistent to be part of the automated CI infrastructure. All functionality tested by docstrings should also be tested as part of the unit tests.

CPython 3.7 64 bit on Linux compiled with gcc 9.2 is currently the platform used to generate the final/official results of docstring examples. Docstrings are should be added by contributors for new functionality, but don’t worry about this floating point issue. The principal author will make any necessary changes before each release.

Type Hints

The Python ecosystem is gradually adding support for type information, which may allow static analyzers to help find bugs in code even before it is ran. The author has not found these helpful in Python yet - the tools are too slow, missing features, and most libraries do not contain type information. However, type hints might still be useful for your program that uses chemicals!

For that reason chemicals includes a set of type hints as stub files (.pyi extension). These are not generated by hand - they use the cool MonkeyType [https://github.com/Instagram/MonkeyType/] library.
An included script make_test_stubs interfaces with this library, which runs the test suite and at the end generates the type hints including the types of every argument to every function seen in the test suite. This is another reason comprehensive test suite coverage is required.

Monkeytype on the chemicals test suite takes ~5 minutes to run, and generates a ~1 GB database file which is deleted at the end of the run. Some manipulation of the result by hand may be required in the future, or MonkeyType may be replaced by making the type hints by hand. It is planned to incorporate the type stubs into the main file at some point in the future when the tooling is better.

If you are contributing, the main developer can do this step for your contribution.

Supported Python Versions

It is strongly recommended to use Chemicals with Python 3.6 or later.

Numpy’s latest release supports Python 3.6 or later as of August 2020.
Pint, the unit interface, supports Python 3.6 or later as of August 2020.
If using the Numba interface of Chemicals, the latest version of Numba is required. New features added to Numba may be added to Chemicals quite quickly.

Chemicals may import in an earlier Python but that is not an indication you should use it in that case.

Packaging

The most up to date chemicals can be obtained on GitHub, and new releases are pushed to PyPi whenever a new release is made.

Code Formatting

Pep8 is loosely followed. Do your best to follow it if possible, otherwise don’t worry about it. Please don’t submit a PR for just style changes.

Documentation

Sphinx is used with readthedocs. Readthedocs is configured to build whatever is on the release branch. From the root of the chemicals project, the documentation can be built with the following command, which will output html files into a “_build” folder:

sphinx-build -b html docs _build

Sample Notebooks

The nbval [https://pypi.org/project/nbval/] pytest plugin can be used to check the results of running the notebooks against the stored notebooks.

On UNIX/Mac OS/WSL, the notebook results can be regenerated with the following shell command, from the directory with the notebooks:

for i in *.ipynb ; do python3 -m jupyter nbconvert --to notebook --inplace --execute "$i" ; done

Continuous Integration

Github Actions is presently used. They test only code in the release branch. Some tests, like those that download data from the internet, are not ran by design on their platforms. The same goes for testing numba online - getting an up to date version of numba is challenging.

Load Speed

On CPython, chemicals will load Numpy on load if it is available and SciPy and Pandas when they are needed. Numpy loads in ~150 ms. chemicals alone loads in ~15 ms. It is intended for this to increase only slowly.

RAM Usage

Adding new data and methods is well worth the price of increasing RAM, but it is intended to keep RAM consumption small via lazy-loading all data sets.

Additional Material

More information about the interfaces with PyPy and Numba can be found on the fluids site [https://fluids.readthedocs.io/developers.html].

 Computing Properties of Water and Steam in Python

Computing Properties of Water and Steam in Python

Water is a very special substance. It is abundant, cheap, hydrating, and great for many engineering applications. Whatever your modeling goal, there is a good change you will require properties of water at various conditions.

There is an international association, IAPWS, which publishes and coordinates some of the best research on the properties of water. There is a special equation of state just for water developed by them that very accurately computes the properties of water, called IAPWS-95. There is also a “shortcut” version called IAPWS-97 which is faster to solve but has reduced accuracy and various discontinuities.

There are quite a few implementations of IAPWS-95 and IAPWS-97 out there. Besides the many commercial implementations, the are the following excellent open source ones:

	iapws [https://github.com/jjgomera/iapws] by Juan José Gómez Romera, GPL3 licensed, containing IAPWS-95 and IAPWS-97 among other standards. Implemented in Python.

	CoolProp [https://github.com/CoolProp/CoolProp] by Ian Bell, MIT licensed and containing IAPWS-95 and IAPWS-97 along with their transport properties. Implemented in C++ with an excellent interface to Python among other languages.

	freesteam [http://freesteam.sourceforge.net/] by John Pye, GPL3 licensed, containing most of IAPWS-97 and the transport properties. Implemented in C.

There are many more, but these are the best developed libraries that can be used from Python. Water is so common and present in so many calculations that for many applications it is important to make it as fast as possible. IAPWS-95 is conventionally slow; properties are requested at a specified temperature T and pressure P, but the equation of state’s input variables are temperature and density! A numerical solver must be used in this case to find the density which yields the specified pressure. This density-solution procedure is normally the slowest part, although computing some properties requires many derivatives that can be slow also.

A good conventional density solver will take ~10-30 μs on a modern computer. Only the CPU clockspeed really matters for this calculation time. It was discovered that with the use of Common subexpression elimination [https://en.wikipedia.org/wiki/Common_subexpression_elimination], the calculation could be speed up quite a lot. Additionally, if the IAPWS-95 density solution is initialized by the IAPWS-97 explicit calculation (applicable most of the time but not always), a few more iterations can be saved.

The net result of these optimizations is a greatly improved density solve time - normally 2.5-4 μs when running with PyPy or Numba. The con to this approach is that the code is nearly unreadable, and it would not be possible to update the coefficients without rewriting the implementation. As IAPWS-95 is a static model which will be the best one available for many years to come, this is an acceptable trade off.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chemicals	

 	
 	
 chemicals.acentric	

 	
 	
 chemicals.air	

 	
 	
 chemicals.combustion	

 	
 	
 chemicals.critical	

 	
 	
 chemicals.dipole	

 	
 	
 chemicals.dippr	

 	
 	
 chemicals.elements	

 	
 	
 chemicals.environment	

 	
 	
 chemicals.exceptions	

 	
 	
 chemicals.flash_basic	

 	
 	
 chemicals.heat_capacity	

 	
 	
 chemicals.iapws	

 	
 	
 chemicals.identifiers	

 	
 	
 chemicals.interface	

 	
 	
 chemicals.lennard_jones	

 	
 	
 chemicals.miscdata	

 	
 	
 chemicals.molecular_geometry	

 	
 	
 chemicals.permittivity	

 	
 	
 chemicals.phase_change	

 	
 	
 chemicals.rachford_rice	

 	
 	
 chemicals.reaction	

 	
 	
 chemicals.refractivity	

 	
 	
 chemicals.safety	

 	
 	
 chemicals.solubility	

 	
 	
 chemicals.temperature	

 	
 	
 chemicals.thermal_conductivity	

 	
 	
 chemicals.triple	

 	
 	
 chemicals.utils	

 	
 	
 chemicals.vapor_pressure	

 	
 	
 chemicals.vectorized	

 	
 	
 chemicals.virial	

 	
 	
 chemicals.viscosity	

 	
 	
 chemicals.volume	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

A

 	
 	air_fuel_ratio_solver() (in module chemicals.combustion)

 	AKI() (in module chemicals.combustion)

 	Aleem() (in module chemicals.interface)

 	Alibakhshi() (in module chemicals.phase_change)

 	Ambrose_Walton() (in module chemicals.vapor_pressure)

 	Amgat() (in module chemicals.volume)

 	Antoine() (in module chemicals.vapor_pressure)

 	Antoine_AB_coeffs_from_point() (in module chemicals.vapor_pressure)

 	
 	Antoine_coeffs_from_point() (in module chemicals.vapor_pressure)

 	Antoine_fitting_jacobian() (in module chemicals.vapor_pressure)

 	API10A32() (in module chemicals.interface)

 	API_to_rho() (in module chemicals.utils)

 	API_to_SG() (in module chemicals.utils)

 	atom_fractions() (in module chemicals.elements)

 	atom_matrix() (in module chemicals.elements)

 	atoms_to_Hill() (in module chemicals.elements)

B

 	
 	B_from_Z() (in module chemicals.virial)

 	B_to_Z() (in module chemicals.virial)

 	Bahadori_gas() (in module chemicals.thermal_conductivity)

 	Bahadori_liquid() (in module chemicals.thermal_conductivity)

 	balance_stoichiometry() (in module chemicals.reaction)

 	Bhirud_normal() (in module chemicals.volume)

 	boiling_critical_relation() (in module chemicals.vapor_pressure)

 	brix_to_RI() (in module chemicals.refractivity)

 	Brock_Bird() (in module chemicals.interface)

 	Brokaw() (in module chemicals.viscosity)

 	BVirial_Abbott() (in module chemicals.virial)

 	BVirial_Abbott_fast() (in module chemicals.virial)

 	BVirial_Abbott_mat() (in module chemicals.virial)

 	BVirial_Abbott_vec() (in module chemicals.virial)

 	BVirial_Meng() (in module chemicals.virial)

 	BVirial_Meng_mat() (in module chemicals.virial)

 	BVirial_Meng_vec() (in module chemicals.virial)

 	BVirial_mixture() (in module chemicals.virial)

 	
 	BVirial_Oconnell_Prausnitz() (in module chemicals.virial)

 	BVirial_Oconnell_Prausnitz_mat() (in module chemicals.virial)

 	BVirial_Oconnell_Prausnitz_vec() (in module chemicals.virial)

 	BVirial_Pitzer_Curl() (in module chemicals.virial)

 	BVirial_Pitzer_Curl_fast() (in module chemicals.virial)

 	BVirial_Pitzer_Curl_mat() (in module chemicals.virial)

 	BVirial_Pitzer_Curl_vec() (in module chemicals.virial)

 	BVirial_Tsonopoulos() (in module chemicals.virial)

 	BVirial_Tsonopoulos_extended() (in module chemicals.virial)

 	BVirial_Tsonopoulos_extended_fast() (in module chemicals.virial)

 	BVirial_Tsonopoulos_extended_mat() (in module chemicals.virial)

 	BVirial_Tsonopoulos_extended_vec() (in module chemicals.virial)

 	BVirial_Tsonopoulos_fast() (in module chemicals.virial)

 	BVirial_Tsonopoulos_mat() (in module chemicals.virial)

 	BVirial_Tsonopoulos_vec() (in module chemicals.virial)

 	BVirial_Xiang() (in module chemicals.virial)

 	BVirial_Xiang_mat() (in module chemicals.virial)

 	BVirial_Xiang_vec() (in module chemicals.virial)

C

 	
 	calculate() (chemicals.heat_capacity.ShomateRange method)

 	(chemicals.heat_capacity.ZabranskyQuasipolynomial method)

 	(chemicals.heat_capacity.ZabranskySpline method)

 	calculate_integral() (chemicals.heat_capacity.ShomateRange method)

 	(chemicals.heat_capacity.ZabranskyQuasipolynomial method)

 	(chemicals.heat_capacity.ZabranskySpline method)

 	calculate_integral_over_T() (chemicals.heat_capacity.ShomateRange method)

 	(chemicals.heat_capacity.ZabranskyQuasipolynomial method)

 	(chemicals.heat_capacity.ZabranskySpline method)

 	Campbell_Thodos() (in module chemicals.volume)

 	Carcinogen() (in module chemicals.safety)

 	Carcinogen_all_methods (in module chemicals.safety)

 	Carcinogen_methods() (in module chemicals.safety)

 	CAS_from_any() (in module chemicals.identifiers)

 	CAS_to_int() (in module chemicals.identifiers)

 	Ceiling() (in module chemicals.safety)

 	Ceiling_all_methods (in module chemicals.safety)

 	Ceiling_methods() (in module chemicals.safety)

 	charge_from_formula() (in module chemicals.elements)

 	check_CAS() (in module chemicals.identifiers)

 	ChemicalMetadata (class in chemicals.identifiers)

 	ChemicalMetadataDB (class in chemicals.identifiers)

 	
 chemicals.acentric

 	module

 	
 chemicals.air

 	module

 	
 chemicals.combustion

 	module

 	
 chemicals.critical

 	module

 	
 chemicals.dipole

 	module

 	
 chemicals.dippr

 	module

 	
 chemicals.elements

 	module

 	
 chemicals.environment

 	module

 	
 chemicals.exceptions

 	module

 	
 chemicals.flash_basic

 	module

 	
 chemicals.heat_capacity

 	module

 	
 chemicals.iapws

 	module

 	
 chemicals.identifiers

 	module

 	
 chemicals.interface

 	module

 	
 chemicals.lennard_jones

 	module

 	
 chemicals.miscdata

 	module

 	
 chemicals.molecular_geometry

 	module

 	
 chemicals.permittivity

 	module

 	
 chemicals.phase_change

 	module

 	
 chemicals.rachford_rice

 	module

 	
 chemicals.reaction

 	module

 	
 	
 chemicals.refractivity

 	module

 	
 chemicals.safety

 	module

 	
 chemicals.solubility

 	module

 	
 chemicals.temperature

 	module

 	
 chemicals.thermal_conductivity

 	module

 	
 chemicals.triple

 	module

 	
 chemicals.utils

 	module

 	
 chemicals.vapor_pressure

 	module

 	
 chemicals.vectorized

 	module

 	
 chemicals.virial

 	module

 	
 chemicals.viscosity

 	module

 	
 chemicals.volume

 	module

 	Chemsep_16() (in module chemicals.thermal_conductivity)

 	Chen() (in module chemicals.phase_change)

 	Chueh_Prausnitz_Tc() (in module chemicals.critical)

 	Chueh_Prausnitz_Vc() (in module chemicals.critical)

 	Chung() (in module chemicals.thermal_conductivity)

 	Chung_dense() (in module chemicals.thermal_conductivity)

 	Clapeyron() (in module chemicals.phase_change)

 	combustion_data() (in module chemicals.combustion)

 	combustion_products_mixture() (in module chemicals.combustion)

 	combustion_spec_solver() (in module chemicals.combustion)

 	combustion_stoichiometry() (in module chemicals.combustion)

 	CombustionData (class in chemicals.combustion)

 	CommonMixtureMetadata (class in chemicals.identifiers)

 	COSTALD() (in module chemicals.volume)

 	COSTALD_compressed() (in module chemicals.volume)

 	COSTALD_mixture() (in module chemicals.volume)

 	Cp_data_Poling (in module chemicals.heat_capacity)

 	Cp_dict_characteristic_temperatures_adjusted_psi4_2022a (in module chemicals.heat_capacity)

 	Cp_dict_characteristic_temperatures_psi4_2022a (in module chemicals.heat_capacity)

 	Cp_dict_PerryI (in module chemicals.heat_capacity)

 	Cp_minus_Cv() (in module chemicals.utils)

 	Cpg_statistical_mechanics() (in module chemicals.heat_capacity)

 	Cpg_statistical_mechanics_integral() (in module chemicals.heat_capacity)

 	Cpg_statistical_mechanics_integral_over_T() (in module chemicals.heat_capacity)

 	CRC_inorganic() (in module chemicals.volume)

 	CRC_standard_data (in module chemicals.heat_capacity)

 	critical_surface() (in module chemicals.critical)

 	critical_surface_all_methods (in module chemicals.critical)

 	critical_surface_methods() (in module chemicals.critical)

 	Crowl_Louvar_LFL() (in module chemicals.safety)

 	Crowl_Louvar_UFL() (in module chemicals.safety)

 	cryogenics (in module chemicals.identifiers)

 	CVirial_Liu_Xiang() (in module chemicals.virial)

 	CVirial_Liu_Xiang_mat() (in module chemicals.virial)

 	CVirial_Liu_Xiang_vec() (in module chemicals.virial)

 	CVirial_mixture_Orentlicher_Prausnitz() (in module chemicals.virial)

 	CVirial_Orbey_Vera() (in module chemicals.virial)

 	CVirial_Orbey_Vera_mat() (in module chemicals.virial)

 	CVirial_Orbey_Vera_vec() (in module chemicals.virial)

D

 	
 	d2Antoine_dT2() (in module chemicals.vapor_pressure)

 	d2BVirial_mixture_dzizjs() (in module chemicals.virial)

 	d2CVirial_mixture_dT2_Orentlicher_Prausnitz() (in module chemicals.virial)

 	d2CVirial_mixture_Orentlicher_Prausnitz_dTdzs() (in module chemicals.virial)

 	d2CVirial_mixture_Orentlicher_Prausnitz_dzizjs() (in module chemicals.virial)

 	d2Henry_constants_dT2() (in module chemicals.solubility)

 	d2ns_to_dn2_partials() (in module chemicals.utils)

 	d2TRC_Antoine_extended_dT2() (in module chemicals.vapor_pressure)

 	d2V_dzizjs_virial() (in module chemicals.virial)

 	d2Wagner_dT2() (in module chemicals.vapor_pressure)

 	d2Wagner_original_dT2() (in module chemicals.vapor_pressure)

 	d2xs_to_d2xsn1() (in module chemicals.utils)

 	d2xs_to_dxdn_partials() (in module chemicals.utils)

 	d2Yaws_Psat_dT2() (in module chemicals.vapor_pressure)

 	d3BVirial_mixture_dzizjzks() (in module chemicals.virial)

 	d3CVirial_mixture_dT3_Orentlicher_Prausnitz() (in module chemicals.virial)

 	d3CVirial_mixture_Orentlicher_Prausnitz_dzizjzks() (in module chemicals.virial)

 	Dadgostar_Shaw() (in module chemicals.heat_capacity)

 	Dadgostar_Shaw_integral() (in module chemicals.heat_capacity)

 	Dadgostar_Shaw_integral_over_T() (in module chemicals.heat_capacity)

 	Dadgostar_Shaw_terms() (in module chemicals.heat_capacity)

 	dAntoine_dT() (in module chemicals.vapor_pressure)

 	dBVirial_mixture_dzs() (in module chemicals.virial)

 	dCVirial_mixture_dT_Orentlicher_Prausnitz() (in module chemicals.virial)

 	
 	dCVirial_mixture_Orentlicher_Prausnitz_dzs() (in module chemicals.virial)

 	dHenry_constants_dT() (in module chemicals.solubility)

 	Diguilio_Teja() (in module chemicals.interface)

 	dipole_moment() (in module chemicals.dipole)

 	dipole_moment_all_methods (in module chemicals.dipole)

 	dipole_moment_methods() (in module chemicals.dipole)

 	DIPPR101_ABC_coeffs_from_point() (in module chemicals.vapor_pressure)

 	DIPPR9B() (in module chemicals.thermal_conductivity)

 	DIPPR9G() (in module chemicals.thermal_conductivity)

 	DIPPR9H() (in module chemicals.thermal_conductivity)

 	DIPPR9I() (in module chemicals.thermal_conductivity)

 	dippr_compounds() (in module chemicals.identifiers)

 	dmu_Yaws_dT() (in module chemicals.viscosity)

 	dns_to_dn_partials() (in module chemicals.utils)

 	dPPDS9_dT() (in module chemicals.viscosity)

 	dPsat_IAPWS_dT() (in module chemicals.vapor_pressure)

 	dTRC_Antoine_extended_dT() (in module chemicals.vapor_pressure)

 	dV_dzs_virial() (in module chemicals.virial)

 	dWagner_dT() (in module chemicals.vapor_pressure)

 	dWagner_original_dT() (in module chemicals.vapor_pressure)

 	dxs_to_dn_partials() (in module chemicals.utils)

 	dxs_to_dns() (in module chemicals.utils)

 	dxs_to_dxsn1() (in module chemicals.utils)

 	dYaws_Psat_dT() (in module chemicals.vapor_pressure)

E

 	
 	Edalat() (in module chemicals.vapor_pressure)

 	Element (class in chemicals.elements)

 	Eli_Hanley() (in module chemicals.thermal_conductivity)

 	Eli_Hanley_dense() (in module chemicals.thermal_conductivity)

 	entropy_formation() (in module chemicals.reaction)

 	epsilon_Bird_Stewart_Lightfoot_boiling() (in module chemicals.lennard_jones)

 	epsilon_Bird_Stewart_Lightfoot_critical() (in module chemicals.lennard_jones)

 	epsilon_Bird_Stewart_Lightfoot_melting() (in module chemicals.lennard_jones)

 	epsilon_Flynn() (in module chemicals.lennard_jones)

 	epsilon_Stiel_Thodos() (in module chemicals.lennard_jones)

 	epsilon_Tee_Gotoh_Steward_1() (in module chemicals.lennard_jones)

 	epsilon_Tee_Gotoh_Steward_2() (in module chemicals.lennard_jones)

 	EQ100() (in module chemicals.dippr)

 	EQ101() (in module chemicals.dippr)

 	EQ101_fitting_jacobian() (in module chemicals.dippr)

 	
 	EQ102() (in module chemicals.dippr)

 	EQ102_fitting_jacobian() (in module chemicals.dippr)

 	EQ104() (in module chemicals.dippr)

 	EQ105() (in module chemicals.dippr)

 	EQ105_fitting_jacobian() (in module chemicals.dippr)

 	EQ106() (in module chemicals.dippr)

 	EQ106_fitting_jacobian() (in module chemicals.dippr)

 	EQ107() (in module chemicals.dippr)

 	EQ107_fitting_jacobian() (in module chemicals.dippr)

 	EQ114() (in module chemicals.dippr)

 	EQ115() (in module chemicals.dippr)

 	EQ116() (in module chemicals.dippr)

 	EQ127() (in module chemicals.dippr)

 	Eucken() (in module chemicals.thermal_conductivity)

 	Eucken_modified() (in module chemicals.thermal_conductivity)

F

 	
 	Filippov() (in module chemicals.thermal_conductivity)

 	fire_mixing() (in module chemicals.safety)

 	flash_ideal() (in module chemicals.flash_basic)

 	flash_inner_loop() (in module chemicals.rachford_rice)

 	
 	flash_inner_loop_all_methods (in module chemicals.rachford_rice)

 	flash_inner_loop_methods() (in module chemicals.rachford_rice)

 	flash_Tb_Tc_Pc() (in module chemicals.flash_basic)

 	flash_wilson() (in module chemicals.flash_basic)

 	fuel_air_spec_solver() (in module chemicals.combustion)

G

 	
 	get_pubchem_db() (in module chemicals.identifiers)

 	Gharagheizi_gas() (in module chemicals.thermal_conductivity)

 	Gharagheizi_liquid() (in module chemicals.thermal_conductivity)

 	Gibbs_formation() (in module chemicals.reaction)

 	Goodman() (in module chemicals.volume)

 	
 	Grieves_Thodos() (in module chemicals.critical)

 	Grigoras() (in module chemicals.critical)

 	GWP() (in module chemicals.environment)

 	GWP_all_methods (in module chemicals.environment)

 	GWP_methods() (in module chemicals.environment)

H

 	
 	Hakim_Steinberg_Stiel() (in module chemicals.interface)

 	Hekayati_Raeissi() (in module chemicals.critical)

 	Henry_constants() (in module chemicals.solubility)

 	Henry_converter() (in module chemicals.solubility)

 	Henry_pressure() (in module chemicals.solubility)

 	Henry_pressure_mixture() (in module chemicals.solubility)

 	Herning_Zipperer() (in module chemicals.viscosity)

 	Hf_basis_converter() (in module chemicals.reaction)

 	Hfg() (in module chemicals.reaction)

 	Hfg_all_methods (in module chemicals.reaction)

 	Hfg_methods() (in module chemicals.reaction)

 	
 	Hfl() (in module chemicals.reaction)

 	Hfl_all_methods (in module chemicals.reaction)

 	Hfl_methods() (in module chemicals.reaction)

 	Hfs() (in module chemicals.reaction)

 	Hfs_all_methods (in module chemicals.reaction)

 	Hfs_methods() (in module chemicals.reaction)

 	Hfus() (in module chemicals.phase_change)

 	Hfus_all_methods (in module chemicals.phase_change)

 	Hfus_methods() (in module chemicals.phase_change)

 	HHV_modified_Dulong() (in module chemicals.combustion)

 	HHV_stoichiometry() (in module chemicals.combustion)

I

 	
 	iapws04_dHenry_air_dT() (in module chemicals.air)

 	iapws04_Henry_air() (in module chemicals.air)

 	iapws11_Psub() (in module chemicals.iapws)

 	iapws92_dPsat_dT() (in module chemicals.iapws)

 	iapws92_Psat() (in module chemicals.iapws)

 	iapws92_rhog_sat() (in module chemicals.iapws)

 	iapws92_rhol_sat() (in module chemicals.iapws)

 	iapws95_A0() (in module chemicals.iapws)

 	iapws95_A0_tau_derivatives() (in module chemicals.iapws)

 	iapws95_Ar() (in module chemicals.iapws)

 	iapws95_d2A0_dtau2() (in module chemicals.iapws)

 	iapws95_d2Ar_ddelta2() (in module chemicals.iapws)

 	iapws95_d2Ar_ddeltadtau() (in module chemicals.iapws)

 	iapws95_d2Ar_dtau2() (in module chemicals.iapws)

 	iapws95_d3A0_dtau3() (in module chemicals.iapws)

 	iapws95_d3Ar_ddelta2dtau() (in module chemicals.iapws)

 	iapws95_d3Ar_ddelta3() (in module chemicals.iapws)

 	iapws95_d3Ar_ddeltadtau2() (in module chemicals.iapws)

 	iapws95_d4Ar_ddelta2dtau2() (in module chemicals.iapws)

 	iapws95_dA0_dtau() (in module chemicals.iapws)

 	iapws95_dAr_ddelta() (in module chemicals.iapws)

 	iapws95_dAr_dtau() (in module chemicals.iapws)

 	iapws95_dPsat_dT() (in module chemicals.iapws)

 	iapws95_drhol_sat_dT() (in module chemicals.iapws)

 	iapws95_MW (in module chemicals.iapws)

 	iapws95_P() (in module chemicals.iapws)

 	iapws95_Pc (in module chemicals.iapws)

 	iapws95_properties() (in module chemicals.iapws)

 	iapws95_Psat() (in module chemicals.iapws)

 	iapws95_R (in module chemicals.iapws)

 	iapws95_rho() (in module chemicals.iapws)

 	iapws95_rhoc (in module chemicals.iapws)

 	iapws95_rhog_sat() (in module chemicals.iapws)

 	iapws95_rhol_sat() (in module chemicals.iapws)

 	iapws95_saturation() (in module chemicals.iapws)

 	iapws95_T() (in module chemicals.iapws)

 	iapws95_Tc (in module chemicals.iapws)

 	iapws95_Tsat() (in module chemicals.iapws)

 	iapws95_Tt (in module chemicals.iapws)

 	iapws97_A_region3() (in module chemicals.iapws)

 	iapws97_boundary_3ab() (in module chemicals.iapws)

 	iapws97_boundary_3cd() (in module chemicals.iapws)

 	iapws97_boundary_3ef() (in module chemicals.iapws)

 	iapws97_boundary_3gh() (in module chemicals.iapws)

 	iapws97_boundary_3ij() (in module chemicals.iapws)

 	iapws97_boundary_3jk() (in module chemicals.iapws)

 	iapws97_boundary_3mn() (in module chemicals.iapws)

 	iapws97_boundary_3op() (in module chemicals.iapws)

 	iapws97_boundary_3qu() (in module chemicals.iapws)

 	iapws97_boundary_3rx() (in module chemicals.iapws)

 	iapws97_boundary_3uv() (in module chemicals.iapws)

 	iapws97_boundary_3wx() (in module chemicals.iapws)

 	iapws97_d2A_ddelta2_region3() (in module chemicals.iapws)

 	iapws97_d2A_ddeltadtau_region3() (in module chemicals.iapws)

 	iapws97_d2A_dtau2_region3() (in module chemicals.iapws)

 	iapws97_d2G0_dtau2_region2() (in module chemicals.iapws)

 	iapws97_d2G0_dtau2_region5() (in module chemicals.iapws)

 	iapws97_d2G_dpi2_region1() (in module chemicals.iapws)

 	iapws97_d2G_dpidtau_region1() (in module chemicals.iapws)

 	iapws97_d2G_dtau2_region1() (in module chemicals.iapws)

 	iapws97_d2Gr_dpi2_region2() (in module chemicals.iapws)

 	iapws97_d2Gr_dpi2_region5() (in module chemicals.iapws)

 	iapws97_d2Gr_dpidtau_region2() (in module chemicals.iapws)

 	iapws97_d2Gr_dpidtau_region5() (in module chemicals.iapws)

 	
 	iapws97_d2Gr_dtau2_region2() (in module chemicals.iapws)

 	iapws97_d2Gr_dtau2_region5() (in module chemicals.iapws)

 	iapws97_dA_ddelta_region3() (in module chemicals.iapws)

 	iapws97_dA_dtau_region3() (in module chemicals.iapws)

 	iapws97_dG0_dtau_region2() (in module chemicals.iapws)

 	iapws97_dG0_dtau_region5() (in module chemicals.iapws)

 	iapws97_dG_dpi_region1() (in module chemicals.iapws)

 	iapws97_dG_dtau_region1() (in module chemicals.iapws)

 	iapws97_dGr_dpi_region2() (in module chemicals.iapws)

 	iapws97_dGr_dpi_region5() (in module chemicals.iapws)

 	iapws97_dGr_dtau_region2() (in module chemicals.iapws)

 	iapws97_dGr_dtau_region5() (in module chemicals.iapws)

 	iapws97_G0_region2() (in module chemicals.iapws)

 	iapws97_G0_region5() (in module chemicals.iapws)

 	iapws97_G_region1() (in module chemicals.iapws)

 	iapws97_Gr_region2() (in module chemicals.iapws)

 	iapws97_Gr_region5() (in module chemicals.iapws)

 	iapws97_P() (in module chemicals.iapws)

 	iapws97_R (in module chemicals.iapws)

 	iapws97_region3_a() (in module chemicals.iapws)

 	iapws97_region3_b() (in module chemicals.iapws)

 	iapws97_region3_c() (in module chemicals.iapws)

 	iapws97_region3_d() (in module chemicals.iapws)

 	iapws97_region3_e() (in module chemicals.iapws)

 	iapws97_region3_f() (in module chemicals.iapws)

 	iapws97_region3_g() (in module chemicals.iapws)

 	iapws97_region3_h() (in module chemicals.iapws)

 	iapws97_region3_i() (in module chemicals.iapws)

 	iapws97_region3_j() (in module chemicals.iapws)

 	iapws97_region3_k() (in module chemicals.iapws)

 	iapws97_region3_l() (in module chemicals.iapws)

 	iapws97_region3_m() (in module chemicals.iapws)

 	iapws97_region3_n() (in module chemicals.iapws)

 	iapws97_region3_o() (in module chemicals.iapws)

 	iapws97_region3_p() (in module chemicals.iapws)

 	iapws97_region3_q() (in module chemicals.iapws)

 	iapws97_region3_r() (in module chemicals.iapws)

 	iapws97_region3_s() (in module chemicals.iapws)

 	iapws97_region3_t() (in module chemicals.iapws)

 	iapws97_region3_u() (in module chemicals.iapws)

 	iapws97_region3_v() (in module chemicals.iapws)

 	iapws97_region3_w() (in module chemicals.iapws)

 	iapws97_region3_x() (in module chemicals.iapws)

 	iapws97_region3_y() (in module chemicals.iapws)

 	iapws97_region3_z() (in module chemicals.iapws)

 	iapws97_rho() (in module chemicals.iapws)

 	iapws97_T() (in module chemicals.iapws)

 	ideal_gas() (in module chemicals.volume)

 	IDs_to_CASs() (in module chemicals.identifiers)

 	IDT_to_DCN() (in module chemicals.combustion)

 	ignition_delay() (in module chemicals.combustion)

 	ignition_delay_all_methods (in module chemicals.combustion)

 	ignition_delay_methods() (in module chemicals.combustion)

 	Ihmels() (in module chemicals.critical)

 	index_hydrogen_deficiency() (in module chemicals.elements)

 	inerts (in module chemicals.identifiers)

 	int_to_CAS() (in module chemicals.identifiers)

 	isentropic_exponent() (in module chemicals.utils)

 	isentropic_exponent_PT() (in module chemicals.utils)

 	isentropic_exponent_PV() (in module chemicals.utils)

 	isentropic_exponent_TV() (in module chemicals.utils)

 	isobaric_expansion() (in module chemicals.utils)

 	isothermal_compressibility() (in module chemicals.utils)

 	ISTExpansion() (in module chemicals.interface)

 	ITS90_68_difference() (in module chemicals.temperature)

J

 	
 	Jasper() (in module chemicals.interface)

 	
 	Joule_Thomson() (in module chemicals.utils)

K

 	
 	k_air_lemmon() (in module chemicals.thermal_conductivity)

 	k_data_Perrys_8E_2_314 (in module chemicals.thermal_conductivity)

 	k_data_Perrys_8E_2_315 (in module chemicals.thermal_conductivity)

 	k_data_VDI_PPDS_10 (in module chemicals.thermal_conductivity)

 	
 	k_data_VDI_PPDS_9 (in module chemicals.thermal_conductivity)

 	k_IAPWS() (in module chemicals.thermal_conductivity)

 	K_value() (in module chemicals.flash_basic)

 	kl_Mersmann_Kind() (in module chemicals.thermal_conductivity)

L

 	
 	Lakshmi_Prasad() (in module chemicals.thermal_conductivity)

 	Lastovka_Shaw() (in module chemicals.heat_capacity)

 	Lastovka_Shaw_integral() (in module chemicals.heat_capacity)

 	Lastovka_Shaw_integral_over_T() (in module chemicals.heat_capacity)

 	Lastovka_Shaw_T_for_Hm() (in module chemicals.heat_capacity)

 	Lastovka_Shaw_T_for_Sm() (in module chemicals.heat_capacity)

 	Lastovka_Shaw_term_A() (in module chemicals.heat_capacity)

 	Lastovka_solid() (in module chemicals.heat_capacity)

 	Lastovka_solid_integral() (in module chemicals.heat_capacity)

 	Lastovka_solid_integral_over_T() (in module chemicals.heat_capacity)

 	Lee_Kesler() (in module chemicals.vapor_pressure)

 	Lee_Kesler_virial_CSP_Vcijs() (in module chemicals.virial)

 	lemmon2000_air_A0() (in module chemicals.air)

 	lemmon2000_air_Ar() (in module chemicals.air)

 	lemmon2000_air_d2A0_dtau2() (in module chemicals.air)

 	lemmon2000_air_d2Ar_ddelta2() (in module chemicals.air)

 	lemmon2000_air_d2Ar_ddeltadtau() (in module chemicals.air)

 	lemmon2000_air_d2Ar_dtau2() (in module chemicals.air)

 	lemmon2000_air_d3A0_dtau3() (in module chemicals.air)

 	lemmon2000_air_d3Ar_ddelta2dtau() (in module chemicals.air)

 	lemmon2000_air_d3Ar_ddelta3() (in module chemicals.air)

 	lemmon2000_air_d3Ar_ddeltadtau2() (in module chemicals.air)

 	lemmon2000_air_d3Ar_dtau3() (in module chemicals.air)

 	lemmon2000_air_d4A0_dtau4() (in module chemicals.air)

 	lemmon2000_air_d4Ar_ddelta2dtau2() (in module chemicals.air)

 	lemmon2000_air_d4Ar_ddelta3dtau() (in module chemicals.air)

 	lemmon2000_air_d4Ar_ddelta4() (in module chemicals.air)

 	lemmon2000_air_d4Ar_ddeltadtau3() (in module chemicals.air)

 	lemmon2000_air_d4Ar_dtau4() (in module chemicals.air)

 	lemmon2000_air_dA0_dtau() (in module chemicals.air)

 	lemmon2000_air_dAr_ddelta() (in module chemicals.air)

 	lemmon2000_air_dAr_dtau() (in module chemicals.air)

 	lemmon2000_air_MW (in module chemicals.air)

 	
 	lemmon2000_air_P_bubble() (in module chemicals.air)

 	lemmon2000_air_P_dew() (in module chemicals.air)

 	lemmon2000_air_P_max (in module chemicals.air)

 	lemmon2000_air_P_reducing (in module chemicals.air)

 	lemmon2000_air_R (in module chemicals.air)

 	lemmon2000_air_rho_bubble() (in module chemicals.air)

 	lemmon2000_air_rho_dew() (in module chemicals.air)

 	lemmon2000_air_rho_reducing (in module chemicals.air)

 	lemmon2000_air_T_max (in module chemicals.air)

 	lemmon2000_air_T_reducing (in module chemicals.air)

 	lemmon2000_P() (in module chemicals.air)

 	lemmon2000_rho() (in module chemicals.air)

 	lemmon2000_T() (in module chemicals.air)

 	Letsou_Stiel() (in module chemicals.viscosity)

 	LFL() (in module chemicals.safety)

 	LFL_all_methods (in module chemicals.safety)

 	LFL_ISO_10156_2017() (in module chemicals.safety)

 	LFL_methods() (in module chemicals.safety)

 	LHV_from_HHV() (in module chemicals.combustion)

 	Li() (in module chemicals.critical)

 	Li_Johns_Ahmadi_solution() (in module chemicals.rachford_rice)

 	Lindsay_Bromley() (in module chemicals.thermal_conductivity)

 	linear() (in module chemicals.molecular_geometry)

 	linear_all_methods (in module chemicals.molecular_geometry)

 	linear_methods() (in module chemicals.molecular_geometry)

 	Liu() (in module chemicals.phase_change)

 	LK_omega() (in module chemicals.acentric)

 	logP() (in module chemicals.environment)

 	logP_all_methods (in module chemicals.environment)

 	logP_methods() (in module chemicals.environment)

 	lookup_VDI_tabular_data() (in module chemicals.miscdata)

 	Lorentz_Bray_Clarke() (in module chemicals.viscosity)

 	Lucas() (in module chemicals.viscosity)

 	Lucas_gas() (in module chemicals.viscosity)

M

 	
 	mass_fractions() (in module chemicals.elements)

 	Meissner() (in module chemicals.critical)

 	Meng_Duan_2005_virial_CSP_kijs() (in module chemicals.virial)

 	Meng_virial_a() (in module chemicals.virial)

 	Mersmann_Kind_predictor() (in module chemicals.critical)

 	Mersmann_Kind_sigma() (in module chemicals.interface)

 	Meybodi_Daryasafar_Karimi() (in module chemicals.interface)

 	mgm3_to_ppmv() (in module chemicals.safety)

 	Miqueu() (in module chemicals.interface)

 	Missenard() (in module chemicals.thermal_conductivity)

 	mix_component_flows() (in module chemicals.utils)

 	mix_component_partial_flows() (in module chemicals.utils)

 	mix_multiple_component_flows() (in module chemicals.utils)

 	mixing_logarithmic() (in module chemicals.utils)

 	mixing_power() (in module chemicals.utils)

 	mixing_simple() (in module chemicals.utils)

 	mixture_atomic_composition() (in module chemicals.elements)

 	mixture_atomic_composition_ordered() (in module chemicals.elements)

 	MK() (in module chemicals.phase_change)

 	modified_Wilson_Tc() (in module chemicals.critical)

 	modified_Wilson_Vc() (in module chemicals.critical)

 	
 module

 	chemicals.acentric

 	chemicals.air

 	chemicals.combustion

 	chemicals.critical

 	chemicals.dipole

 	chemicals.dippr

 	chemicals.elements

 	chemicals.environment

 	chemicals.exceptions

 	chemicals.flash_basic

 	chemicals.heat_capacity

 	chemicals.iapws

 	chemicals.identifiers

 	chemicals.interface

 	chemicals.lennard_jones

 	chemicals.miscdata

 	chemicals.molecular_geometry

 	chemicals.permittivity

 	chemicals.phase_change

 	chemicals.rachford_rice

 	chemicals.reaction

 	chemicals.refractivity

 	chemicals.safety

 	chemicals.solubility

 	chemicals.temperature

 	chemicals.thermal_conductivity

 	chemicals.triple

 	chemicals.utils

 	chemicals.vapor_pressure

 	chemicals.vectorized

 	chemicals.virial

 	chemicals.viscosity

 	chemicals.volume

 	
 	molar_refractivity_from_RI() (in module chemicals.refractivity)

 	molar_velocity_to_velocity() (in module chemicals.utils)

 	molecular_diameter() (in module chemicals.lennard_jones)

 	molecular_diameter_all_methods (in module chemicals.lennard_jones)

 	molecular_diameter_methods() (in module chemicals.lennard_jones)

 	molecular_weight() (in module chemicals.elements)

 	MON() (in module chemicals.combustion)

 	MON_all_methods (in module chemicals.combustion)

 	MON_methods() (in module chemicals.combustion)

 	mu_air_lemmon() (in module chemicals.viscosity)

 	mu_data_Dutt_Prasad (in module chemicals.viscosity)

 	mu_data_Perrys_8E_2_312 (in module chemicals.viscosity)

 	mu_data_Perrys_8E_2_313 (in module chemicals.viscosity)

 	mu_data_VDI_PPDS_7 (in module chemicals.viscosity)

 	mu_data_VDI_PPDS_8 (in module chemicals.viscosity)

 	mu_data_VN2 (in module chemicals.viscosity)

 	mu_data_VN2E (in module chemicals.viscosity)

 	mu_data_VN3 (in module chemicals.viscosity)

 	mu_IAPWS() (in module chemicals.viscosity)

 	mu_TDE() (in module chemicals.viscosity)

 	mu_Yaws() (in module chemicals.viscosity)

 	mu_Yaws_fitting_jacobian() (in module chemicals.viscosity)

 	MW() (in module chemicals.identifiers)

N

 	
 	nested_formula_parser() (in module chemicals.elements)

 	NFPA_30_classification() (in module chemicals.safety)

 	Nicola() (in module chemicals.thermal_conductivity)

 	
 	Nicola_original() (in module chemicals.thermal_conductivity)

 	none_and_length_check() (in module chemicals.utils)

 	normalize() (in module chemicals.utils)

O

 	
 	octane_sensitivity() (in module chemicals.combustion)

 	ODP() (in module chemicals.environment)

 	ODP_all_methods (in module chemicals.environment)

 	ODP_methods() (in module chemicals.environment)

 	
 	omega() (in module chemicals.acentric)

 	omega_all_methods (in module chemicals.acentric)

 	omega_definition() (in module chemicals.acentric)

 	omega_methods() (in module chemicals.acentric)

 	OverspeficiedError (class in chemicals.exceptions)

P

 	
 	Parachor() (in module chemicals.utils)

 	Pc() (in module chemicals.critical)

 	Pc_all_methods (in module chemicals.critical)

 	Pc_methods() (in module chemicals.critical)

 	Perez_Boehman_MON_from_ignition_delay() (in module chemicals.combustion)

 	Perez_Boehman_RON_from_ignition_delay() (in module chemicals.combustion)

 	periodic_table (in module chemicals.elements)

 	PeriodicTable (class in chemicals.elements)

 	permittivity_CRC() (in module chemicals.permittivity)

 	permittivity_data_CRC (in module chemicals.permittivity)

 	permittivity_IAPWS() (in module chemicals.permittivity)

 	Perry_151() (in module chemicals.heat_capacity)

 	phase_change_data_Alibakhshi_Cs (in module chemicals.phase_change)

 	phase_change_data_Perrys2_150 (in module chemicals.phase_change)

 	phase_change_data_VDI_PPDS_4 (in module chemicals.phase_change)

 	phase_identification_parameter() (in module chemicals.utils)

 	phase_identification_parameter_phase() (in module chemicals.utils)

 	PhaseCountReducedError (class in chemicals.exceptions)

 	PhaseExistenceImpossible (class in chemicals.exceptions)

 	PiecewiseHeatCapacity (class in chemicals.heat_capacity)

 	Pitzer() (in module chemicals.phase_change)

 	Pitzer_sigma() (in module chemicals.interface)

 	polarizability_from_RI() (in module chemicals.refractivity)

 	Poling() (in module chemicals.heat_capacity)

 	Poling_integral() (in module chemicals.heat_capacity)

 	Poling_integral_over_T() (in module chemicals.heat_capacity)

 	
 	PPDS12() (in module chemicals.phase_change)

 	PPDS14() (in module chemicals.interface)

 	PPDS15() (in module chemicals.heat_capacity)

 	PPDS17() (in module chemicals.volume)

 	PPDS2() (in module chemicals.heat_capacity)

 	PPDS3() (in module chemicals.thermal_conductivity)

 	PPDS5() (in module chemicals.viscosity)

 	PPDS8() (in module chemicals.thermal_conductivity)

 	PPDS9() (in module chemicals.viscosity)

 	ppmv_to_mgm3() (in module chemicals.safety)

 	PR_water_K_value() (in module chemicals.flash_basic)

 	property_mass_to_molar() (in module chemicals.utils)

 	property_molar_to_mass() (in module chemicals.utils)

 	Przedziecki_Sridhar() (in module chemicals.viscosity)

 	Psat_data_Alcock_elements (in module chemicals.vapor_pressure)

 	Psat_data_AntoineExtended (in module chemicals.vapor_pressure)

 	Psat_data_AntoinePoling (in module chemicals.vapor_pressure)

 	Psat_data_Perrys2_8 (in module chemicals.vapor_pressure)

 	Psat_data_VDI_PPDS_3 (in module chemicals.vapor_pressure)

 	Psat_data_WagnerMcGarry (in module chemicals.vapor_pressure)

 	Psat_data_WagnerPoling (in module chemicals.vapor_pressure)

 	Psat_IAPWS() (in module chemicals.vapor_pressure)

 	Psub_Clapeyron() (in module chemicals.vapor_pressure)

 	Pt() (in module chemicals.triple)

 	Pt_all_methods (in module chemicals.triple)

 	Pt_methods() (in module chemicals.triple)

R

 	
 	Rachford_Rice_flash_error() (in module chemicals.rachford_rice)

 	Rachford_Rice_polynomial() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution2() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution_binary_dd() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution_Leibovici_Neoschil() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution_Leibovici_Neoschil_dd() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution_LN2() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution_mpmath() (in module chemicals.rachford_rice)

 	Rachford_Rice_solution_polynomial() (in module chemicals.rachford_rice)

 	Rachford_Rice_solutionN() (in module chemicals.rachford_rice)

 	Rackett() (in module chemicals.volume)

 	Rackett_fit() (in module chemicals.volume)

 	Rackett_mixture() (in module chemicals.volume)

 	radius_of_gyration() (in module chemicals.utils)

 	REFPROP_sigma() (in module chemicals.interface)

 	remove_zeros() (in module chemicals.utils)

 	RG() (in module chemicals.molecular_geometry)

 	RG_all_methods (in module chemicals.molecular_geometry)

 	RG_methods() (in module chemicals.molecular_geometry)

 	rho_data_COSTALD (in module chemicals.volume)

 	
 	rho_data_CRC_inorg_l (in module chemicals.volume)

 	rho_data_CRC_inorg_l_const (in module chemicals.volume)

 	rho_data_CRC_inorg_s_const (in module chemicals.volume)

 	rho_data_CRC_virial (in module chemicals.volume)

 	rho_data_Perry_8E_105_l (in module chemicals.volume)

 	rho_data_SNM0 (in module chemicals.volume)

 	rho_data_VDI_PPDS_2 (in module chemicals.volume)

 	rho_to_API() (in module chemicals.utils)

 	rho_to_Vm() (in module chemicals.utils)

 	RI() (in module chemicals.refractivity)

 	RI_all_methods (in module chemicals.refractivity)

 	RI_from_molar_refractivity() (in module chemicals.refractivity)

 	RI_IAPWS() (in module chemicals.refractivity)

 	RI_methods() (in module chemicals.refractivity)

 	RI_to_brix() (in module chemicals.refractivity)

 	Riedel() (in module chemicals.phase_change)

 	RON() (in module chemicals.combustion)

 	RON_all_methods (in module chemicals.combustion)

 	RON_methods() (in module chemicals.combustion)

 	Rowlinson_Bondi() (in module chemicals.heat_capacity)

 	Rowlinson_Poling() (in module chemicals.heat_capacity)

S

 	
 	S0g() (in module chemicals.reaction)

 	S0g_all_methods (in module chemicals.reaction)

 	S0g_methods() (in module chemicals.reaction)

 	S0l() (in module chemicals.reaction)

 	S0l_all_methods (in module chemicals.reaction)

 	S0l_methods() (in module chemicals.reaction)

 	S0s() (in module chemicals.reaction)

 	S0s_all_methods (in module chemicals.reaction)

 	S0s_methods() (in module chemicals.reaction)

 	Sanjari() (in module chemicals.vapor_pressure)

 	Sastri_Rao() (in module chemicals.interface)

 	Sato_Riedel() (in module chemicals.thermal_conductivity)

 	search_chemical() (in module chemicals.identifiers)

 	serialize_formula() (in module chemicals.elements)

 	SG() (in module chemicals.utils)

 	SG_to_API() (in module chemicals.utils)

 	Sheffy_Johnson() (in module chemicals.thermal_conductivity)

 	Shomate() (in module chemicals.heat_capacity)

 	Shomate_integral() (in module chemicals.heat_capacity)

 	Shomate_integral_over_T() (in module chemicals.heat_capacity)

 	ShomateRange (class in chemicals.heat_capacity)

 	sigma_Bird_Stewart_Lightfoot_boiling() (in module chemicals.lennard_jones)

 	sigma_Bird_Stewart_Lightfoot_critical_1() (in module chemicals.lennard_jones)

 	sigma_Bird_Stewart_Lightfoot_critical_2() (in module chemicals.lennard_jones)

 	sigma_Bird_Stewart_Lightfoot_melting() (in module chemicals.lennard_jones)

 	sigma_data_Jasper_Lange (in module chemicals.interface)

 	sigma_data_Mulero_Cachadina (in module chemicals.interface)

 	sigma_data_Somayajulu (in module chemicals.interface)

 	sigma_data_Somayajulu2 (in module chemicals.interface)

 	sigma_data_VDI_PPDS_11 (in module chemicals.interface)

 	sigma_Flynn() (in module chemicals.lennard_jones)

 	
 	sigma_Gharagheizi_1() (in module chemicals.interface)

 	sigma_Gharagheizi_2() (in module chemicals.interface)

 	sigma_IAPWS() (in module chemicals.interface)

 	sigma_Silva_Liu_Macedo() (in module chemicals.lennard_jones)

 	sigma_Stiel_Thodos() (in module chemicals.lennard_jones)

 	sigma_Tee_Gotoh_Steward_1() (in module chemicals.lennard_jones)

 	sigma_Tee_Gotoh_Steward_2() (in module chemicals.lennard_jones)

 	similarity_variable() (in module chemicals.elements)

 	simple_formula_parser() (in module chemicals.elements)

 	Skin() (in module chemicals.safety)

 	Skin_all_methods (in module chemicals.safety)

 	Skin_methods() (in module chemicals.safety)

 	SMK() (in module chemicals.phase_change)

 	SNM0() (in module chemicals.volume)

 	solubility_eutectic() (in module chemicals.solubility)

 	solubility_parameter() (in module chemicals.solubility)

 	solve_flow_composition_mix() (in module chemicals.utils)

 	Somayajulu() (in module chemicals.interface)

 	sorted_CAS_key() (in module chemicals.identifiers)

 	speed_of_sound() (in module chemicals.utils)

 	STEL() (in module chemicals.safety)

 	STEL_all_methods (in module chemicals.safety)

 	STEL_methods() (in module chemicals.safety)

 	Stiel_polar_factor() (in module chemicals.acentric)

 	Stiel_Thodos() (in module chemicals.viscosity)

 	Stiel_Thodos_dense() (in module chemicals.thermal_conductivity)

 	Stockmayer() (in module chemicals.lennard_jones)

 	Stockmayer_all_methods (in module chemicals.lennard_jones)

 	Stockmayer_methods() (in module chemicals.lennard_jones)

 	stoichiometric_matrix() (in module chemicals.reaction)

 	Suzuki_LFL() (in module chemicals.safety)

 	Suzuki_UFL() (in module chemicals.safety)

T

 	
 	T_autoignition() (in module chemicals.safety)

 	T_autoignition_all_methods (in module chemicals.safety)

 	T_autoignition_methods() (in module chemicals.safety)

 	T_converter() (in module chemicals.temperature)

 	T_flash() (in module chemicals.safety)

 	T_flash_all_methods (in module chemicals.safety)

 	T_flash_methods() (in module chemicals.safety)

 	T_star() (in module chemicals.lennard_jones)

 	Tarakad_Danner_virial_CSP_kijs() (in module chemicals.virial)

 	Tarakad_Danner_virial_CSP_omegaijs() (in module chemicals.virial)

 	Tarakad_Danner_virial_CSP_Pcijs() (in module chemicals.virial)

 	Tarakad_Danner_virial_CSP_Tcijs() (in module chemicals.virial)

 	Tb() (in module chemicals.phase_change)

 	Tb_all_methods (in module chemicals.phase_change)

 	Tb_methods() (in module chemicals.phase_change)

 	Tb_Tc_relationship() (in module chemicals.critical)

 	Tc() (in module chemicals.critical)

 	Tc_all_method_types (in module chemicals.critical)

 	Tc_all_methods (in module chemicals.critical)

 	Tc_methods() (in module chemicals.critical)

 	TDE_CSExpansion() (in module chemicals.heat_capacity)

 	TDE_PVExpansion() (in module chemicals.vapor_pressure)

 	TDE_RIXExpansion() (in module chemicals.refractivity)

 	TDE_VDNS_rho() (in module chemicals.volume)

 	
 	TEOS10_BAW_derivatives() (in module chemicals.air)

 	TEOS10_CAAW_derivatives() (in module chemicals.air)

 	TEOS10_CAWW_derivatives() (in module chemicals.air)

 	third_property() (in module chemicals.critical)

 	Tm() (in module chemicals.phase_change)

 	Tm_all_methods (in module chemicals.phase_change)

 	Tm_depression_eutectic() (in module chemicals.solubility)

 	Tm_methods() (in module chemicals.phase_change)

 	to_num() (in module chemicals.utils)

 	Townsend_Hales() (in module chemicals.volume)

 	TRC_Antoine_extended() (in module chemicals.vapor_pressure)

 	TRC_Antoine_extended_fitting_jacobian() (in module chemicals.vapor_pressure)

 	TRC_gas_data (in module chemicals.heat_capacity)

 	TRCCp() (in module chemicals.heat_capacity)

 	TRCCp_integral() (in module chemicals.heat_capacity)

 	TRCCp_integral_over_T() (in module chemicals.heat_capacity)

 	TrivialSolutionError (class in chemicals.exceptions)

 	Tsat_IAPWS() (in module chemicals.vapor_pressure)

 	Tt() (in module chemicals.triple)

 	Tt_all_methods (in module chemicals.triple)

 	Tt_methods() (in module chemicals.triple)

 	TWA() (in module chemicals.safety)

 	TWA_all_methods (in module chemicals.safety)

 	TWA_methods() (in module chemicals.safety)

 	Twu_1985() (in module chemicals.viscosity)

U

 	
 	UFL() (in module chemicals.safety)

 	UFL_all_methods (in module chemicals.safety)

 	
 	UFL_methods() (in module chemicals.safety)

 	UnderspecifiedError (class in chemicals.exceptions)

V

 	
 	v_molar_to_v() (in module chemicals.utils)

 	v_to_v_molar() (in module chemicals.utils)

 	vapor_mass_quality() (in module chemicals.utils)

 	Vc() (in module chemicals.critical)

 	Vc_all_methods (in module chemicals.critical)

 	Vc_methods() (in module chemicals.critical)

 	Velasco() (in module chemicals.phase_change)

 	velocity_to_molar_velocity() (in module chemicals.utils)

 	Vetere() (in module chemicals.phase_change)

 	
 	Vfs_to_zs() (in module chemicals.utils)

 	vibration_frequency_cm_to_characteristic_temperature() (in module chemicals.heat_capacity)

 	viscosity_converter() (in module chemicals.viscosity)

 	viscosity_gas_Gharagheizi() (in module chemicals.viscosity)

 	viscosity_index() (in module chemicals.viscosity)

 	Viswanath_Natarajan_2() (in module chemicals.viscosity)

 	Viswanath_Natarajan_2_exponential() (in module chemicals.viscosity)

 	Viswanath_Natarajan_3() (in module chemicals.viscosity)

 	Vm_to_rho() (in module chemicals.utils)

 	volume_VDI_PPDS() (in module chemicals.volume)

W

 	
 	Wagner() (in module chemicals.vapor_pressure)

 	Wagner_fitting_jacobian() (in module chemicals.vapor_pressure)

 	Wagner_original() (in module chemicals.vapor_pressure)

 	Wagner_original_fitting_jacobian() (in module chemicals.vapor_pressure)

 	Wassiljewa_Herning_Zipperer() (in module chemicals.thermal_conductivity)

 	Watson() (in module chemicals.phase_change)

 	Watson_K() (in module chemicals.utils)

 	Watson_n() (in module chemicals.phase_change)

 	
 	Watson_sigma() (in module chemicals.interface)

 	Weinaug_Katz() (in module chemicals.interface)

 	Wilke() (in module chemicals.viscosity)

 	Wilke_large() (in module chemicals.viscosity)

 	Wilke_prefactored() (in module chemicals.viscosity)

 	Wilke_prefactors() (in module chemicals.viscosity)

 	Wilson_K_value() (in module chemicals.flash_basic)

 	Winterfeld_Scriven_Davis() (in module chemicals.interface)

 	ws_to_zs() (in module chemicals.utils)

Y

 	
 	Yamada_Gunn() (in module chemicals.volume)

 	Yaws_Psat() (in module chemicals.vapor_pressure)

 	
 	Yaws_Psat_fitting_jacobian() (in module chemicals.vapor_pressure)

 	Yen_Woods_saturation() (in module chemicals.volume)

 	Yoon_Thodos() (in module chemicals.viscosity)

Z

 	
 	Z() (in module chemicals.utils)

 	Z_from_virial_density_form() (in module chemicals.virial)

 	Z_from_virial_pressure_form() (in module chemicals.virial)

 	Zabransky_cubic() (in module chemicals.heat_capacity)

 	Zabransky_cubic_integral() (in module chemicals.heat_capacity)

 	Zabransky_cubic_integral_over_T() (in module chemicals.heat_capacity)

 	zabransky_dicts (in module chemicals.heat_capacity)

 	Zabransky_quasi_polynomial() (in module chemicals.heat_capacity)

 	Zabransky_quasi_polynomial_integral() (in module chemicals.heat_capacity)

 	
 	Zabransky_quasi_polynomial_integral_over_T() (in module chemicals.heat_capacity)

 	ZabranskyQuasipolynomial (class in chemicals.heat_capacity)

 	ZabranskySpline (class in chemicals.heat_capacity)

 	Zc() (in module chemicals.critical)

 	Zc_all_methods (in module chemicals.critical)

 	Zc_methods() (in module chemicals.critical)

 	zs_to_Vfs() (in module chemicals.utils)

 	zs_to_ws() (in module chemicals.utils)

 	Zuo_Stenby() (in module chemicals.interface)

_static/plus.png

nav.xhtml

 Table of Contents

 		
 chemicals: Chemical properties component of Chemical Engineering Design Library (ChEDL)

 		
 Chemicals tutorial

 		
 Importing

 		
 Design philosophy

 		
 Working with Elements

 		
 Working with Chemical Identifiers

 		
 Acentric Factor (chemicals.acentric)

 		
 Lookup Functions

 		
 Definitions

 		
 Correlations

 		
 Air: Fundamental Equation of State for Air (chemicals.air)

 		
 Dry Air Basic Solvers

 		
 Dry Air Bubble/Dew Points

 		
 Dry Air Constants

 		
 Dry Air Ideal Gas Terms

 		
 Dry Air Residual Terms

 		
 Humid Air Virial Terms

 		
 Henry’s Law for Air in Water

 		
 Combustion Calculations (chemicals.combustion)

 		
 Combustion Stoichiometry

 		
 Heat of Combustion

 		
 Heat of Combustion and Stiochiometry

 		
 Basic Combustion Spec Solvers

 		
 Engine Combustion

 		
 Lookup Functions

 		
 Critical Properties (chemicals.critical)

 		
 Critical Temperature

 		
 Critical Pressure

 		
 Critical Volume

 		
 Critical Compressibility Factor

 		
 Critical Property Relationships

 		
 Critical Temperature of Mixtures

 		
 Critical Volume of Mixtures

 		
 Dipole Moment (chemicals.dipole)

 		
 Lookup Functions

 		
 DIPPR Fit Equations (chemicals.dippr)

 		
 Equations

 		
 Jacobians (for fitting)

 		
 Periodic Table (chemicals.elements)

 		
 Periodic Table and Elements

 		
 Working with Formulas

 		
 Working with Parsed Formulas

 		
 Environmental Properties (chemicals.environment)

 		
 Global Warming Potential

 		
 Ozone Depletion Potential

 		
 Octanol-Water Partition Coefficient

 		
 Exceptions Generated by Chemicals (chemicals.exceptions)

 		
 Ideal VLE and Flash Initialization (chemicals.flash_basic)

 		
 Ideal Flash Function

 		
 Flash Initialization

 		
 Equilibrium Constants

 		
 Heat Capacity (chemicals.heat_capacity)

 		
 Gas Heat Capacity Model Equations

 		
 Gas Heat Capacity Estimation Models

 		
 Gas Heat Capacity Theory

 		
 Liquid Heat Capacity Model Equations

 		
 Liquid Heat Capacity Estimation Models

 		
 Solid Heat Capacity Estimation Models

 		
 Utility methods

 		
 Fit Coefficients

 		
 IAPWS: International Association for the Properties of Water and Steam (chemicals.iapws)

 		
 IAPWS-95 Basic Solvers

 		
 IAPWS-97 Basic Solvers

 		
 IAPWS-95 Properties

 		
 IAPWS Saturation Pressure/Temperature

 		
 IAPWS Saturation Density

 		
 IAPWS Constants

 		
 IAPWS-97 Region 1

 		
 IAPWS-97 Region 2

 		
 IAPWS-97 Region 3

 		
 IAPWS-97 Region 3 PT Backwards Equation Boundaries

 		
 IAPWS-97 Region 3 PT Backwards Equations

 		
 IAPWS-97 Region 5

 		
 IAPWS-95 Ideal Gas Terms

 		
 IAPWS-95 Residual Terms

 		
 Chemical Metadata (chemicals.identifiers)

 		
 Search Functions

 		
 CAS Number Utilities

 		
 Database Objects

 		
 Chemical Groups

 		
 Surface Tension (chemicals.interface)

 		
 Pure Component Correlations

 		
 Mixing Rules

 		
 Correlations for Specific Substances

 		
 Petroleum Correlations

 		
 Oil-Water Interfacial Tension Correlations

 		
 Fit Correlations

 		
 Fit Coefficients

 		
 Lennard-Jones Models (chemicals.lennard_jones)

 		
 Stockmayer Parameter

 		
 Stockmayer Parameter Correlations

 		
 Molecular Diameter

 		
 Molecular Diameter Correlations

 		
 Utility Functions

 		
 Miscellaneous Data (chemicals.miscdata)

 		
 Temperature Dependent data

 		
 Chemical Geometry (chemicals.molecular_geometry)

 		
 Lookup Functions

 		
 Support for Numba (chemicals.numba)

 		
 Relative Permittivity/Dielectric Constant (chemicals.permittivity)

 		
 Correlations for Specific Substances

 		
 Fit Coefficients

 		
 Phase Change Properties (chemicals.phase_change)

 		
 Boiling Point

 		
 Melting Point

 		
 Heat of Fusion

 		
 Heat of Vaporization at Tb Correlations

 		
 Heat of Vaporization at T Correlations

 		
 Heat of Vaporization at T Model Equations

 		
 Heat of Sublimation

 		
 Fit Coefficients

 		
 Rachford-Rice Equation Solvers (chemicals.rachford_rice)

 		
 Two Phase - Interface

 		
 Two Phase - Implementations

 		
 Two Phase - High-Precision Implementations

 		
 Three Phase

 		
 N Phase

 		
 Two Phase Utility Functions

 		
 Numerical Notes

 		
 Chemical Reactions (chemicals.reaction)

 		
 Solid Heat of Formation

 		
 Liquid Heat of Formation

 		
 Gas Heat of Formation

 		
 Solid Absolute Entropy

 		
 Liquid Absolute Entropy

 		
 Gas Absolute Entropy

 		
 Utility Functions

 		
 Chemical Reactions

 		
 Refractive Index (chemicals.refractivity)

 		
 Lookup Functions

 		
 Correlations for Specific Substances

 		
 Unit Conversions

 		
 Utility functions

 		
 Pure Component Liquid Fit Correlations

 		
 Health, Safety, and Flammability Properties (chemicals.safety)

 		
 Short-term Exposure Limit

 		
 Time-Weighted Average Exposure Limit

 		
 Ceiling Limit

 		
 Skin Absorbance

 		
 Carcinogenicity

 		
 Flash Point

 		
 Autoignition Point

 		
 Lower Flammability Limit

 		
 Upper Flammability Limit

 		
 Mixture Flammability Limit

 		
 Utility Methods

 		
 Solubility (chemicals.solubility)

 		
 Henry’s Law

 		
 Utility functions

 		
 ITS Temperature Scales (chemicals.temperature)

 		
 Conversion functions

 		
 Thermal Conductivity (chemicals.thermal_conductivity)

 		
 Pure Low Pressure Liquid Correlations

 		
 Pure High Pressure Liquid Correlations

 		
 Liquid Mixing Rules

 		
 Pure Low Pressure Gas Correlations

 		
 Pure High Pressure Gas Correlations

 		
 Gas Mixing Rules

 		
 Correlations for Specific Substances

 		
 Fit Correlations

 		
 Fit Coefficients

 		
 Triple Point (chemicals.triple)

 		
 Triple Temperature

 		
 Triple Pressure

 		
 Utilities (chemicals.utils)

 		
 Support for pint Quantities (chemicals.units)

 		
 Vapor Pressure (chemicals.vapor_pressure)

 		
 Fit Correlations

 		
 Fit Correlation Derivatives

 		
 Jacobians (for fitting)

 		
 Vapor Pressure Estimation Correlations

 		
 Sublimation Pressure Estimation Correlations

 		
 Correlations for Specific Substances

 		
 Analytical Fit Equations

 		
 Fit Coefficients

 		
 Support for Numpy Arrays (chemicals.vectorized)

 		
 Virial Coefficients (chemicals.virial)

 		
 Utilities

 		
 Second Virial Correlations

 		
 Third Virial Correlations

 		
 Cross-Parameters

